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Abstract

We propose a method to adjust for data outliers in Bayesian Vector Autoregressions 

(BVARs), which allows for different outlier magnitudes across variables and rescales 

the reduced form error terms. We use the method to document several facts about the 

effect of outliers on estimation and out-of-sample forecasting results using euro area 

macroeconomic data. First, the COVID-19 pandemic led to large swings in macroeconomic 

data that distort the BVAR estimation results. Second, these swings can be addressed 

by rescaling the shocks’ variance. Third, taking into account outliers before 2020 leads 

to mild improvements in the point forecasts of BVARs for some variables and horizons. 

However, the density forecast performance considerably deteriorates. Therefore, we 

recommend taking into account outliers only on pre-specified dates around the onset of 

the COVID-19 pandemic.

Keywords: COVID-19 pandemic, outliers, Bayesian VARs, forecasting, euro area.

JEL classification: C11, C32, C51, E37.



Resumen

Este trabajo propone un método para ajustar los datos atípicos en modelos vectoriales 

autorregresivos estimados con técnicas bayesianas (BVAR) que supone reescalar por 

magnitudes diferentes la varianza de los errores de la forma reducida. Se utiliza este 

método para documentar varios hechos sobre el efecto de los valores atípicos en la 

estimación y la previsión fuera de muestra utilizando datos macroeconómicos de la zona 

del euro. En primer lugar, la pandemia de COVID-19 provocó grandes oscilaciones en los 

datos macroeconómicos que distorsionan los resultados de estimación de los modelos 

BVAR. En segundo lugar, estas oscilaciones pueden abordarse reescalando la varianza 

de las perturbaciones. En tercer lugar, si se tienen en cuenta los valores atípicos antes de 

2020, se obtienen ligeras mejoras en las previsiones puntuales de los BVAR para algunas 

variables y horizontes. Sin embargo, el rendimiento de las previsiones de las densidades 

se deteriora considerablemente. Por lo tanto, recomendamos tener en cuenta los valores 

atípicos solo en las fechas preestablecidas en torno al inicio de la pandemia de COVID-19.

Palabras clave: pandemia de COVID-19, valores atípicos, BVAR, predicción, área del 

euro.

Códigos JEL: C11, C32, C51, E37.
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1 Introduction

Bayesian Vector autoregressions (BVARs) are a popular way of modeling the dynamic relationships
of macroeconomic variables. Since the Covid-19 pandemic has caused swings of unprecedented
magnitudes in macroeconomic series, the following questions emerged: can VARs be robustified
to the pandemic’s outliers, and does an adjustment for outliers, more generally, improve BVARs’
forecasting performance prior to 2020?

This paper makes two contributions to address these questions. On the one hand, we study
the relevance of an outlier adjustment prior to and after 2020 in a 10-variable Bayesian VAR (with
and without stochastic volatility) using quarterly euro area data ranging from 1985:Q1 to 2021:Q3.
The variables include five macroeconomic variables, real GDP, consumer price inflation, nominal
wages, employment, and foreign demand, as well as the oil price, an exchange rate basket, short-
and long-term interest rates, and a stock market index.

We subsequently document three empirical facts. First, relative to the same model estimated
on data until 2019:Q4, the parameters’ posteriors of both a BVAR without stochastic volatility
(BVAR-WOSV) and a BVAR with stochastic volatility (BVAR-SV) change substantially when
including the observations of 2020:Q1 onward. Second, using an outlier correction method leads
to posterior distributions that are close to the results based on data until 2019:Q4. This underlines
the usefulness of an outlier correction specification since the few additional observations of
2020 and 2021 should not drastically alter the posterior distribution based on the previous
136 observations. Third, accounting for outliers prior to 2020 improves the forecasts of the
BVAR-WOSV for some variables and horizons; the point forecast performance of the BVAR-
SV is essentially unchanged. However, density forecasts considerably deteriorate for both the
BVAR-WOSV and BVAR-SV.

As a second contribution, we propose a new method to address outliers within the framework
of a BVAR. Our specification rescales the variance-covariance matrix of the reduced form error
term vector and the outlier magnitude is allowed to be different across variables. The rescaling
of the variance-covariance matrix implies that, for instance, Covid-19 observations are down-
weighted in the model estimation and the model’s regression coefficients are virtually unchanged.
The method is easily amended for the outlier dates to be pre-specified a priori instead of estimated
alongside the outlier magnitude. Further, since it rescales the reduced form variance it can be
readily applied to BVARs with constant volatility or to stochastic volatility specifications that do
not use the triangular decomposition of Primiceri (2005). For instance, recent work by Hartwig
(2021), Arias et al. (2021), and Ganics and Odendahl (2021) advocates for SV specifications other
than the triangular decomposition since they show that the ordering problem due to the triangular
decomposition is empirically relevant for forecasting results.

Our paper is most closely related to the work of Carriero et al. (2022a, CCMM hereafter),
who were the first to investigate the effect of Covid-19 outliers in BVARs that include stochastic
volatility (see also Carriero et al. (2022b) for an additional application of their methodology).
However, we differ from them in several important ways. First, we focus on quarterly euro area
data. Second, when our outlier specification is used in combination with stochastic volatility, the
outlier matrix rescales the reduced form error term instead of the structural shocks and, therefore,
is applicable to a wider variety of SV specifications and leaves the contemporaneous correlation
of the reduced form error term unaffected.

The present paper is further related to Lenza and Primiceri (2022), the first paper addressing
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the Covid outlier issue in BVARs. Different from their framework, which obtains parameter
estimates by optimizing the marginal likelihood, we focus on the effect of outliers in euro area
data and study their relevance both after and prior to 2020. Further, we investigate outlier
specifications in a BVAR with stochastic volatility, allowing for different outlier magnitudes across
variables and for the outlier dates to be estimated.

Another paper contributing to the topic of outlier specifications includes Bobeica and Hartwig
(2021), who use euro area data to show that the Covid-19 outliers cause a substantial change in
the estimated coefficients of a BVAR without stochastic volatility unless the regression coefficient
prior is set very tight. As a remedy, the authors propose to estimate a BVAR with an error term
that is drawn from a Student’s t distribution to allow for larger shocks. Different from their work,
we investigate the effect of outliers prior to 2020 on the forecasting performance of different BVAR
specifications. Further, we can allow for different outlier magnitudes across variables and can
easily impose the dates of the outlier occurrence.

Instead of re-scaling the variance of the existing shocks, Ng (2021) considers the Covid-19
outliers to be driven by a new type of shock, a “health” shock, that is not yet captured by the
existing shocks in the model. In particular, in a VAR using the monthly U.S. unemployment rate
and industrial production, she explicitly controls for the pandemic situation by including the
growth rate of the increase of monthly positive Covid-19 tests. The resulting impulse response
functions are very similar to the pre-Covid period, indicating that including data on the pandemic
development can indeed control for the outliers. Different from Ng (2021), we focus on quarterly
and euro area data, and capture Covid-19 outliers via rescaling the variance of existing (reduced
form) shocks.

Finally, we are also related to Stock and Watson (2016), who corrected for outliers in an
unobserved component model to measure trend inflation. Instead, we apply a matrix version of
the outlier correction of Stock and Watson (2016) inspired by but different from Carriero et al.
(2022a), to capture the Covid-19 outliers in a multivariate model.

Section 2.1 introduces the BVAR with stochastic volatility and the outlier correction methods.
Section 3 shows results of the Covid-19 outliers on the BVAR estimates. Section 4 shows results of
a forecast comparison exercise of models with and without an outlier specification prior to 2020.
Section 5 shows results when pre-specifying the outlier dates around the onset of the Covid-19
pandemic. Section 6 concludes.

2 Methodology and data

2.1 Bayesian VARs with outlier correction

This section introduces the specifications of the BVAR with constant volatility, stochastic volatility,
and with the outlier correction method. For the remainder of the paper, BVAR-SV denotes the
BVAR with stochastic volatility and BVAR-WOSV denotes the specification without stochastic
volatility. The respective Gibbs samplers and some convergence diagnostics are given in Section A.
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BVAR-WOSV: The BVAR without stochastic volatility can be described by:

yt = B0 +
p

∑
i=1

Biyt−i + otStet ,

sn,t =




1 with probability (1 − qs,i)

U(2, ūs) with probability qs,i,
for n = 1, ..., N.

ot =




1 with probability (1 − qo)

U(2, ūo) with probability qo,

(1)

where B0 is the (N × 1) vector of intercepts and the B′
ks are the (N × N) coefficient matrices,

et
iid∼ N (0, Σe). For the VAR coefficients, we use a Minnesota-type prior, which shrinks all

coefficients of variables in growth rates to zero and the first own-lag coefficient of variables in (log-)
levels to 0.8 (see Section 2.2 for details on the variables). Further, let κβ denote the hyperparameters
that control the tightness of the Minnesota-type prior, with β = vec([B0, B1, ..., Bp]′). We estimate
κβ alongside all the other parameters in the model using the Metropolis-Hastings step from
Amir-Ahmadi et al. (2020). The degrees of freedom and scale of the inverse-Wishart prior on Σe

are set to N + 3 and the identity matrix, respectively.
St is a diagonal matrix with elements sn,t, n = 1, ..., N, that captures outliers in individual series

occurring with probability qs,i. Further, sn,t ∼iid U(2, ūs) denotes the uniform prior distribution
on the interval [2, ūs]. ot is a scalar outlier that occurs with probability qo and rescales the variance
of all series. The outlier probabilities have a Beta distribution as a prior, i.e. qi ∼ B(as,i, bs,i) and
qo ∼ B(ao, bo), where B(·) denotes the beta distribution, the qs,i are independent across i = 1, ..., N
and qs,i and qo are also independent. The empirical results are not very sensitive to the choice of
ūo and ūs, which we set to 20.

The model with outlier specification is labeled BVAR-WOSV-OC. For the BVAR-WOSV with-
out outlier specification, we restrict St to be equal to the identity matrix and ot = 1 for all t.

BVAR-SV: The BVAR with stochastic volatility takes the form:

yt = B0 +
p

∑
k=1

Bkyt−k + otSt A−1Σ
1
2
t et ,

Σt ≡ diag
�
σ2

1,t, . . . , σ2
N,t


,

log(σ2
n,t) = log(σ2

n,t−1) + ηn,t for n = 1, . . . , N ,

where B0 and the B′
ks are defined as in the BVAR-WOSV, A−1 is a lower triangular matrix with

ones on the diagonal, et
iid∼ N (0, IN), and (η1,t, ..., ηN,t)

′ iid∼ N (0, Ξ), where Ξ is not constrained to
be diagonal. The prior specification on the stochastic volatility coefficients is Ξ ∼ IW

�
(N + 3) ·

0.01 · IN , N + 3

, i.e. the prior is rather uninformative, where IW denotes the inverse-Wishart

distribution. Throughout the paper, we will refer to the square-root of the diagonal elements of
A−1Σt A−1′ as the time-varying standard deviation.

St and ot are defined as in eq. (1). Since St pre-multiplies A−1Σ
1
2
t it has a pure scaling effect on

A−1Σt A−1′ and St can be interpreted as rescaling the reduced form shocks. The si,t can be drawn
sequentially by conditioning on sj,t, j ̸= i; details of the Gibbs sampler are given in Section A.1.
In the baseline specification, we use the same values for as,i, bs,i and ao, bo across all i = 1, ..., N.
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The model with outlier specification is labeled BVAR-SV-OC. For the BVAR-SV without outlier

specification, we restrict St to be equal to the identity matrix and ot = 1 for all t.

BVAR-SV-CCMM: In the forecast comparison exercise, we are additionally evaluating the
performance of an existing methodology by CCMM1:

yt = B0 +
p

∑
i=1

Biyt−i + A−1StΣ
1
2
t et, (2)

where St is defined as above. Our specification differs from CCMM since our specification

pre-multiplies A−1Σ
1
2
t . In other words, we rescale the reduced form shocks and CCMM rescale

the structural shocks. The Gibbs sampler used to implement CCMM is given in Section A.2.

2.2 Data

The data vector yt consists of 10 euro area variables. Five of the variables are in quarter-on-quarter
growth rates: real GDP (GDP), seasonally adjusted HICP (HICP), compensation per employee
(CPE), number of employees (EMP), and a measure of foreign demand (FD); the other five
variables are the log-level of the oil price in US dollars (OIL), the effective exchange rate (EER),
the three-month EURIBOR (STN), a synthetic long term rate (LTN) taken from the Area Wide
Model database2, and the log-level of the Stoxx 600 index (STOXX). These 10 series capture real
macroeconomic developments, nominal price changes as well as financial developments. The
data used for the estimation range from 1985:Q1 to 2021:Q3. Data from 1980:Q1 to 1984:Q4 are
used as a training sample for the initialization of the stochastic volatility series.

3 The effect of Covid-19 outliers

In this section, we document how the different model specifications account for potential Covid-19
outliers. We consider two estimation samples for the models: from 1985:Q1 to 2019:Q4 and from
1985:Q1 to 2021:Q3. Throughout the section, the label PreCovid implies that the estimation
in-sample ended in 2019:Q4. OC denotes the model with outlier correction and NOC without
outlier correction.

3.1 BVAR-WOSV

Figure 1 plots the outlier posterior means of the outliers for the specification OC, displayed
whenever the posterior mean is above 1.5. The figure shows large values for the outliers for
2020:Q1, 2020:Q2, and 2020:Q3, and to a lesser extent for 2021:Q3 (see Figure B.1 for a focus of
the outlier values in 2020 and 2021). Further, outliers are estimated around the financial crisis
period and during the 1990s, in particular for CPE, STN, and LTN.

Figure 2 shows the posterior densities of σii,e, for i = 1, ...N; the OC-PreCovid (dotted line),
OC (dash-dotted line) results are very similar suggesting that the outlier specifications capture
the Covid-19 outliers well, whereas the posterior densities of the NOC specifications differ

1CCMM propose several alternatives and we focus here on their“SVO” model.
2The dataset from the Area Wide Model is available on the website of the Euro Area Business Cycle Network:

https://eabcn.org/page/area-wide-model.
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qo ∼ B(ao, bo), where B(·) denotes the beta distribution, the qs,i are independent across i = 1, ..., N
and qs,i and qo are also independent. The empirical results are not very sensitive to the choice of
ūo and ūs, which we set to 20.

The model with outlier specification is labeled BVAR-WOSV-OC. For the BVAR-WOSV with-
out outlier specification, we restrict St to be equal to the identity matrix and ot = 1 for all t.

BVAR-SV: The BVAR with stochastic volatility takes the form:

yt = B0 +
p

∑
k=1

Bkyt−k + otSt A−1Σ
1
2
t et ,

Σt ≡ diag
�
σ2

1,t, . . . , σ2
N,t


,

log(σ2
n,t) = log(σ2

n,t−1) + ηn,t for n = 1, . . . , N ,

where B0 and the B′
ks are defined as in the BVAR-WOSV, A−1 is a lower triangular matrix with

ones on the diagonal, et
iid∼ N (0, IN), and (η1,t, ..., ηN,t)

′ iid∼ N (0, Ξ), where Ξ is not constrained to
be diagonal. The prior specification on the stochastic volatility coefficients is Ξ ∼ IW

�
(N + 3) ·

0.01 · IN , N + 3

, i.e. the prior is rather uninformative, where IW denotes the inverse-Wishart

distribution. Throughout the paper, we will refer to the square-root of the diagonal elements of
A−1Σt A−1′ as the time-varying standard deviation.

St and ot are defined as in eq. (1). Since St pre-multiplies A−1Σ
1
2
t it has a pure scaling effect on

A−1Σt A−1′ and St can be interpreted as rescaling the reduced form shocks. The si,t can be drawn
sequentially by conditioning on sj,t, j ̸= i; details of the Gibbs sampler are given in Section A.1.
In the baseline specification, we use the same values for as,i, bs,i and ao, bo across all i = 1, ..., N.
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The model with outlier specification is labeled BVAR-SV-OC. For the BVAR-SV without outlier
specification, we restrict St to be equal to the identity matrix and ot = 1 for all t.

BVAR-SV-CCMM: In the forecast comparison exercise, we are additionally evaluating the
performance of an existing methodology by CCMM1:

yt = B0 +
p

∑
i=1

Biyt−i + A−1StΣ
1
2
t et, (2)

where St is defined as above. Our specification differs from CCMM since our specification

pre-multiplies A−1Σ
1
2
t . In other words, we rescale the reduced form shocks and CCMM rescale

the structural shocks. The Gibbs sampler used to implement CCMM is given in Section A.2.

2.2 Data

The data vector yt consists of 10 euro area variables. Five of the variables are in quarter-on-quarter
growth rates: real GDP (GDP), seasonally adjusted HICP (HICP), compensation per employee
(CPE), number of employees (EMP), and a measure of foreign demand (FD); the other five
variables are the log-level of the oil price in US dollars (OIL), the effective exchange rate (EER),
the three-month EURIBOR (STN), a synthetic long term rate (LTN) taken from the Area Wide
Model database2, and the log-level of the Stoxx 600 index (STOXX). These 10 series capture real
macroeconomic developments, nominal price changes as well as financial developments. The
data used for the estimation range from 1985:Q1 to 2021:Q3. Data from 1980:Q1 to 1984:Q4 are
used as a training sample for the initialization of the stochastic volatility series.

3 The effect of Covid-19 outliers

In this section, we document how the different model specifications account for potential Covid-19
outliers. We consider two estimation samples for the models: from 1985:Q1 to 2019:Q4 and from
1985:Q1 to 2021:Q3. Throughout the section, the label PreCovid implies that the estimation
in-sample ended in 2019:Q4. OC denotes the model with outlier correction and NOC without
outlier correction.

3.1 BVAR-WOSV

Figure 1 plots the outlier posterior means of the outliers for the specification OC, displayed
whenever the posterior mean is above 1.5. The figure shows large values for the outliers for
2020:Q1, 2020:Q2, and 2020:Q3, and to a lesser extent for 2021:Q3 (see Figure B.1 for a focus of
the outlier values in 2020 and 2021). Further, outliers are estimated around the financial crisis
period and during the 1990s, in particular for CPE, STN, and LTN.

Figure 2 shows the posterior densities of σii,e, for i = 1, ...N; the OC-PreCovid (dotted line),
OC (dash-dotted line) results are very similar suggesting that the outlier specifications capture
the Covid-19 outliers well, whereas the posterior densities of the NOC specifications differ

1CCMM propose several alternatives and we focus here on their“SVO” model.
2The dataset from the Area Wide Model is available on the website of the Euro Area Business Cycle Network:

https://eabcn.org/page/area-wide-model.
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substantially for GDP, CPE, EMP, and FD for the two samples, highlighting the large impact of
the few observations of 2020 and 2021 on the model’s posterior.3

Figure 1: Posterior mean of outliers — BVAR-WOSV

Note: The figure shows the posterior means of otSt. For legibility, the plot only shows values when the posterior mean
is larger than 1.5.

Figure 2: Posterior densities of σii,e — BVAR-WOSV

Note: The figure shows the posterior densities of the square root of the diagonal elements of Σe.

Figure 3 shows pseudo-forecasts, with origin 2019:Q4, for the OC (dashed line), OC-PreCovid
(dotted line), and the NOC and NOC-PreCovid specification (solid lines). The pseudo-forecasts

3Figure A.1 and Figure A.2 shows trace plots of sCPE,1991Q2 and o2020Q3 to give examples of two convergence
diagnostics for the outlier draws.
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allow for a visual comparison of the dynamics of the models estimated under different specifica-
tions. The shaded area shows 68% credible intervals for the median forecast of the NOC-PreCovid
specification. Comparing the solid lines to each other, shows the effect of the Covid-period
observations on the model’s posterior; for instance, the lines are considerably different for GDP
and HICP underlining the strong effect of the few Covid-19 data points on the model’s posterior.
Comparing the dashed and dotted line shows that the outlier specification is largely able to
dampen the effect of the observations during the pandemic on the model’s dynamics.

Figure 3: Pseudo-forecasts — BVAR-WOSV

Note: The figure shows the posterior median pseudo-forecasts made using data up to 2019:Q4. The shaded area
denotes 68% credible intervals of the median forecast of the PreCovid specification.
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3.2 BVAR-SV

In a model with stochastic volatility, the data points of 2020 have a strong effect on the posterior
distribution of the volatility series. Figure 4 shows the estimates of the stochastic volatility
posterior mean for a subset of the variables of a model estimated on data from 1985:Q1 to 2019:Q4
(NOC-PreCovid, dashed line) and the same model estimated on data up to 2021:Q3 (NOC, solid
line). The volatility estimates are plotted until 2019:Q4, for a plot until 2021:Q3 of the NOC
specification see Figure B.4. Once 2020 and 2021 observations are included, the volatility series
changed throughout the sample, with much larger values around the financial crisis and in the
early 1990s for the GDP, CPE, and employment series. The seven new observations since the onset
of the Covid-19 crisis have thus a large impact on the model’s posterior. The figure also shows
that the volatility increase in the NOC model starts well before 2020:Q1: to capture the large
volatility increases in 2020, the rather smooth random walk specification used for xstochastic
volatility starts to increase well before the onset of the crisis. In other words, the standard random
walk (or autoregressive) SV specifications are unable to capture the dynamics of the pandemic in
a reasonable way.

Figure 4: Time-varying standard deviation up to 2019:Q4 — BVAR-SV

Note: The solid and dashed line show the posterior mean of the time-varying standard deviation of the NOC-PreCovid
(dotted line) and NOC (solid line) specification. Estimates were obtained using data until 2019Q4 for the NOC-PreCovid
model and until 2021Q3 for the NOC specification. The plot shows the estimated time-varying standard deviation
until 2019:Q4 for both specifications.

Figure 5 shows posterior means of outliers estimated via the OC specification. Common
outliers appear during the financial crisis and the pandemic, whereas individual outliers appear
rather early in the sample for some variables such as CPE, FD, the STN and Stoxx 600.4

4Figure A.3 and Figure A.4 shows trace plots of sFD,1995Q2 and o2020Q3 to give two examples of convergence
diagnostics for the outlier draws.
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However, Figure 6 suggests that the posterior distribution of the stochastic volatility series is
still affected by the 2020 data points since they deviate quite substantially from the OC-PreCovid
estimates for some periods and variables, for instance for GDP around the financial crisis of 2008.

Figure 5: Posterior means of outliers — BVAR-SV

Note: The figure shows the posterior means of otSt. To increase the legibility of the plot, it only shows posterior means
above 1.5.

Figure 6: Time-varying standard deviation — BVAR-SV

Note: The solid, dashed, and dotted lines show the posterior mean of the time-varying standard deviation, excluding
the contribution of ot and St for the OC model, until 2019:Q4 of the NOC (solid), OC-PreCovid (dashed), and OC
(dotted) specification. Estimates were obtained using data until 2019:Q4 for the OC-PreCovid model and until 2021:Q3
for the NOC and OC specification.
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4 Forecast results

In this section, we investigate whether using the outlier correction method before 2020 improves
out-of-sample forecasts in an evaluation sample ranging from 2002:Q1 to 2019:Q4. The initial
in-sample estimation window ranges from 1985:Q1 to 2001:Q4, and the models are re-estimated
each period using a recursive window scheme.5

4.1 BVAR-WOSV

Table 1 shows relative MSFEs and CRPSs of the BVAR-WOSV-OC model compared to the plain
BVAR-WOSV; boldface numbers indicate a rejection of a test of equal predictive ability at the
10% level.6 Boldface numbers indicate that the test of Clark and West (2007) rejects the null
hypothesis of a one-sided test of equal predictive ability, with the alternative being that the OC
model has a better forecasting performance. The results show that the outlier correction improves
point forecasts for GDP, employment, the LTN, and Stoxx 600 relative to the plain BVAR-WOSV.
However, density forecasts deteriorate for all variables and rather substantially for the exchange
rate, interest rates, and stock index.

Figure 7 shows a heatmap of outlier estimates for the quarters of the in-sample (y-axis) and
the different in-samples (x-axis) used in the recursive forecasting exercise. Warmer colors denote
larger outlier estimates. We observe that the model estimates outliers around the financial crisis
for each of the vintages used in the recursive in-sample estimations. In addition, the model starts
to identify outliers in the early 1990s but of a smaller magnitude.

Table 1: BVAR-WOSV forecast comparison — 2002:Q1 to 2019:Q4

Panel A Panel B
MSFE CRPS

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.89 0.92 0.95 0.99 0.94 0.98 1.01 1.05
HICP 1.04 1.04 1.05 1.14 1.05 1.05 1.06 1.10
CPE 0.98 0.93 1.02 0.99 1.00 1.04 1.15 1.30
Employment 1.01 0.95 0.94 0.93 1.02 1.01 1.03 1.07
ForeignDemand 1.06 1.01 1.05 1.08 1.04 1.03 1.05 1.08
OilPrice 1.00 0.99 1.01 1.05 1.02 1.00 1.01 1.05
EER 0.99 0.93 0.97 0.98 1.07 1.12 1.22 1.42
STN 0.95 0.99 1.01 1.06 1.00 1.06 1.12 1.20
LTN 0.98 0.97 0.97 1.02 1.02 1.04 1.09 1.20
Stoxx600 0.96 0.98 0.96 0.94 1.01 1.04 1.09 1.21

Note: The table shows the ratio of the MSFEs and CRPSs of a BVAR-WOSV-OC and a
plain BVAR-WOSV in Panel A and Panel B. Numbers smaller than one indicate superior
performance of the numerator of the BVAR-WOSV-OC. h denotes the forecast horizons. The
pseudo out-of-sample period is 2002:Q1 to 2019:Q4 for h = 1 and respectively shorter for
h = 2, ..., 8. Equal predictive ability is tested using the one-sided test proposed in Clark and
West (2007) for the MSFE and the two-sided test of Diebold and Mariano (1995) for the CRPS.
A Newey and West (1987) HAC estimator is used to estimate the variance, and statistical
significance at the 10% level is indicated by boldface numbers.

Table B.1 shows results when the initial in-sample estimation ranges from 1995:Q1 to 2009:Q4,
such that the evaluation sample becomes 2010:Q1 to 2019:Q4. Table B.2 shows results over the

5These forecasts are based on final vintage data instead of using a real-time dataset.
6Since models are nested and estimated using a recursive window estimation scheme, we use the test statistic

proposed in Clark and West (2007) for the forecast point comparison exercise. For the CRPS comparison, we use the
standard Diebold and Mariano (1995) test since Clark and West (2007) is not applicable in that case.
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same, shorter out-of-sample evaluation period but when the in-sample estimation sample is as
in the baseline specification. Results are qualitatively similar to Table 1. As shown in Figure 7,
some of the estimated outliers occur before 1995 such that there are fewer outliers to be estimated
in the shorter in-sample starting in 1995, which is documented in the outlier heatmap given in
Figure B.2.

Figure 7: Recursively estimated outliers — BVAR-WOSV
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Note: The figure shows the outlier estimates when the in-sample is recursively increased by one quarter. The x-axis
denotes the last observation of the in-sample. The y-axis denotes the time series of in-sample dates. Warmer colors
denote larger posteriors of otSt, dark blue denotes a value of one, and white denotes observations that were not yet in
the in-sample. Moving along the x-axis, for a given date on the y-axis, shows an outlier estimate at a specific point
a time but across different in-samples. Moving along the y-axis, for a given date on the x-axis, shows the outlier
estimates over time for a given in-sample.

4.2 BVAR-SV

Figure 8 documents that the different outlier specifications estimate outliers throughout all the
vintages of the recursive window estimation scheme. To assess whether the estimated outliers
lead to an improvement in the models’ forecasting performance in the pre-Covid period, Table 2
shows results of a forecast comparison exercise of the BVAR-SV with and without an outlier
correction method. Numbers show relative MSFEs and CRPSs of the models as indicated by the
panel name; boldface numbers indicate a rejection of a test of equal predictive ability at the 10%
level. Overall, there are no considerable improvements for point forecasts using either CCMM or
OC. In turn, density forecasts considerably deteriorate using the outlier methods.

Table B.3 and Table B.4 show results when the initial in-sample estimation ranges from 1995:Q1
to 2009:Q4, with an evaluation sample of 2010:Q1 to 2019:Q4. Figure B.5 indicates the outlier
magnitudes in the recursive estimation samples. Table B.5 and Table B.6 show results over
the same, shorter out-of-sample evaluation period but when the in-sample period is the same
as in the baseline specification. Comparing Table B.3 and Table B.5 shows that the in-sample
somewhat matters for the relative point forecast performance; the outlier specification fairs
relatively better when the in-sample starts in 1995:Q1. Note that in all evaluation and in-sample
periods considered, the density forecasts considerably deteriorated.
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4 Forecast results
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Table 1: BVAR-WOSV forecast comparison — 2002:Q1 to 2019:Q4

Panel A Panel B
MSFE CRPS

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8
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Table B.1 shows results when the initial in-sample estimation ranges from 1995:Q1 to 2009:Q4,
such that the evaluation sample becomes 2010:Q1 to 2019:Q4. Table B.2 shows results over the

5These forecasts are based on final vintage data instead of using a real-time dataset.
6Since models are nested and estimated using a recursive window estimation scheme, we use the test statistic

proposed in Clark and West (2007) for the forecast point comparison exercise. For the CRPS comparison, we use the
standard Diebold and Mariano (1995) test since Clark and West (2007) is not applicable in that case.
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same, shorter out-of-sample evaluation period but when the in-sample estimation sample is as
in the baseline specification. Results are qualitatively similar to Table 1. As shown in Figure 7,
some of the estimated outliers occur before 1995 such that there are fewer outliers to be estimated
in the shorter in-sample starting in 1995, which is documented in the outlier heatmap given in
Figure B.2.
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Note: The figure shows the outlier estimates when the in-sample is recursively increased by one quarter. The x-axis
denotes the last observation of the in-sample. The y-axis denotes the time series of in-sample dates. Warmer colors
denote larger posteriors of otSt, dark blue denotes a value of one, and white denotes observations that were not yet in
the in-sample. Moving along the x-axis, for a given date on the y-axis, shows an outlier estimate at a specific point
a time but across different in-samples. Moving along the y-axis, for a given date on the x-axis, shows the outlier
estimates over time for a given in-sample.

4.2 BVAR-SV

Figure 8 documents that the different outlier specifications estimate outliers throughout all the
vintages of the recursive window estimation scheme. To assess whether the estimated outliers
lead to an improvement in the models’ forecasting performance in the pre-Covid period, Table 2
shows results of a forecast comparison exercise of the BVAR-SV with and without an outlier
correction method. Numbers show relative MSFEs and CRPSs of the models as indicated by the
panel name; boldface numbers indicate a rejection of a test of equal predictive ability at the 10%
level. Overall, there are no considerable improvements for point forecasts using either CCMM or
OC. In turn, density forecasts considerably deteriorate using the outlier methods.

Table B.3 and Table B.4 show results when the initial in-sample estimation ranges from 1995:Q1
to 2009:Q4, with an evaluation sample of 2010:Q1 to 2019:Q4. Figure B.5 indicates the outlier
magnitudes in the recursive estimation samples. Table B.5 and Table B.6 show results over
the same, shorter out-of-sample evaluation period but when the in-sample period is the same
as in the baseline specification. Comparing Table B.3 and Table B.5 shows that the in-sample
somewhat matters for the relative point forecast performance; the outlier specification fairs
relatively better when the in-sample starts in 1995:Q1. Note that in all evaluation and in-sample
periods considered, the density forecasts considerably deteriorated.
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Table 2: BVAR-SV forecast comparison — MSFE — 2002:Q1 to 2019:Q4

Panel A Panel B
CCMM/BVAR OC/BVAR

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.99 1.00 0.98 0.97 0.99 1.00 0.99 0.99
HICP 1.00 1.02 1.03 1.04 1.01 1.01 1.00 1.01
CPE 0.99 1.03 1.06 1.08 0.98 1.04 1.03 1.05
Emp 1.00 1.00 1.00 0.98 1.02 1.01 1.00 0.98
FD 1.01 1.03 1.03 1.02 1.00 1.01 1.01 1.01
Oil 1.03 1.03 1.04 1.07 1.02 1.02 1.02 1.03
EER 1.03 1.03 1.07 1.10 1.01 1.01 1.03 1.01
STN 0.97 1.00 1.04 1.07 1.00 1.02 1.04 1.02
LTN 1.00 0.99 0.98 1.00 1.01 1.00 1.02 1.02
Stoxx 1.01 1.00 0.98 0.99 1.01 1.01 1.00 0.98

Note: The table shows the ratio of the MSFEs of a BVAR-SV with
CCMM and OC and a plain BVAR-SV in Panel A and Panel B. Num-
bers smaller than one indicate superior performance of the numerator
of the ratio indicated by the Panel name. h denotes the forecast hori-
zons. The pseudo out-of-sample period is 2002:Q1 to 2019:Q4 for
h = 1 and respectively shorter for h = 2, ..., 8. Equal predictive ability
is tested using the one-sided test proposed in Clark and West (2007)
and a Newey and West (1987) HAC to estimate the variance. Statistical
significance at the 10% level is indicated by boldface numbers.

Table 3: BVAR-SV forecast comparison — CRPS — 2002:Q1 to 2019:Q4

Panel A Panel B
CCMM/BVAR OC/BVAR

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.99 1.01 1.00 0.98 1.00 1.03 1.03 1.01
HICP 0.99 1.00 1.01 1.03 1.00 1.00 1.00 1.01
CPE 1.01 1.04 1.07 1.14 1.01 1.03 1.05 1.10
Emp 1.00 1.00 1.00 1.05 1.01 1.01 1.01 1.05
FD 1.04 1.05 1.05 1.01 1.02 1.02 1.03 1.01
Oil 1.01 1.02 1.01 1.02 1.02 1.02 1.00 1.00
EER 1.03 1.04 1.08 1.19 1.02 1.03 1.05 1.10
STN 0.99 1.03 1.03 1.03 1.03 1.05 1.03 1.01
LTN 1.01 1.01 1.04 1.08 1.03 1.04 1.06 1.07
Stoxx 1.01 1.03 1.06 1.16 1.03 1.06 1.08 1.15

Note: The table shows the ratio of the CRPSs of a BVAR-SV with
CCMM and OC and a plain BVAR-SV in Panel A and Panel B. Num-
bers smaller than one indicate superior performance of the numerator
of the ratio indicated by the Panel name. h denotes the forecast hori-
zons. The pseudo out-of-sample period is 2002:Q1 to 2019:Q4 for
h = 1 and respectively shorter for h = 2, ..., 8. Equal predictive ability
is tested using the Diebold and Mariano (1995) test and a Newey and
West (1987) HAC to estimate the variance. Statistical significance at
the 10% level is indicated by boldface numbers.
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Figure 8: Recursively estimated outliers — BVAR-SV

(a) GDP - CCMM (b) GDP - OC (c) HICP - CCMM (d) HICP - OC

(e) CPE - CCMM (f) CPE - OC (g) EMP - CCMM (h) EMP - OC

(i) FD - CCMM (j) FD - OC (k) OIL - CCMM (l) OIL - OC

(m) EER - CCMM (n) EER - OC (o) STN - CCMM (p) STN - OC

(q) LTN - CCMM (r) LTN - OC (s) Stoxx - CCMM (t) Stoxx - OC

Note: The figure shows for each variable-method combination the outlier estimates when the in-sample is recursively
increased by one quarter. The x-axis denotes the last observation of the in-sample. The y-axis denotes the time series
of in-sample dates. Warmer colors denote larger posteriors of otSt, i.e. dark blue denotes a value of one. Moving
along the x-axis, for a given date on the y-axis, shows outlier estimates at a specific point a time but across different
in-samples. Moving along the y-axis, for a given date on the x-axis, shows the outlier estimates over time for a given
in-sample. 13
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5 Pre-specified outlier dates

Since the effect of the outlier specifications on the models’ forecasting performance is mixed, we
present results for a specification that allows for outliers only during pre-specified dates in 2020
and 2021. In other words, this specification allows for an adjustment for outliers caused by the
Covid-19 pandemic but not outside of the specified dates. This amounts to setting

sn,t =





U(1, 20) if t ∈ τ,

1 otherwise,
for n = 1, ..., N.

ot =





U(1, 20) if t ∈ τ,

1 otherwise,

(3)

where τ is a set of dates on which we impose that sn,t and ot are drawn from a uniform distribution
U(1, 20). In the results presented below, τ includes 2020Q1 to Q4 and 2021Q1.

5.1 BVAR-WOSV

Figure 9 shows posterior medians of pseudo-forecasts, with origin 2019:Q4, for different BVAR-
WOSV specifications: NOC-PreCovid (dashed line), OC (dash-dotted line), and NOC (solid
line). The OC and NOC models are estimated on data up to 2021:Q3, and the NOC-PreCovid
specification is estimated on data up to 2019:Q4. The shaded area shows 68% credible intervals
for the PreCovid median forecasts. The posterior median forecasts of NOC differ substantially in
terms of shape and location from NOC-PreCovid for GDP, HICP, FD, and STN. In addition, for
CPE, FD, and the STN, the NOC specification lies outside of NOC-PreCovid’s credible intervals.

Figure 9: Pseudo-forecasts — BVAR-WOSV — pre-specified outlier dates

Note: The figure shows the posterior median pseudo-forecasts with origin 2019:Q4. The shaded area denotes 68%
credible intervals of the median forecast of the NOC-PreCovid specification.

Figure 10 shows the posterior densities of the square root of the diagonal elements of Σe

for three different models. Without any outlier correction (NOC), the posterior density of the
variance increases drastically for the variables GDP, CPE, EMP, and FD due to the data points
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for three different models. Without any outlier correction (NOC), the posterior density of the
variance increases drastically for the variables GDP, CPE, EMP, and FD due to the data points
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during the Covid-19 pandemic. In turn, OC shows posterior densities that are comparable to the
NOC-PreCovid estimates.

Figure 11 shows the posterior means of the estimated outliers. The outliers are particularly
large for GDP, CPE, EMP, FD, and OIL.

Figure 10: Posterior densities of σii,e — BVAR-WOSV — pre-specified outlier dates

Note: The figure shows the posterior densities of the square root of the diagonal elements of Σe for different BVAR-
WOSV specifications.

Figure 11: Posterior densities of outliers — BVAR-WOSV — pre-specified outlier dates

Note: The figure shows the posterior means of otSt from 2020Q1 to 2021Q3.
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sn,t =




U(1, 20) if t ∈ τ,

1 otherwise,
for n = 1, ..., N.

ot =




U(1, 20) if t ∈ τ,

1 otherwise,

(3)
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5.2 BVAR-SV

Figure 12 plots the stochastic volatility posterior mean estimates for three different models: the
BVAR-SV estimated on data up to 2019:Q4 (NOC-PreCovid), the BVAR-SV with pre-specified
outlier dates (OC) and without outliers (NOC) estimated on data up to 2021:Q3. The figure shows
that without outlier specification, the 2020 and 2021 observations lead to large changes in the
posterior of the estimated volatility series even for periods well before 2020; for instance, the spike
in the stochastic volatility is particularly large for real GDP growth around the financial crisis
for the NOC model. To capture the effect of the Covid-19 data points, the NOC specification’s
stochastic volatility increases substantially in 2020 to down-weigh the effect of the large swings of
the 2020:Q1, Q2, and Q3 observations on the regression coefficients and the likelihood. This leads
to a larger posterior mean of Ξ, the variance-covariance matrix of the shocks to the stochastic
volatility equation, which in turn also increases the posterior estimates of the volatility outside of
the Covid-19 periods.

Figure 12: Time-varying standard deviation until 2019:Q4 — BVAR-SV — pre-specified outlier
dates

Note: The plot shows the posterior mean of the time-varying standard deviation, excluding the contribution of ot and
St for the OC model, of a NOC-PreCovid (dashed line), an OC (dotted line), and a NOC (solid line) specification.
Estimates were obtained using data until 2019:Q4 for the NOC-PreCovid model and until 2021:Q3 for the OC and
NOC specification.

Figure 13 shows pseudo-forecasts, with origin 2019:Q4, for the NOC-PreCovid (dashed line),
OC (dotted line), and the NOC (solid line) specification. The shaded area shows 68% credible
intervals for the median forecast of the NOC-PreCovid specification. The shape and levels of
the forecasts are largely similar across the different specifications and in-samples. Notably, the

16

5.2 BVAR-SV

Figure 12 plots the stochastic volatility posterior mean estimates for three different models: the
BVAR-SV estimated on data up to 2019:Q4 (NOC-PreCovid), the BVAR-SV with pre-specified
outlier dates (OC) and without outliers (NOC) estimated on data up to 2021:Q3. The figure shows
that without outlier specification, the 2020 and 2021 observations lead to large changes in the
posterior of the estimated volatility series even for periods well before 2020; for instance, the spike
in the stochastic volatility is particularly large for real GDP growth around the financial crisis
for the NOC model. To capture the effect of the Covid-19 data points, the NOC specification’s
stochastic volatility increases substantially in 2020 to down-weigh the effect of the large swings of
the 2020:Q1, Q2, and Q3 observations on the regression coefficients and the likelihood. This leads
to a larger posterior mean of Ξ, the variance-covariance matrix of the shocks to the stochastic
volatility equation, which in turn also increases the posterior estimates of the volatility outside of
the Covid-19 periods.

Figure 12: Time-varying standard deviation until 2019:Q4 — BVAR-SV — pre-specified outlier
dates

Note: The plot shows the posterior mean of the time-varying standard deviation, excluding the contribution of ot and
St for the OC model, of a NOC-PreCovid (dashed line), an OC (dotted line), and a NOC (solid line) specification.
Estimates were obtained using data until 2019:Q4 for the NOC-PreCovid model and until 2021:Q3 for the OC and
NOC specification.

Figure 13 shows pseudo-forecasts, with origin 2019:Q4, for the NOC-PreCovid (dashed line),
OC (dotted line), and the NOC (solid line) specification. The shaded area shows 68% credible
intervals for the median forecast of the NOC-PreCovid specification. The shape and levels of
the forecasts are largely similar across the different specifications and in-samples. Notably, the

16

5.2 BVAR-SV

Figure 12 plots the stochastic volatility posterior mean estimates for three different models: the
BVAR-SV estimated on data up to 2019:Q4 (NOC-PreCovid), the BVAR-SV with pre-specified
outlier dates (OC) and without outliers (NOC) estimated on data up to 2021:Q3. The figure shows
that without outlier specification, the 2020 and 2021 observations lead to large changes in the
posterior of the estimated volatility series even for periods well before 2020; for instance, the spike
in the stochastic volatility is particularly large for real GDP growth around the financial crisis
for the NOC model. To capture the effect of the Covid-19 data points, the NOC specification’s
stochastic volatility increases substantially in 2020 to down-weigh the effect of the large swings of
the 2020:Q1, Q2, and Q3 observations on the regression coefficients and the likelihood. This leads
to a larger posterior mean of Ξ, the variance-covariance matrix of the shocks to the stochastic
volatility equation, which in turn also increases the posterior estimates of the volatility outside of
the Covid-19 periods.

Figure 12: Time-varying standard deviation until 2019:Q4 — BVAR-SV — pre-specified outlier
dates

Note: The plot shows the posterior mean of the time-varying standard deviation, excluding the contribution of ot and
St for the OC model, of a NOC-PreCovid (dashed line), an OC (dotted line), and a NOC (solid line) specification.
Estimates were obtained using data until 2019:Q4 for the NOC-PreCovid model and until 2021:Q3 for the OC and
NOC specification.

Figure 13 shows pseudo-forecasts, with origin 2019:Q4, for the NOC-PreCovid (dashed line),
OC (dotted line), and the NOC (solid line) specification. The shaded area shows 68% credible
intervals for the median forecast of the NOC-PreCovid specification. The shape and levels of
the forecasts are largely similar across the different specifications and in-samples. Notably, the

16



BANCO DE ESPAÑA 22 DOCUMENTO DE TRABAJO N.º 2239

forecasts of NOC are very similar to the NOC-PreCovid specification since the stochastic volatility
captures the outliers (see Figure 4).

Figure 14 shows that the posterior means for the outliers for 2020:Q1 to 2021:Q3 are of
considerable size for all variables.

Figure 13: Pseudo-forecasts — BVAR-SV — pre-specified outlier dates

Note: The figure shows the posterior median pseudo-forecasts made using data up to 2019:Q4. The shaded area
denotes 68% credible intervals of the median forecast of the PreCovid specification.

Figure 14: Posterior means of outliers — BVAR-SV — pre-specified outlier dates

Note: The solid line shows the posterior means of otSt from 2020:Q1 to 2021:Q3.
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6 Conclusion

The pandemic that started in 2020 drew attention to the issue of potential data outliers, i.e. large
unprecedented swings that can severely affect the estimation of (linear) econometric models.
In this paper, we present a methodology to account for data outliers and documented several
empirical facts about the potential presence of outliers in an estimation of Bayesian VARs using
euro area data.

First, the Covid-19 pandemic caused movements in macroeconomic data that distort the
estimation results of BVARs. If the researcher does not account for the observations of 2020 in the
modeling approach, these observations will substantially change the model parameters’ posterior
distributions.

Second, the outliers can be accounted for by rescaling the shocks’ variance. The methodology
presented in this paper rescale the reduced form error variance and can be implemented in
models with and without stochastic volatility as well as for stochastic volatility specifications that
do not rely on the triangular decomposition of Primiceri (2005).

Third, allowing for outliers prior to 2020 leads to improvements of the point forecasts of a
BVAR without stochastic volatility for some variables and horizons. There are no improvements
for the point forecasts of a BVAR that already includes stochastic volatility. Further, for both
models the density forecasts considerably deteriorate for several variables. Based on these results,
we recommend to allow for outliers only on pre-specified dates around the onset of the Covid-19
pandemic.
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Appendix A Gibbs sampler and convergence diagnostics

A.1 Gibbs sampler for OC

Standard steps of the Gibbs sampler are not explained in detail here and time subscripts are
suppressed for simplicity:

1. Draw from π(β, A, S, o, qS, qo, smixt|y, Σ), where smixt is the indicator for the mixture compo-
nents (not the outliers) needed for the mixture approximation when drawing the stochastic
volatility.

(a) Draw β, A, S, o, qs, qo marginal of smixt.

i. Draw β from π
(

β
∣∣y, Σ, A, S, o, κβ

)
∼ Npn2+n(β̂, V̂β). Implementation is standard.

ii. Draw A from π
(

A
∣∣y, β, Σ, S, o

)
. Implementation is standard.

iii. Draw S from π
(
S
∣∣y, β, Σ, A, qS, o

)
. S is drawn via a grid-approximation of the

posterior distribution. See details below.

iv. Draw qS from π
(
qS
∣∣S). See details below.

v. Draw o from π
(
o
∣∣y, β, Σ, A, S, qo

)
. o is drawn via a grid-approximation of the

posterior distribution. See details below.

vi. Draw qo from π
(
qo
∣∣o). See details below.

(b) Draw smixt from π
(
smixt

∣∣y, β, Σ, A, S, o
)
. Implementation is standard.

2. Draw Σ from π
(
Σ
∣∣y, Ση , β, A, S, o, smixt

)
via Durbin and Koopmann (2002). Implementation

is standard.

3. Draw Ξ from π
(
Ξ
∣∣Σ)

∼ IWn(τ̂η , ŜVη ). Implementation is standard.

4. Draw κβ from π
(
κβ|β) following Amir-Ahmadi et al. (2020).

Step 1.a.(iii), which simplifies to π
(
S
∣∣y, β, Σ, A, qS, o

)
∝ π

(
y
∣∣S, β, Σ, A, qS, o

)
π
(
S
∣∣qS

)
, requires

some clarification. For π
(
y
∣∣S, β, Σ, A, o, qS

)
, we can write

yt − ΠXt = vt = otSt A−1Σ1/2
t et (4)

where Xt = [1, y′t−1, ..., y′t−p]
′ and Π = [B0, B1, ..., Bp], where et ∼ N(0, I), such that vt has a

multivariate Normal distribution with mean zero and variance otSt A−1Σt. The si,t need to be
drawn conditionally on the sj,t, j ̸= i because the elements of vt are contemporaneously correlated.
Since the conditional posterior of si,t is proportional to the product of a multivariate Normal and
a uniform distribution, we approximate the conditional posterior over a grid of values for si,t (see
Stock and Watson (2016) for a related approximation of a conditional posterior).

Let πṽt(si,t) denote vt|(ot, St, A, Σt) ∼ N(0, o2
t St A−1Σt A−1′St), where si,t denotes the function’s

argument since we want to evaluate πṽt(si,t) over a grid of values for si,t. In particular, the si,t can
be drawn iteratively for i = 1, ..., N as follows:

I. Evaluate πṽt(s
(j)
i,t ) at grid points s(1)i,t , ..., s(j)

i,t , ..., s
(Jgrid)

i,t given ṽt, ot, Σt, A, and S−i,t, where S−i,t

denotes the draws sj,t for which j ̸= i from the previous sweep, s(1)i,t = 1 and the rest of the
grid points are taken from the interval [2, ūs]. Given the prior structure on si,t, the prior
density, denoted by w(j)

i,t , of s(j)
i,t is w(1)

i,t = (1 − qs,i) and w(j)
i,t = qs,i/(J − 1), j ̸= 1, otherwise.
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II. Compute π̃j =
πṽi,t (s

(j)
i,t )w

(j)
i,t

∑
Jgrid
k=1 πṽi,t (s

(k)
i,t )w

(j)
i,t

for all j = 1, ..., Jgrid.

III. Compute ¯̃πj = ∑
j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

In step 1.(a).(iv): draw from the beta distribution π
(
qs,i

∣∣si
)
, for i = 1, ..., N, where qs,i is the

probability of an outlier in variable i and si = {si,1, ..., si,t, ..., si,T}. If the outlier dates are assumed
to be known a priori, the step 1.(a).(iv) is dropped from the Gibbs sampler. Sampling ot works
analogously.

A.2 Gibbs sampler to implement CCMM

To implement the specification of CCMM we use the following Gibbs sampler:

1. Draw from π(β, A, smixt|y, Σ), where the smixt denotes the indicators for the mixture compo-
nents (not the outliers) needed for the mixture approximation when drawing the stochastic
volatility.

(a) Draw β, A marginal of smixt.

i. Draw β from π
(

β
∣∣y, Σ, A, S, κβ

)
∼ Npn2+n(β̂, V̂β). Implementation is standard.

ii. Draw A from π
(

A
∣∣y, β, Σ, S

)
. Implementation is standard.

(b) Draw smixt from π
(
smixt

∣∣y, β, Σ, A, S
)
. Implementation is standard.

2. Draw Σ from π
(
Σ
∣∣y, Ση , β, A, S, smixt

)
via Durbin and Koopmann (2002). Implementation is

standard.

3. Draw Ξ from π
(
Ξ
∣∣Σ)

∼ IWn(τ̂η , ŜVη ). Implementation is standard.

4. Draw S from π
(
S
∣∣y, β, Σ, A, q, smixt

)
. S is drawn using a discrete approximation to the

posterior. See details below.

5. Draw q from π
(
q
∣∣S). See details below.

6. Draw κβ from π
(
κβ|β) following Amir-Ahmadi et al. (2020).

In this specification, conditional on y, β, Σ, A, smixt, we can write

A(yt − ΠXt) = ṽt = StΣ1/2
t et = StΣ1/2

t et = [s1,tσ1,te1,t, ..., sN,tσN,teN,t]
′. (5)

Since the et ∼ N(0, I), we can write log(ṽ2
i,t)|(smixt,i,t, σi,t, si,t) ∼ N

(
µi,mixt,t + log(s2

i,t)+ log(σ2
i,t) , σ2

i,mixt,t
)
,

where µi,mixt,t and σ2
i,mixt,t denote the respective mixture components for equation i at time t. Let

πṽi,t(si,t) denote log(ṽ2
i,t)|(smixt,i,t, σi,t, si,t). The values for si,t can then be drawn as follows:

I. Evaluate πṽi,t(s
(j)
i,t ) at grid points s(1)i,t , ..., s(j)

i,t , ..., s
(Jgrid)

i,t and ṽi,t, σi,t, and smixt,i,t. As in Sec-

tion A.1, the prior density of si,t is denoted by w(j)
i,t .

II. Compute π̃j =
πṽi,t (s

(j)
i,t )w

(j)
i,t

∑
Jgrid
k=1 πṽi,t (s

(k)
i,t )w

(j)
i,t

for all j = 1, ..., Jgrid.
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nents (not the outliers) needed for the mixture approximation when drawing the stochastic
volatility.

(a) Draw β, A, S, o, qs, qo marginal of smixt.

i. Draw β from π
(

β
∣∣y, Σ, A, S, o, κβ

)
∼ Npn2+n(β̂, V̂β). Implementation is standard.

ii. Draw A from π
(

A
∣∣y, β, Σ, S, o

)
. Implementation is standard.

iii. Draw S from π
(
S
∣∣y, β, Σ, A, qS, o

)
. S is drawn via a grid-approximation of the

posterior distribution. See details below.

iv. Draw qS from π
(
qS
∣∣S). See details below.

v. Draw o from π
(
o
∣∣y, β, Σ, A, S, qo

)
. o is drawn via a grid-approximation of the

posterior distribution. See details below.

vi. Draw qo from π
(
qo
∣∣o). See details below.

(b) Draw smixt from π
(
smixt

∣∣y, β, Σ, A, S, o
)
. Implementation is standard.

2. Draw Σ from π
(
Σ
∣∣y, Ση , β, A, S, o, smixt

)
via Durbin and Koopmann (2002). Implementation

is standard.

3. Draw Ξ from π
(
Ξ
∣∣Σ)

∼ IWn(τ̂η , ŜVη ). Implementation is standard.

4. Draw κβ from π
(
κβ|β) following Amir-Ahmadi et al. (2020).

Step 1.a.(iii), which simplifies to π
(
S
∣∣y, β, Σ, A, qS, o

)
∝ π

(
y
∣∣S, β, Σ, A, qS, o

)
π
(
S
∣∣qS

)
, requires

some clarification. For π
(
y
∣∣S, β, Σ, A, o, qS

)
, we can write

yt − ΠXt = vt = otSt A−1Σ1/2
t et (4)

where Xt = [1, y′t−1, ..., y′t−p]
′ and Π = [B0, B1, ..., Bp], where et ∼ N(0, I), such that vt has a

multivariate Normal distribution with mean zero and variance otSt A−1Σt. The si,t need to be
drawn conditionally on the sj,t, j ̸= i because the elements of vt are contemporaneously correlated.
Since the conditional posterior of si,t is proportional to the product of a multivariate Normal and
a uniform distribution, we approximate the conditional posterior over a grid of values for si,t (see
Stock and Watson (2016) for a related approximation of a conditional posterior).

Let πṽt(si,t) denote vt|(ot, St, A, Σt) ∼ N(0, o2
t St A−1Σt A−1′St), where si,t denotes the function’s

argument since we want to evaluate πṽt(si,t) over a grid of values for si,t. In particular, the si,t can
be drawn iteratively for i = 1, ..., N as follows:

I. Evaluate πṽt(s
(j)
i,t ) at grid points s(1)i,t , ..., s(j)

i,t , ..., s
(Jgrid)

i,t given ṽt, ot, Σt, A, and S−i,t, where S−i,t

denotes the draws sj,t for which j ̸= i from the previous sweep, s(1)i,t = 1 and the rest of the
grid points are taken from the interval [2, ūs]. Given the prior structure on si,t, the prior
density, denoted by w(j)

i,t , of s(j)
i,t is w(1)

i,t = (1 − qs,i) and w(j)
i,t = qs,i/(J − 1), j ̸= 1, otherwise.
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II. Compute π̃j =

πṽi,t (s
(j)
i,t )w

(j)
i,t

∑
Jgrid
k=1 πṽi,t (s

(k)
i,t )w

(j)
i,t

for all j = 1, ..., Jgrid.

III. Compute ¯̃πj = ∑
j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

In step 1.(a).(iv): draw from the beta distribution π
(
qs,i

∣∣si
)
, for i = 1, ..., N, where qs,i is the

probability of an outlier in variable i and si = {si,1, ..., si,t, ..., si,T}. If the outlier dates are assumed
to be known a priori, the step 1.(a).(iv) is dropped from the Gibbs sampler. Sampling ot works
analogously.

A.2 Gibbs sampler to implement CCMM

To implement the specification of CCMM we use the following Gibbs sampler:

1. Draw from π(β, A, smixt|y, Σ), where the smixt denotes the indicators for the mixture compo-
nents (not the outliers) needed for the mixture approximation when drawing the stochastic
volatility.

(a) Draw β, A marginal of smixt.

i. Draw β from π
(

β
∣∣y, Σ, A, S, κβ

)
∼ Npn2+n(β̂, V̂β). Implementation is standard.

ii. Draw A from π
(

A
∣∣y, β, Σ, S

)
. Implementation is standard.

(b) Draw smixt from π
(
smixt

∣∣y, β, Σ, A, S
)
. Implementation is standard.

2. Draw Σ from π
(
Σ
∣∣y, Ση , β, A, S, smixt

)
via Durbin and Koopmann (2002). Implementation is

standard.

3. Draw Ξ from π
(
Ξ
∣∣Σ)

∼ IWn(τ̂η , ŜVη ). Implementation is standard.

4. Draw S from π
(
S
∣∣y, β, Σ, A, q, smixt

)
. S is drawn using a discrete approximation to the

posterior. See details below.

5. Draw q from π
(
q
∣∣S). See details below.

6. Draw κβ from π
(
κβ|β) following Amir-Ahmadi et al. (2020).

In this specification, conditional on y, β, Σ, A, smixt, we can write

A(yt − ΠXt) = ṽt = StΣ1/2
t et = StΣ1/2

t et = [s1,tσ1,te1,t, ..., sN,tσN,teN,t]
′. (5)

Since the et ∼ N(0, I), we can write log(ṽ2
i,t)|(smixt,i,t, σi,t, si,t) ∼ N

(
µi,mixt,t + log(s2

i,t)+ log(σ2
i,t) , σ2

i,mixt,t
)
,

where µi,mixt,t and σ2
i,mixt,t denote the respective mixture components for equation i at time t. Let

πṽi,t(si,t) denote log(ṽ2
i,t)|(smixt,i,t, σi,t, si,t). The values for si,t can then be drawn as follows:

I. Evaluate πṽi,t(s
(j)
i,t ) at grid points s(1)i,t , ..., s(j)

i,t , ..., s
(Jgrid)

i,t and ṽi,t, σi,t, and smixt,i,t. As in Sec-

tion A.1, the prior density of si,t is denoted by w(j)
i,t .

II. Compute π̃j =
πṽi,t (s

(j)
i,t )w

(j)
i,t

∑
Jgrid
k=1 πṽi,t (s

(k)
i,t )w

(j)
i,t

for all j = 1, ..., Jgrid.
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III. Compute ¯̃πj = ∑
j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

Sampling q from π
(
q
∣∣S) can be done as in Section A.1.

A.3 BVAR-WOSV with outlier correction — convergence diagnostics

Figure A.1: Trace plot of draws of sCPE,t — BVAR-WOSV-OC — 1991Q2

Note: The figure shows a trace plot for outliers sCPE,t, with t = 1991:Q2, based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

Figure A.2: Trace plot of draws of oCPE,t — BVAR-WOSV-OC — 2020Q3

Note: The figure shows a trace plot for outliers ot, with t = 2020:Q3 based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

A.4 BVAR-SV with outlier correction — convergence diagnostics
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II. Compute π̃j =
πṽi,t (s

(j)
i,t )w

(j)
i,t

∑
Jgrid
k=1 πṽi,t (s

(k)
i,t )w

(j)
i,t

for all j = 1, ..., Jgrid.

III. Compute ¯̃πj = ∑
j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

In step 1.(a).(iv): draw from the beta distribution π
(
qs,i

∣∣si
)
, for i = 1, ..., N, where qs,i is the

probability of an outlier in variable i and si = {si,1, ..., si,t, ..., si,T}. If the outlier dates are assumed
to be known a priori, the step 1.(a).(iv) is dropped from the Gibbs sampler. Sampling ot works
analogously.

A.2 Gibbs sampler to implement CCMM

To implement the specification of CCMM we use the following Gibbs sampler:

1. Draw from π(β, A, smixt|y, Σ), where the smixt denotes the indicators for the mixture compo-
nents (not the outliers) needed for the mixture approximation when drawing the stochastic
volatility.

(a) Draw β, A marginal of smixt.

i. Draw β from π
(

β
∣∣y, Σ, A, S, κβ

)
∼ Npn2+n(β̂, V̂β). Implementation is standard.

ii. Draw A from π
(

A
∣∣y, β, Σ, S

)
. Implementation is standard.

(b) Draw smixt from π
(
smixt

∣∣y, β, Σ, A, S
)
. Implementation is standard.

2. Draw Σ from π
(
Σ
∣∣y, Ση , β, A, S, smixt

)
via Durbin and Koopmann (2002). Implementation is

standard.

3. Draw Ξ from π
(
Ξ
∣∣Σ)

∼ IWn(τ̂η , ŜVη ). Implementation is standard.

4. Draw S from π
(
S
∣∣y, β, Σ, A, q, smixt

)
. S is drawn using a discrete approximation to the

posterior. See details below.

5. Draw q from π
(
q
∣∣S). See details below.

6. Draw κβ from π
(
κβ|β) following Amir-Ahmadi et al. (2020).

In this specification, conditional on y, β, Σ, A, smixt, we can write

A(yt − ΠXt) = ṽt = StΣ1/2
t et = StΣ1/2

t et = [s1,tσ1,te1,t, ..., sN,tσN,teN,t]
′. (5)

Since the et ∼ N(0, I), we can write log(ṽ2
i,t)|(smixt,i,t, σi,t, si,t) ∼ N

(
µi,mixt,t + log(s2

i,t)+ log(σ2
i,t) , σ2

i,mixt,t
)
,

where µi,mixt,t and σ2
i,mixt,t denote the respective mixture components for equation i at time t. Let

πṽi,t(si,t) denote log(ṽ2
i,t)|(smixt,i,t, σi,t, si,t). The values for si,t can then be drawn as follows:

I. Evaluate πṽi,t(s
(j)
i,t ) at grid points s(1)i,t , ..., s(j)

i,t , ..., s
(Jgrid)

i,t and ṽi,t, σi,t, and smixt,i,t. As in Sec-

tion A.1, the prior density of si,t is denoted by w(j)
i,t .

II. Compute π̃j =
πṽi,t (s

(j)
i,t )w

(j)
i,t

∑
Jgrid
k=1 πṽi,t (s

(k)
i,t )w

(j)
i,t

for all j = 1, ..., Jgrid.
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III. Compute ¯̃πj = ∑

j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

Sampling q from π
(
q
∣∣S) can be done as in Section A.1.

A.3 BVAR-WOSV with outlier correction — convergence diagnostics

Figure A.1: Trace plot of draws of sCPE,t — BVAR-WOSV-OC — 1991Q2

Note: The figure shows a trace plot for outliers sCPE,t, with t = 1991:Q2, based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

Figure A.2: Trace plot of draws of oCPE,t — BVAR-WOSV-OC — 2020Q3

Note: The figure shows a trace plot for outliers ot, with t = 2020:Q3 based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

A.4 BVAR-SV with outlier correction — convergence diagnostics
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III. Compute ¯̃πj = ∑
j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

Sampling q from π
(
q
∣∣S) can be done as in Section A.1.

A.3 BVAR-WOSV with outlier correction — convergence diagnostics

Figure A.1: Trace plot of draws of sCPE,t — BVAR-WOSV-OC — 1991Q2

Note: The figure shows a trace plot for outliers sCPE,t, with t = 1991:Q2, based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

Figure A.2: Trace plot of draws of oCPE,t — BVAR-WOSV-OC — 2020Q3

Note: The figure shows a trace plot for outliers ot, with t = 2020:Q3 based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

A.4 BVAR-SV with outlier correction — convergence diagnostics
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Figure A.3: Trace plot of draws of sFD,t — BVAR-SV — 1995Q2

Note: The figure shows a trace plot for outliers sFD,t, with t = 1995:Q2 for 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

Figure A.4: Trace plot of draws of ot — BVAR-SV — 2020Q3

Note: The figure shows a trace plot for outliers ot, with t = 2020:Q3 for 1,000 posterior draws. The estimation sample
is 1985:Q1 to 2021:Q3.
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III. Compute ¯̃πj = ∑
j
k=1 π̃k for all j = 1, ..., Jgrid and draw u ∼ U(0, 1).

IV. Select s(j)
i,t as the new draw if ¯̃πj−1 ≤ u < ¯̃πj with ¯̃π0 = 0 .

Sampling q from π
(
q
∣∣S) can be done as in Section A.1.

A.3 BVAR-WOSV with outlier correction — convergence diagnostics

Figure A.1: Trace plot of draws of sCPE,t — BVAR-WOSV-OC — 1991Q2

Note: The figure shows a trace plot for outliers sCPE,t, with t = 1991:Q2, based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

Figure A.2: Trace plot of draws of oCPE,t — BVAR-WOSV-OC — 2020Q3

Note: The figure shows a trace plot for outliers ot, with t = 2020:Q3 based on 1,000 posterior draws. The estimation
sample is 1985:Q1 to 2021:Q3.

A.4 BVAR-SV with outlier correction — convergence diagnostics
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Appendix B Additional results

B.1 BVAR-WOSV

Figure B.1: Posterior means of outliers — BVAR-WOSV

Note: The figure shows the posterior means of the outlier draws from 2020:Q1 to 2021:Q3.

Figure B.2: Recursively estimated outliers — BVAR-WOSV

(a) GDP - OC (b) HICP - OC (c) CPE - OC (d) Emp - OC (e) FD - OC

(f) Oil - OC (g) EER - OC (h) STN - OC (i) LTN - OC (j) Stoxx - OC

Note: The figure shows for each variable-method combination, the outlier estimates when the in-sample is recursively
increased by one quarter. The x-axis denotes the last observation of the in-sample. The y-axis denotes the time series of
in-sample dates. Warmer colors denote larger posteriors of otSt, dark blue denotes a value of one, and white denotes
observations that were not yet in the in-sample. Moving along the x-axis, for a given date on the y-axis, shows outlier
estimate at a specific point a time but across different in-samples. Moving along the y-axis, for a given date on the
x-axis, shows the outlier estimates over time for a given in-sample.
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Table B.1: BVAR-WOSV forecast comparison — IS starts 1995 — MSFE — 2010:Q1 to 2019:Q4

Panel A Panel B
MSFE CRPS

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.96 0.96 0.97 0.97 0.97 0.95 0.98 0.99
HICP 0.93 0.96 0.97 0.95 0.97 0.99 1.00 1.00
CPE 1.00 0.98 0.99 0.99 1.02 1.02 1.06 1.14
Employment 0.97 0.98 0.98 0.98 1.01 0.98 0.96 0.99
ForeignDemand 0.97 0.98 0.96 0.97 0.97 0.97 0.97 0.99
OilPrice 1.03 1.07 1.16 1.38 1.03 1.03 1.03 1.21
EER 1.00 1.03 1.04 0.91 1.04 1.14 1.31 1.63
STN 0.98 0.95 0.88 0.72 0.97 0.93 0.87 0.90
LTN 0.99 0.98 0.97 0.95 0.97 0.95 0.92 0.93
Stoxx600 0.99 1.00 1.03 1.00 1.01 1.01 1.06 1.22

Note: The table shows the ratio of the MSFEs and CRPSs of a BVAR-WOSV with OC
and a plain BVAR-WOSV in Panel A and Panel B. Numbers smaller than one indicate
a superior performance of the OC specification. h denotes the forecast horizons. The
pseudo out-of-sample period is 2010:Q1 to 2019:Q4 for h = 1 and respectively shorter
for h = 2, ..., 8. Equal predictive ability is tested using the one-sided test proposed in
Clark and West (2007) for Panel A and a Diebold and Mariano (1995) test for Panel
B, using a Newey and West (1987) HAC estimator for the variance, and statistical
significance at the 10% level is indicated by boldface numbers.

Table B.2: BVAR-WOSV forecast comparison — IS start 1985— MSFE — 2010:Q1 to 2019:Q4

Panel A Panel B
MSFE CRPS

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.93 0.96 0.97 0.98 0.94 0.99 1.01 1.02
HICP 1.04 1.10 1.15 1.41 1.04 1.07 1.10 1.21
CPE 1.04 1.03 1.17 1.37 1.03 1.07 1.19 1.37
Employment 0.98 0.92 0.86 0.86 1.01 1.03 1.05 1.07
ForeignDemand 1.24 1.45 1.66 1.62 1.09 1.18 1.25 1.27
OilPrice 1.01 1.04 1.07 1.27 1.00 1.03 1.08 1.20
EER 0.99 0.94 0.93 1.04 1.07 1.12 1.22 1.44
STN 1.38 1.69 1.99 3.57 1.02 1.15 1.32 1.63
LTN 0.98 0.98 1.02 1.09 1.02 1.03 1.09 1.19
Stoxx600 0.95 1.01 0.94 0.84 1.03 1.08 1.15 1.28

Note: The table shows the ratio of the MSFEs and CRPSs of a BVAR-WOSV with OC
and a plain BVAR-WOSV in Panel A and Panel B. Numbers smaller than one indicate
superior performance of the OC specification. h denotes the forecast horizons. The
pseudo out-of-sample period is 2010:Q1 to 2019:Q4 for h = 1 and respectively shorter
for h = 2, ..., 8. Equal predictive ability is tested using the one-sided test proposed in
Clark and West (2007) for Panel A and a Diebold and Mariano (1995) test for Panel
B, using a Newey and West (1987) HAC estimator for the variance, and statistical
significance at the 10% level is indicated by boldface numbers.
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B.2 BVAR-SV

Figure B.3: Posterior means of outliers — BVAR-SV

Note: The figure shows the posterior means of otSt from 2020:Q1 to 2021:Q3.

Figure B.4: Time-varying standard deviation up to 2021:Q3 — BVAR-SV

Note: The solid and dashed line show the posterior mean of the time-varying standard deviation of the NOC-PreCovid
(dotted line) and NOC (solid line) specification. Estimates were obtained using data until 2019Q4 for the NOC-PreCovid
model and until 2021Q3 for the NOC specification. The plot shows the estimated time-varying standard deviation
until 2019:Q4 for the NOC-PreCovid specification and until 2021:Q3 for the NOC specification.
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Table B.3: BVAR-SV forecast comparison — IS start 1995 — MSFE — 2010:Q1 to 2019:Q4

Panel A Panel B
CCMM/BVAR OC/BVAR

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.92 0.91 0.89 0.84 0.98 0.98 0.95 0.97
HICP 1.04 1.02 1.08 1.10 1.00 0.99 1.03 1.06
CPE 1.12 1.12 1.04 0.93 0.96 0.99 0.97 1.00
Emp 0.91 0.92 0.84 0.83 0.96 0.96 0.93 1.00
FD 1.03 0.98 1.06 1.00 1.00 1.00 0.98 1.00
Oil 1.08 1.12 1.10 1.12 1.02 1.05 1.05 1.05
EER 0.98 0.99 1.04 1.10 1.00 1.01 1.01 1.00
STN 1.25 1.13 1.02 1.06 1.07 1.02 1.00 1.00
LTN 1.05 1.07 1.05 0.99 1.00 1.01 1.00 1.01
Stoxx 0.99 0.98 0.96 0.99 1.01 1.00 1.02 1.03

Note: The table shows the ratio of the MSFEs of a BVAR-SV with
CCMM and OC and a plain BVAR-SV in Panel A and Panel B. Num-
bers smaller than one indicate superior performance of the numerator
of the ratio indicated by the panel name. h denotes the forecast hori-
zons. The pseudo out-of-sample period is 2010:Q1 to 2019:Q4 for
h = 1 and respectively shorter for h = 2, ..., 8. Equal predictive ability
is tested using the one-sided test proposed in Clark and West (2007)
and a Newey and West (1987) HAC to estimate the variance. Statistical
significance at the 10% level is indicated by boldface numbers.

Table B.4: BVAR-SV forecast comparison — IS start 1995 — CRPS — 2010:Q1 to 2019:Q4

Panel A Panel B
CCMM/BVAR OC/BVAR

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 0.99 1.00 1.00 1.01 1.00 1.00 0.98 1.01
HICP 1.02 1.02 1.06 1.07 1.00 1.00 1.01 1.03
CPE 1.09 1.09 1.10 1.09 0.98 1.01 1.01 1.03
Emp 0.98 1.01 1.01 1.06 0.99 1.00 1.01 1.06
FD 1.03 1.03 1.06 1.05 1.03 1.04 1.03 1.05
Oil 1.05 1.09 1.11 1.15 1.03 1.06 1.07 1.07
EER 1.02 1.03 1.10 1.35 1.02 1.03 1.05 1.15
STN 1.13 1.10 1.08 1.04 1.10 1.08 1.05 0.99
LTN 1.04 1.04 1.02 0.95 1.01 1.00 0.98 0.95
Stoxx 1.03 1.05 1.09 1.22 1.05 1.07 1.09 1.15

Note: The table shows the ratio of the CRPSs of a BVAR-SV with
CCMM and OC and a plain BVAR-SV in Panel A and Panel B. Num-
bers smaller than one indicate superior performance of the numerator
of the ratio indicated by the panel name. h denotes the forecast hori-
zons. The pseudo out-of-sample period is 2010:Q1 to 2019:Q4 for
h = 1 and respectively shorter for h = 2, ..., 8. Equal predictive ability
is tested using the Diebold and Mariano (1995) test and a Newey and
West (1987) HAC to estimate the variance. Statistical significance at
the 10% level is indicated by boldface numbers.
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Table B.5: BVAR-SV forecast comparison — MSFE — 2010:Q1 to 2019:Q4

Panel A Panel B
CCMM/BVAR OC/BVAR

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 1.00 1.02 0.99 1.00 1.02 1.00 0.93 0.91
HICP 1.00 1.01 0.99 1.01 0.99 1.04 1.07 1.09
CPE 1.02 1.02 0.99 0.98 1.04 1.05 1.05 1.04
Emp 1.01 0.99 0.96 0.98 0.99 0.98 0.92 0.92
FD 0.98 0.97 0.96 1.00 1.10 1.17 1.13 1.08
Oil 1.02 1.03 1.01 1.00 1.06 1.10 1.13 1.17
EER 1.00 1.00 1.00 1.01 1.03 1.03 1.05 1.11
STN 1.02 1.00 1.02 1.04 1.12 1.13 1.13 1.23
LTN 1.00 0.99 1.01 1.01 1.00 0.98 0.97 0.98
Stoxx 1.01 1.02 1.00 0.98 1.02 1.00 0.97 0.96

Note: The table shows the ratio of the MSFEs of a BVAR-SV with
CCMM and OC and a plain BVAR-SV in Panel A and Panel B. Num-
bers smaller than one indicate superior performance of the numerator
of the ratio indicated by the Panel name. h denotes the forecast hori-
zons. The pseudo out-of-sample period is 2010:Q1 to 2019:Q4 for
h = 1 and respectively shorter for h = 2, ..., 8. Equal predictive ability
is tested using the one-sided test proposed in Clark and West (2007)
and a Newey and West (1987) HAC to estimate the variance. Statistical
significance at the 10% level is indicated by boldface numbers.

Table B.6: BVAR-SV forecast comparison — CRPS — 2010:Q1 to 2019:Q4

Panel A Panel B
CCMM/BVAR OC/BVAR

Variable h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

GDP 1.00 1.01 1.00 1.01 1.01 1.00 0.97 0.99
HICP 1.00 1.00 1.00 1.01 0.99 1.02 1.05 1.05
CPE 1.02 1.03 1.02 1.04 1.03 1.05 1.08 1.10
Emp 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.04
FD 1.00 1.01 1.01 1.02 1.05 1.10 1.07 1.05
Oil 1.01 1.03 1.02 1.01 1.02 1.07 1.08 1.09
EER 1.00 1.01 1.02 1.10 1.03 1.03 1.07 1.22
STN 1.03 1.05 1.05 1.05 1.04 1.07 1.10 1.15
LTN 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01
Stoxx 1.03 1.06 1.11 1.19 1.02 1.05 1.11 1.25

Note: The table shows the ratio of the CRPSs of a BVAR-SV with
CCMM and OC and a plain BVAR-SV in Panel A and Panel B. Num-
bers smaller than one indicate superior performance of the numerator
of the ratio indicated by the Panel name. h denotes the forecast hori-
zons. The pseudo out-of-sample period is 2010:Q1 to 2019:Q4 for
h = 1 and respectively shorter for h = 2, ..., 8. Equal predictive ability
is tested using the Diebold and Mariano (1995) test and a Newey and
West (1987) HAC to estimate the variance. Statistical significance at
the 10% level is indicated by boldface numbers.
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Figure B.5: Recursively estimated outliers — IS start 1995 — BVAR-SV

(a) GDP - CCMM (b) GDP - OC (c) HICP - CCMM (d) HICP - OC

(e) CPE - CCMM (f) CPE - OC (g) EMP - CCMM (h) EMP - OC

(i) FD - CCMM (j) FD - OC (k) OIL - CCMM (l) OIL - OC

(m) EER - CCMM (n) EER - OC (o) STN - CCMM (p) STN - OC

(q) LTN - CCMM (r) LTN - OC (s) Stoxx - CCMM (t) Stoxx - OC

Note:The figure shows for each variable-method combination the outlier estimates when the in-sample is recursively
increased by one quarter. The x-axis denotes the last observation of the in-sample. The y-axis denotes the time series
of in-sample dates. Warmer colors denote larger posteriors of otSt, i.e. dark blue denotes a value of one. Moving
along the x-axis, for a given date on the y-axis, shows outlier estimates at a specific point a time but across different
in-samples. Moving along the y-axis, for a given date on the x-axis, shows the outlier estimates over time for a given
in-sample.
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