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AN APPLICATION OF NONLINEAR
TIME SERIES FORECASTING

Agustin Maravall

ABSTRACT

By means of a real application, it is seen how ARIMA forecasts can be
improved when non—linearities are present. The ACF of the squared residuals pro-
vides a convenient tool to check the linearity assumption. Then it is seen how
simple bilinear models capture some of the non—linearity. The detection of
non—linearity and the forecast improvement appear to be rather robust with
respect to changes in the linear and bilinear specification. Finally, what bilinear
models seem to capture are periods of atypical behavior or sequences of outliers.






1. INTRODUCTION

Forecasting using the Box-Jenkins methodology has
become a well-established universal practice. The
process of selecting an ARIMA model includes diagnostic
checks which mostly rely on the autocorrelation functim
(ACF) of the fitted residuals. Although it is well known
that, if the process is non-linear, lack of autocorrelation
does not imply independence, a check of the linearity
assumption is hardly ever performed(l).

Granger (1981) discusses situations in which what
appears to be white-noise under covariance analysis can
still be somewhat forecasted. A particular case he
considers is related to bilinear processes. These were
recently introduced in applied time series by Granger-
Andersen (1978). They have received of late some

(2)

attention , although they still appear to be far from
practical use, with few reported applications. Bilinear
time series models appear to have some theoretical
foundation as approximation of more general non-linear
models, and in some sense "can be regarded as a natural
non-linear extension of the ARMA models" (Priestley,1981).
For many of them, the ACF of the variable looks like
that of white-noise, yet the series can be forecasted
using its own past. Thus if the ARIMA residuals were to
present such a bilinear structure, it would be possible
to improve upon ARIMA forecasts.

Although the point is clear, the question still
remains: 1is it likely to be of practical interest? This
translates fundamentally into two requirements: first,
the detection of non-linearity in a relatively easy way,and
second, the ability to capture some of that non-linearity
with simple (parsimonious) bilinear models.

In this paper, using an actual forecasting application,
we try to address both issues. Ve conclude that






an additional tool can be easily incorporated to the
diagnostic of ARIMA models, as a check on the linearity
assumption. This check is trivial to compute and

rs to behave rather properly. Then we
shall see how simple bilinear models are able to capture
some of the non-linearity. Furthermore, the detection of
non-linearity and the forecast improvement achieved
through the bilinear model appéear to be rather robust
with respect to (relatively small) changes in the linear
and bilinear specification. Finally, we observe that
what bilinear models seem to capture are periods of
atypical behavior (or sequences of outliers), which
affect the series occasionally and are not accounted
for by the ARIMA model(3).






2. THE APPLICATION

The application we shall discuss is embodied within
the Bank of Spain monetary control set-up.

Short-term monetary control is based on monthly targets
for the rate of growth of the money supply. The money
supply has two components: currency and an aggregate
deposit component. Currency is treated mostly as
exogenous. Control is, therefore, based on the relation-
ship between the instruments used by the Bank and the
deposit component, which plays the role of an intermediate
target. The move from the target variable (money supply)
to the intermediate one simply consists of substracting
the currency forecast. Since currency demand is passively
accomodated, at the Bank of Spain this forecast 1is
obtained through ARIMA models for series with a ten-day
observation period. This period corresponds to the bank
data reporting frequency and allows intramonth informa-
tion to be used in updating monthly forecasts(4). We
shall see if those currency forecasts can be improved
by using bilinear models.

Insofar as the world is non-linear and linearity is
a first-order approximation, since bilinear models may
represent a second-order approximation, we might expect
some improvement. But then, could this be achieved with

parsimonious, easy-to-handle, ones?






3. ARIMA ESTIMATION

The 10-day currency series 1is an average of the
daily series, obtained from bank statements, reported
three times a month. The series is displayed in Table 1 and the last
150 values are shown in figure 1. For identification and estimation
purposes, we consider the seven-year period 1974-80(5).
The forecasting exercise will cover the first semester
of 1981. If Y denotes the 10-day series, stationarity

seems to be achieved through the transformation:
z, = VV36 log Y '

roughly, the annual difference in the 10-day rate of

growth. The autocorrelation function (ACF) of z, is

displayed in figure 2. The chosen ARIMA model was:

9 18 27_. .36

z, = (l—GlB—O B” -6,4,B —627B 6363 ) a (1)

t 9 18 t !

with 6= (0.98, =-.233, -.205, -.296, .237) ,

t = (1.63, -3.44, -2.98, -4.14, 3.23) (8,

and residual variance .561(.‘1_0-4

}) . The ACF of the
residuals is shown in figure 3 and the last 150 values

of a, are plotted in figure 4. The forecastability

t 2
2 Ua
measure R =1 =- 5 is equal to .18, and the
g
a

standard deviation of the l-step-ahead forecast error
represents, roughly, .74 percent of the level of the

series Vi






4., CHECKING THE LINEARITY ASSUMPTION

The ACF of a, looks like that of white-noise, but
what if the series is nonlinear and the residuals simply
uncorrelated but not independent?

The skewness of a, is equal to .008 and kurtosis
equals 3.545. Since the asymptotic standard deviations
of these estimates are .167 and .334, respectively, the
distribution of a, looks rather symmetric, maybe slightly
leptokurtic.

What we would like to have is a way of checking the
linearity hypothesis, easy to compute, that does not
reguire a specific alternative model. Granger suggests

looking at the ACF of a
2

é. If a_ is independent, so will be
£ But 1if ay is not independent (and the model is

>
nonlinear), this is likely to show in the ACF of ac,

a

which, in general, will not be that of white-noise.

(7)

Since it is trivial to compute, I did so

2
5 displays the ACF of a;.

seasonal and possibly low-order lags. In fact, to avoid

. Figure

There is some increase for

effects due to "linear misspecification", I used four
different ARIMA models, in three different computer
packages, using both the conditional LS and backcasting
options. For all of them, pl lay in the interval [.07,.1€L
py in (.13,.18], pyc in [.1%é515], pye in [-16,.20] and
all the other %;s were small . Thus minor changes in
the ARMA estimation had little effect on the test. There
is an underlying reason for this, which also makes the
test more interesting.

Lemma: Let z, be a linear (Gaussian) stationary

t
process, then

2, _ 2 _
Pplze) =P (27 k=0, +1, ... .






Proof: The moment generating function for z_ and z

t t-k
is given by:
m(t,,t,) = exp i1 62 (t2+t2+2p t.t )}
1772 2 Tz 1 72 k™12 :
Since
2 2 6%m 4 2
Ez_ z_ _, = = ¢ (14+2p.)
t “t-k 6t2 6t2 £ =0 z k
1 2 = -
and Var(zi) = Zci, substituting for both expressions
in
2 2 4
2. Bz Zip "9
Var(zt)

the result in the lemma is cobtained.

Thus, for example, if we square an ARMA variable,
we are also squaring its autocorrelations. If the
process 1is linear, but wrongly specified, the mis-
specified residuals will also be linear, likely with
relatively small autocorrelations. When squared, these
will become negligible.

Comparing the ACF of a2 with that of a

t t’
some evidence of nonlinearity for low-order and seasonal

‘there is

lags, and the rest of the autocorrelations seem rather
small (not including pl, Py 035 and 036’ the Q-
statistics for the first forty autocorrelations were
Q(a.) = 27.3 and Q(al) = 18.8).

Before proceeding further in the application, a few
general remarks are appropriate:

A) The lemma applies to any linear process, hence
the test could conceivably be carried out directly on

z Since it implies that, for a linear stationary

£
process,

oy (z) | >0 (22) >0, ¥k FoO






unless both are zero, an increase in some autocorrelations
when the variable is squared would imply non-linearity.
However, there is a reason that makes it preferable

to look at the ACF of the linearly pre-whitened series.
An example will illustrate the problem. Consider the
model:

zt = at - eat_l (2)

a, = €4 (3)

L

with gta,Niid (0,g§). Equation (3) represents a bilinear
process. It is seen that g is not unit free, its

dimension being the inverse of that of z For analytical

£
discussion a convenient standarization is 05 = 1, in
which case (3) is stationary when |g| <1. If estimates

of past e¢,'s are available, onestep-ahead forecasts of

t

a, can be obtained through

t

N
ap(l) = Bay 4 ey -

However, 1t is easily seen that ay is uncorrelated at

all lags, so that its ACF is that of white-noise. On
2
t
consists of two alternating exponentially decreasing

the contrary,as we shall see later, the ACF of a

functions. Within the region |[g| < .76 (for which the
second moments of at exist)
2 2
pylay) > oy (ay) ' k #2 ,

always holds, except when both are zero. Non-linearity
would be detected mainly by a relatively large value

of p (az). For the z, variable, it can be seen that:
27t

t
pz(zt) = 0
, 82 (1-38%) (1+582)

8 1 - [
1+6%+02 (1-38%) 2(1+38%)

1l

2
pz(zt)






so that, for any (non-zero) value of §, pz(ai) =

32 > pz(zi). Figure 6 displays both autocorrelations
as functions of B for 6=.8. Since, if linear,

pz(zi) = pz(ai) = 0, the bilinearzstructure is gore
likely to be revealed using the ag series. If zy

were to be used, lack of any increase in the ACF may
be due to the complicated manner in which (3} and (4)
interact, and not to the fact that the series is
linear. However, when using ai,this interaction
disappears, since at is free from linear correlation
In fact, there are general additional reasons for
non-linearity tests to be performed preferably on the
ap series(g).

B) The lemma and previous discussion have dealt
with theoretical ACF. In practice we use the standard
estimates, such as in Box-Jenkins (1970). Is it likely
that the underlying non-linearity can damage their
precision 1in such a way as to invalidate linear
estimation and detection of non=linearity?

For the model consisting of equation (3), together

with

z, = ¢Zt—1 +oa '

with ¢ = .5 and B = .4, 250 random samples of size
250 each, were drawn from a N(0,1) population. For
this model, pl(at) = 0, (zt) = .5 an§ pléai) = ,15.
The histograms for pl(at), l(zt) and pl(at) are shown
in figure 7, which also includes the asymptotic
distribution of the first two under the linearity
assumption. It is seen that non-linearity seems to
have little effect on the distributions of pl(z )
and pl(at) Also pl(a ) seems to be reasonably acceptable.
The standard deviations for the three estimators were

068, .074 and .103, respectively, while T “1/2_ 064 (10)

The estimator pl(z ) was considerably more erratic,
with o = .146.






C) Often, bilinear models tend to have rflatively
small values for Q(ai). Thus, in order for b(ai) to
be able to detect non-linearity, the series should
have a relatively large number of observations. In
practice, for many economic time series, this may mean
that the test based on the ACF of ai would be appropxiate
for series with relatively high frequency of observation.
But then these are likely to be the series exhibiting
more important non-linearities.

Two types of factors can be expected to operate:
first, a statistical one, consisting of central limit-
type effects, which render temporal aggregates more
Normal (Anderson, 1971, section 7.7), and :second, a
geometric effect, which is simply the fact that quadratic
approximations will perform better than linear ones.
Therefore one would expect daily series to be more
non-linear than 10-day ones, which in turn should be
more non-linear than monthly ones. In our case, direct
inspection of the daily series (figure 8) shows
irreversibility, which is a clear indication of non-
linearity(ll).

Thus a comparison between the daily, 10-day and

monthly series seemed appropriate to see what information

is provided by the ACF of ai.
Figure 9 displays the ACF of a, and ai for the

residuals of the monthly series. It is seen that the
series ai appears to be white-noise, and the
autocorrelations . are of small size. Figure 10
compares the ACF of a and ai for the daily ser;es(lz).
There is a sionificant increase in the values of pk(at) for
low order and seasonal lags.
Since the Q-statistics is an aggregate measure of

a set of autocorrelations, and since the lemma implies
that Qk(zi)g Qk(zt) for any set of k autocorrelations,

an increase in a Q value would be an indication of






10

(13)

non-linearity The following table presents

Q statistics for the residuals of the monthly series:

Monthly
series Qo Q54 Q36
a, 6.3 16.6 20.5
2
al 9.5 18.9 20.6

They appear to behave rather linearly. For the

daily series, a similar table yields:

Daily *
series Q5 Q313 Q313 Q626
a, 65.6 448.4 392.6 659.2
ai 198.8 518. 3 295.3 658.1

where le is intended to capture the low-order
autocorrelations and Q313 to incorporate the seasonal
ones. The asterisk denotes the value of Q3l3 when the
autocorrelations for k =1, 2, 6, 77-79, 155-157 and
312-314 have been removed. There are noticeable increases
in le(ai) and Q313(ai), which are due to increases in
the autocorrelation for "sensible" lags (low-order and
several seasonal ones, such as weekly, quarterly,
semiannual and annual).

Looking at the results for the daily series, it
appears that, for large k, 1linearity may imply
smaller variances for the distribution of gk(ai). If
such were to be the case, care should be taken when
considering Q values which involve a large number of
autocorrelations: the increase in a few gk(ai)'s could

cancel out with the decrease in the rest of them.
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This seems to be evidenced in the behavior of Q for
the daily series: the increase in le is larger than
the one in Q313, despite the fact the non-linearity
shows up at k = 78, 156 and 313; moreover, both Q626
are practically identical.

For the 10-day series the following Q-values were

obtained:
10-day
series . le.. o 936
ay 8.3 31.5
a2 13.6 43.0
t . .

To summarize, the ACF of ai indicates that the
monthly series behaves rather linearly while the
daily one is clearly non-linear, with the 10-day series
standing in between. Thus the ACF of ai behaves quite
properly. All in all, considering its computational
simplicity, its robustness with respect to linear
specification and the information it may provide, the
ACF of ai seems to offer a reasonable tool to add to
the standard diagnostic check of ARIMA fits, to check

for the validity of the linearity assumption.
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5. IDENTIFICACION

Back to our application, we shall center on the 10-
day series. Is it possible to capture the (relatively
small) detected non-linearity with parsimonious bilirear
models?

Two general approaches are possible: first, a direct

one, in which a general bilinear model is fitted to z and

'
second, a two-stage ("forecasting white-noise") approzch,
in which the linear innovations are first obtained and
then a bilinear model is fit to them. Although less
general, we followed the second approach. It is at
present computationally easier and it has a nice feature:

Let

(4)
)+ k,3>0 , (5)

Z

€ y(B) a

t
+ N{e

g T gt t-k *t-7

where ap is uncorrelated, €y white-noise and N denotes

a bilinear term. Roughly, we can write:

where lt = y (B) €¢ is a linear term and nt a non-linear

expression. Then it is easily seen that:

pk(zt) = pk(lt) ' ¥ k

Thus, in terms of the first stage, we do not have
to worry about non-linearity since the ACF of Zy
identifies correctly y(B).

From a general point of view, we are dealing with a
linear function of non-Gaussian variables. Having
obtained the linear function (4), we are interested
now in finding a bilinear process that (a) is uncorrelated
and (b) can generate ACFs similar to the one obtained

for a2. In this sense, the ACF of a2

t y besides detecting






non-linearities, provides an identification tool for
the bilinear specification.
Consider the process given by {(3), with |8]<.76

and 02 = 1. Then it can be seen that

Eat = 0
Var (at) = .Vlié '
1-8
Ok(at) = 0 ’ k #0
so that, under covariance analysis at looks like white-
noise. The ACF of ai is given by:
2y _ a2.9_2o4
py(al) = 8°(1-38%)
2 2
oz(at) = g
2, _ k
prlay) =8 , k even ,
2 k-1

_ 2

which imply alternating exponentially decreasing functions,
with initial conditions 1 and pl(ai), and parameter equal
to 82. Notice that p2(a§)>pl(ai). Figure 11 displays a

typical pattern of the ACF of a Since in our case

t.
this pattern characterizes both the low order and seasonal
autocorrelations, this suggests the use of a model such

as:

a + € ' (6)

£ = B1 2o Ero1 T By 8L 36 o35 t

(14)

a rather parsimonious representation . By generating
series with (3), ACFs for ai with positive peaks at
lags Pyr Por P35 and Py were easily obtained. Furthermore,

(3) with et'VNiid implies a symmetric, slightly leptokurtic

distribution for a,. For example, for B = .5, the coefficient

t
3(1-g%)

of kurtosis Ky = 1-354

is equal to 3.46.

13






6. ESTIMATION

In order to estimate (6), an appropriate standarization
is to set ci = 1. Maximum likelihhod estimators of Bl
and 52 are obtained by minimizing (Priestley, 1981,
p.881):

s(g) = Zei .
t
In computing S(g), starting values for the e's were

set equal to zero and subsequent values were computed
recursively. In order to avoid the effect of the starting
conditions, we used the last 150 wvalues of the €y series
in the computation of S(g). Figure 12 plots the contours
of S(g) within the stationary region. The minimum is
reached for El = ,02, éz = =.22 and the residual variance

937 (13)

becomes . In fact, 1f the complete e, series

is used (not including the zero starting valueZ), the
estimators remain practically unchanced and 05 = .922.
On the other hand, if only the last 100 values are
Sonsiderid, Ez becomes to =.28 and ci = ,913.Setting
Bl = 0, 82 = -.22, in terms of the original series 2y
the forecastability measure R2 increases by nearly 32%.
Figures 13 and 14 display the ACF of €y and eireqxcthely
The additional filter seems to have increased the covariance
between neighboring values of the autocorrelation estimates.
Also, the lag 2 autocorrelation is still present in the

€y series. A crude goodness-of-fit test is provided by
comparing the statistics:

2,2, _
T log{ca/oe} = 13

to x2(.05) = 6 (Priestley, 1981, p. 884). The significance
of the model is due to the seasonal component. In fact,

if a regression is run on (6), with ¢, replaced by the

t
residuals from the bilinear fit, the t statistics for
Bl and B, are .23 and -2.87. Summarizing, estimation of

(6) shows significant non-linearity at seasonal lags.

14
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7. FORECASTING

For forecasting purpcses we consider the first
semester of 1981 (T = 18). The exercise will be performed
under Ehe standarization oy = 1.

If zt(l) denotes the one-period ahead linear forecast

‘obtained with (1), then it is easily seen that:
a) z, (1) = zt(l) + at(l) ’ (7)

where zt(l) is the final forecast, and at(l) is given

by:

at(l) = -,22 A, _35 Ep_34 7 (8)
where we have set Bl = 0. Also, it follows that
B) epyq T agyy 2 (D) =z, -z (D,

so that €p is the one-step ahead prediction error of
the currency series (in logs).

One-step ahead forecasts were obtained with the
linear model (1) and then bilinear forecasts, given by
(8), were added. The models were not re-estimated.
However, adding the new 18 observations had a negligible
effect on the ACF of Zg - The standard deviation of the
ARIMA forecast error for the first semester of 1981 was
equal to .82, hence for this period, ARIMA foreéasts
were particularly accurate. Figure 15 plots the forecast
errors for both ;i(l) and ;t(l). The MSE decreases by
close to 8%, and it is seen that most of the improvement
is concentrated in the last two months.

For forecast horizons larger than one period, a result
similar to (7) does not hold. For example, the two-

period ahead forecast is given by:

~ —/\l o~ _ N

zt(2) = zt(2) + at(2) 61 at(l) ;
so that the forecast error becomes:

€ (2) =z 5 — 2 (2) = e 5 7 0y gy
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Hence:
Ve, (2)) o2
—t €
T = > ¢ (%)
V(et(E)) Ga

where ei denotes the linear forecast error. Thus the relative
improvement remains constant. Indeed, the results for
the 2 and 3 steps ahead forecasts were wvirtually identical
and we shall not discuss them. Notice that 1if 81 # 0
this would not be true, since then

et(2) = ¢ +

T s

and therefore (8) would not hold.
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8. CHANGES IN THE SPECIFICATION

1. Linear Specification

I mentioned before that several ARIMA estimations
were tried. The largest differences were due to the
use of "conditional least-squares" versus "backcasting"
in the estimation phase. I redid the exercise with an
ARIMA similar to (1), with 636 = 0, 61 = (0, estimated
through CLS. Although the residual variance is slightly
greater (ci = .596(10_4)), the ACF of the residuals was
cleaner, with smaller Q-values. The ACF of ai showed
Py = .16, Py = .16, P35 = .14, P3¢ = .20 and all other
autocorrelations were small. Thus non-linearity was
slightly more noticeable(l6).
model (6) yielded: g, = .03, 8, = -.16, with oi = .922.
Figure 16 plots the forecast errors for the first half

of 1981. The improvement induced by the use of the

Estimation of the bilinear

bilinear model is similar to the one obtained before,
though the decrease in MSE becomes now over 13%. Since
the MSE of the ARIMA forecast was practically identical

to the one obtained before, the final forecasts obtaired
in this case were more accurate. This suggests that if
the series presents non-linearities, the linear estimation
(i.e., the first step) should be performed preferably
using the CLS option of ARIMA packages.

2. Bilinear Specification

But, besides misspecification of the linear model,
there can also be misspecification of the bilinear one.
Would (minor) changes in the latter affect the results
much?






Besides model (6), I tried the following bilinear

formulations:

ap = By ap.g feog T By A g6 fp3e v ey (10 2)
ap = By 3 fp2 * By 336 Fro36 T Et (10 b)
ap = By @p ) Sep * By 3p_35 Eogp T €y (10 <)
ap T 81 qpp fe-1 T B2 fpo36 fr-36 T Gt (10 d)
ap = By app Epop By Bpi36 fro35 T &y (10 e)
ap T Bp 3 fe-1 By qpo36 fr-1 T &g (10 )

Using Granger-Andersen terminoclogy, (10 a and b)
are diagonal models, (10 c) is subdiagonal, (10 d and
e) are mixed ones and (10 f£) is the only one that is

(17)

completely uncorrelated . All of them could generate

ACFs for ai somewhat similar to our example. Except
for (10 f), which did a bad job, the rest all improved
some the linear results. Although differences were
relatively minor, (a, b and e) produced smaller og than
(6), while (¢ and d) performed worse. For all of them,
§l was not significant. We summarize the results for
(10 a).

Contours of S(g) are shown in figure 17. Figure 18
exhibits the one-step ahead forecast errors when the
model

t-36 ft-36 T Et

is added to (1). Again, the improvement is concentrated
over the same period, and the MSE of the forecasts 1is
reduced by 9.2%. Roughly, the results seem rather
robust with respect to changes in the bilinear

specification.

18
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The improvement achieyed is relatively small, as
one would expect from a second order type of approximation.
But an 8% reduction in the MSE of the currency forecast
is by no means irrelevant for monetary policy. Moreover,
practical implementation of (8) is computationally trivial,
and since ;t+j(l) = gt(j+l), j=20,1,...,34, it can be
done at the beginning of a year, for the complete year
ahead.
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9. A FINAL COMMENT: OUTLIERS AND NONSTATIONARITY

If we look at the figures displaying the forecast
errors, it is seen that the improvement is concentrated
over the last two months. During this period forecasts
were over-estimated due to an unexpected drop in
currency. This drop continued during July and then
recovered. What the bilinear model was able to capture,
therefore, was part of a special type of effect that
could not be accounted for by the simple linear model.

It appears, therefore, that bilinear models could
be appropriate for series with sequences of outliers,
where, on occasion, a different regime seems to apply.
In fact, the way bilinear filters seem to operate is
as follows: During the "normal regime", they are mostly
inoperative. When atypical behavior sets in, they
become operative, and perform some smoothing of outliers.
Hence bilinear structures can be seen partly as filters
for somewhat smoothing outliers.

This feature becomes more noticeable when considering
nonstationary bilinear processes. Figure 19 displays
series generated with

z, = (113

£ T BZig Eeop toE

t 14

for two random samples from et'bNiid(O,l), for g = 0

and g = 1, the latter being a nonstationary value.
Nonstationarity seems to be mostly associated with
occasional blow-ups in variance, with an eventual return

to a constant mean level(lB)

. This type of nonstationarity
is rather different from the one associated with trends
and with lack of convergence of the ACF. In fact, for
many bilinear models, as they approach nonstationarity,
the ACFs tend toward that of white—noise(lg). Hence
bilinear models are able to produce series behavior

which cannot be internally generated by linear models.
They present therefore some features which could be of

potential applied interest.
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FOOTNOTES

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

By linear model we shall denote a linear filter of
Gaussian white-noise.

See, for example, Priestley (1981), Subba Rao (1981)
Pham-Tran (1981) and Gabr-Subba Rao (1981).

A more complete version of the paper is contained

in Maravall (1982).Scme results are also contained in Maravall (1981).
The period is also the one for which reserve
requirements are set. The first two ten-day periods
of a month cover the first twenty natural days. The
third period is, therefore, a residual. For a more
complete description of the control procedure, see
Espasa and Pérez (1979).

1974 is the first year for which a complete set of
homogenous data is available.

Although 61 was not significantly different from
zero, 1t was kept because it improved slightly the
forecasts for 1981.

More sophisticated test, such as the ones based on

the polyspectra (Subba Rao = Gabr, 1980), could also
2
t
that it is inmediately available to any ARIMA user.

be applied. The nice feature of the ACF of a, is

The largest difference was caused by the use of CLS,
versus backcasting, with the former producing larger
values for pl(ai). The model we use in the discussion
is (1) estimated in the Speakeasy routines, with
backcast option. In fact the residuals for this model
were the ones that displayed less evidence of non-
linearity. _

See, for example, Granger (1979) and Davies-Spedding-
Watson (1980).

The three sample estimates present a downward bias,
analogously to the case of linear processes (see
Kendall, 1973, chap. 7)






(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

The series jumps to a maximum and then slowly
declines (Cox, 1981).

The daily series covers the shorter period 1977-
80 and does not include Sundays.

Since we are only interested in a measure of
aggregate value, we use the original Box-Pierce
Q=-statistics. In fact, since, under the linearity
assumption, S(ai),¢ N{(Q, %&, the Q statistics

for the ai series 1is ligely to be asymptotically
distributed also as a ¥ variable.

Strictly speaking, a, defined by (4) is not
uncorrelated at all lags. There is a nonzero Pagr
but in our application we need not worry about

it since it will have a wvalue of .004.

Notice that, in terms of the standarization c§=l,
the estimates would be slightly larger.

This is possibly related to the fact that backcasting
is a linear operation which would induce linearity
at the beginning of the series.

Though non-zero autocorrelations were in all
cases negligible,

Alternative time series models that appear to
present somewhat similar second-crder behavior
have been developed by Engle and Kraft (1981).
Model (11) presents this feature. Its only non-
zero autocorrelation is pl(zt), which reaches a

maximum for B~.6 and tends to zero as B ~+1.
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Contours of the Sum of Squares: Model (6)
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Figure 15

Forecast Errors
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