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Resumen

En las dos últimas décadas se ha observado un rápido desarrollo de las técnicas 

de  aprendizaje automático, que han demostrado ser herramientas muy potentes 

para elaborar modelos de predicción, como los utilizados en la gestión del riesgo de 

crédito. En un volumen considerable de trabajos publicados se analizan la utilidad del 

aprendizaje automático para este fin, las mayores capacidades predictivas que 

ofrece y la forma en la que se pueden explotar nuevos tipos de datos. Sin embargo, 

estas ventajas llevan aparejada una mayor complejidad, que puede imposibilitar la 

interpretación de los modelos. Para solventar este punto ha surgido un nuevo campo 

de investigación, denominado «inteligencia artificial explicable» (del inglés explicable 

artificial intelligence), en el que se proponen numerosas herramientas para obtener 

información relativa al funcionamiento interno de estos modelos. Este tipo de 

conocimiento es fundamental en materia de riesgo de crédito para garantizar que se 

cumplen los requerimientos regulatorios existentes y para comprender los factores 

determinantes de las predicciones y sus implicaciones macroeconómicas. En este 

artículo se estudia la eficacia de algunas de las técnicas de interpretabilidad más 

utilizadas en una red neuronal entrenada con datos reales. Estas técnicas se 

consideran útiles para la comprensión del modelo, pese a que se han detectado 

algunas limitaciones. 

Palabras clave: aprendizaje automático, interpretabilidad, inteligencia artificial 

explicable, scoring, modelización de riesgos de crédito.





BANCO DE ESPAÑA 93 REVISTA DE ESTABILIDAD FINANCIERA, NÚM. 43 OTOÑO 2022

Abstract

The past two decades have witnessed the rapid development of machine learning 

techniques, which have proven to be powerful tools for the construction of predictive 

models, such as those used in credit risk management. A considerable volume of 

published work has looked at the utility of machine learning for this purpose, the 

increased predictive capacities delivered and how new types of data can be 

exploited. However, these benefits come at the cost of increased complexity, which 

may render the models uninterpretable. To overcome this issue a new field has 

emerged under the name of explainable artificial intelligence, with numerous tools 

being proposed to gain an insight into the inner workings of these models. This type 

of understanding is fundamental in credit risk in order to ensure compliance with the 

existing regulatory requirements and to comprehend the factors driving the 

predictions and their macro-economic implications. This paper studies the 

effectiveness of some of the most widely-used interpretability techniques on a neural 

network trained on real data. These techniques are found to be useful for 

understanding the model, even though some limitations have been encountered.

Keywords: Machine learning, interpretability, explainable artificial intelligence (AI), 

credit scoring, credit risk modelling.

1 Introduction

1.1 Overview of the problem

Machine learning is a subfield of artificial intelligence which exploits the patterns 

present in data to construct mathematical models. This type of model has proven to 

be very successful for diverse tasks such as optimization, data processing and 

estimating unknown variables. The origins of the discipline date back to the 1950s, 

but it has not been until recently, fuelled by the rise of big-data and the access to 

faster and cheaper computational capacities, that machine learning has emerged as 

a disruptive technology.

The field of credit risk has a long tradition in the use machine learning techniques, 

since well before the current boom. Among the most widespread applications are 

credit scorecards for estimating the probability of loan default. These models, 

typically based on logistic regressions using a reduced set of variables, have simple 

mathematical representations and are easy to understand.
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However, the development of more advanced techniques is changing the landscape 

in credit risk modelling. Several academic studies have revealed the potential 

benefits of using more complex models, with a particular emphasis on the greater 

accuracy of these alternatives and on the possibility of incorporating new types of 

data. This trend can also be seen in the financial industry, with institutions showing 

an increasing interest in the deployment of more powerful methodologies, both for 

internal management and for the computation of regulatory capital requirements.

This migration towards more complex techniques is having an impact on the 

interpretability of the models, and in some cases we end up with what are called black-

box models, where it is no longer possible to understand a model’s underlying logic, or 

at least it is not possible for the naked eye of an analyst. The challenge of understanding 

the inner workings of complex machine learning models is not exclusive to credit risk, 

and a whole new field of research (explainable artificial intelligence or XAI) has emerged 

in recent years. While many different methodologies have been proposed, how useful 

or limited these techniques are remains an open question. In this regard it is important 

to note just how different models for image classification, natural language processing 

and credit scoring based on tabular data can be.

Nonetheless, the relevance of interpretability in machine learning models in the 

context of credit risk estimation is well worth highlighting, especially when used for 

lending and for the quantification of capital requirements. These activities have 

profound implications for economic growth and financial stability, and there are 

various regulations in place that require an understanding of the inner logic of the 

models used for these purposes.1 Moreover, an understanding of the role of variables 

sensitive to macro-economic conditions within the models is vital for assessing the 

fluctuations of capital requirements and the resulting funding needs.

The goal of this paper is to analyse the utility and limitations of some of the most 

widely-used interpretability tools on a realistic credit risk estimation model. Using 

data from CIRBE,2 a neural network for estimating probability of default has been 

constructed, and several interpretability techniques have been applied to it. The 

resulting explanations are analysed and discussed. 

1.2 Related literature

The use of advanced machine learning techniques for credit risk purposes has 

garnered significant attention in recent years, generating an extraordinary volume of 

1 Some of the most relevant European Union regulations in this regard are the Capital Requirements Regulation (EU) 
575/2013, the General Data Protection Regulation (EU) 2016/679, the Guidelines on Loan Origination and 
Monitoring (EBA/GL/2020/06) and the Artificial Intelligence Act, a Proposal for a Regulation currently before the 
European Commission.

2 CIRBE stands for Central de Información de Riesgos del Banco de España (the Banco de España’s Central Credit 
Register).
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published work. Providing an overview of this vast literature is therefore a challenge 

in itself. One of the issues that has drawn most attention is the comparison of 

traditional logistic regressions with more advanced approaches to credit scoring 

(see Alonso and Carbó (2020) and references therein). But other more ambitious 

approaches have also been considered, e.g. incorporating new sources of information 

which require more sophisticated architectures (see Babaev et al. (2019), who use 

recurrent neural networks to process transactional data; or Korangi et al. (2021), who 

apply transformers to time-structured accounting and pricing data), or in other 

secondary tasks of the modelling process (see Engelmann and Lessmann (2020), 

who use generative adversarial networks for data preparation; or Liu et al. (2021), 

who apply deep neural networks to define the set of explanatory variables). 

This trend towards more complex techniques has been closely monitored, and 

various publications have analysed the implications and set out recommendations 

and guidance. In the paper by Yong and Prenio (2021), the Financial Stability Institute 

examines a selection of policy documents on machine learning issued by financial 

authorities in nine jurisdictions, together with other governance guidance, and flags 

interpretability as one of the major concerns in the use of these technologies. Similar 

conclusions have been expressed in other publications, such as the Deutsche 

Bundesbank and BaFin consultation paper (2021), the Bank for International 

Settlements working paper (Doerr et al. (2021)) and the European Banking Authority 

discussion paper (2021).

Within the field of XAI, among the most relevant methods proposed in the literature 

are partial dependence plots (see Friedman (2001)), individual conditional 

expectations (see Goldstein et al. (2014)), accumulated local effects (see Apley and 

Zhu (2019)), local interpretable model-agnostic explanations (see Ribeiro et al. (2016)) 

and Shapley additive explanations (see Lundberg and Lee (2017)). These tools are 

examined in this paper, and are described in Section 3. Other popular XAI techniques 

that may also be of interest for evaluating credit scoring models are anchors (see 

Ribeiro et al. (2018)), prototypes and criticisms (see Kim et al. (2016)), trust scores 

(see Jiang et al. (2018)) and contrastive and counterfactual explanations (see Stepin 

et al. (2021) for a survey of these type of methods).

Last, but not least, is the question of how successful these techniques are in 

delivering adequate, useful explanations of the models. While a number of analyses 

have been carried out to address this question, the answers obtained are specific to 

the types of models and data considered. With the goal of interpreting credit scoring 

models in mind, some of the most relevant papers are: Ariza-Garzón et al. (2020), 

who evaluate the effectiveness of SHAP on a credit scoring model based on XGBoost; 

Demajo et al. (2020), who apply anchors along with two other methods3 to a credit 

scoring model based on XGBoost; Visani et al. (2020), who assess the stability of 

3 GIRP, introduced in Yang et al. (2018), and ProtoDash, introduced in Gurumoorthy et al (2019).
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LIME on a credit scoring model based on XGBoost; and Cascarino et al. (2022),  in 

which accumulated local effects, along with two other methods,4 are applied to a 

logistic regression and a random forest to analyse their differences. 

1.3 Contribution of the paper

A neural network has been constructed for estimating probability of default using 

tabular data on real mortgages extracted from CIRBE. The dataset has been defined 

so as to be representative of those used for credit scoring, in terms of size, number 

of explanatory variables and type of information (debtor and loan characteristics).

Some of the most popular interpretability techniques have then been applied to this 

neural network, contrasting all of the explanations obtained and assessing their 

utility and limitations. The focus has been placed on so-called model agnostic 

explanations (interpretability techniques which can be applied to any type of 

predictive model) and on techniques which can be used to interpret the neural 

network as an estimator of the probability of default, which is how credit scoring 

models are generally used. 

1.4 Outline of the paper

The paper is structured as follows: Section 2 introduces the notion of model 

interpretability using a logistic regression as an example. Section 3 describes the 

interpretability tools analysed in the paper. Section 4 summarizes the data and the 

model to which the interpretability tools are applied. Section 5 shows some of the 

explanations obtained and the analyses performed to evaluate their consistency and 

appropriateness. Section 6 presents the conclusions drawn from the analyses 

carried out. The appendix contains further details on the dataset used, the model 

constructed and the software used.

2 When is a model interpretable?

The logistic regression models usually used in credit scoring are an illustrative 

example of an interpretable model. These models are constructed using a reduced 

set of features5 with low correlation between them. The features used are typically 

loan characteristics (e.g. loan-to-value ratio, maturity, etc.), debtor characteristics 

(e.g. income, age, etc.) or macro-economic information (e.g. interest rates, gross 

4 A method based on permutations to quantify the importance of each feature and a local method based on 
Shapley values introduced in Štrumbelj and Kononenko (2014).

5 In machine learning, the term feature is frequently used to refer to the explanatory variables used in a model.
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domestic product, etc.). A realistic example could use 10 features, which are denoted 

as Xj, and would require the calibration of 11 parameters bj (the sensitivity of the 

model to each feature plus a constant term or bias). In this setting, the probability of 

default estimated by the model is given by the following two equations:
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The first important aspect to note is that the second equation, which provides the 

estimated probability of default in terms of , is monotonically increasing and involves 

no parameters. Thus, understanding the first equation, which is a linear equation, 

provides a full picture of the internal logic of the model. In other words, understanding 

a logistic regression is pretty much the same as understanding a linear regression.

In particular, note that the following information can be directly obtained from the 

coefficients:

 — If j 0b > , feature j is positively correlated with the output of the model, and 

an increase in the value of the feature always leads to an increase in the 

predicted value.

 — Given an observation x, if j j k k x    xb > b , feature j is more influential than 

feature k in the prediction obtained for this particular observation.

 — If the features are standardised6 and j k b > b , feature j is more influential 

than feature k in the overall model.

Moreover, we can obtain further understanding of these models by applying well-

established statistical tools, such as tests to assess the significance of the coefficients 

(e.g. the Wald test) or measures of goodness of fit (e.g. pseudo R2 measures). In 

short, logistic regressions are models which rely on simple relationships between 

the inputs and the output, can be fully described from the specification of a small set 

of coefficients and a simple analysis of such coefficients delivers a detailed 

understanding of the model. 

In contrast, more complex models, such as gradient boosting machines or neural 

networks, lack any of these properties. These models involve thousands of 

parameters and there is no clear relationship between the inputs and outputs. 

Gaining insight here requires the use of specific, sophisticated tools, most of which 

6 There is no loss of generality in this assumption, as features can be standardised before training the model.
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have been recently developed. The next section describes some of the most popular 

interpretability tools, which are evaluated in our case study. 

3 Interpretability tools

This section describes the interpretability tools used in the assessment of our model. 

These tools can be local, describing how the model generates a particular 

observation, or global, explaining the overall behaviour of the model across all 

observations. In some cases, local explanations can be aggregated together to 

obtain a global understanding of the model.

3.1 Feature influence plots

Different types of plots can be constructed to display the influence of a feature on 

the model. Some of the most popular techniques of this nature are Individual 

Condition Expectations (ICE), Partial Dependence Plots (PDP) and Accumulated 

Local Effects (ALE).

ICE and PDP show a model’s prediction for each possible value of the feature under 

examination. ICE displays the relationship for a particular observation, providing a 

local explanation of the model, while PDP shows the average relationship across all 

observations, and therefore provides a global explanation. In the computation of 

these plots, the feature examined is rewritten considering all the values in its range, 

while the rest of the features are left unchanged. This can produce unrealistic data 

instances,7 where the predictions obtained from the model may not be representative 

of those obtained from actual observations.

ALE plots were introduced by Apley and Zhu (2019) as an alternative to PDP to address 

the unrealistic data issue. These plots are computed separately on each sub-range of 

values, considering only observations with a similar value, and evaluating how the 

output of the model changes as a result of small perturbations to the values of the 

feature. A drawback of ALE plots is that these are defined only for numerical features.

3.2 LIME

A local surrogate is an auxiliary interpretable model (such as a linear model with few 

features) which accurately approximates the behaviour of the original model on a 

7 For example, if a model uses the initial maturity and the remaining maturity as features, rewriting only one of them 
may yield a combination of values where the remaining maturity is longer than the initial one, which is not a realistic 
data instance.
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subset of similar observations. We can understand why our model delivers a specific 

prediction by fitting a local surrogate around the observation and interpreting it. 

One of the most successful approaches to building local surrogates is Local 

Interpretable Model-agnostic Explanations (LIME), introduced in Ribeiro et al. 

(2016). 

LIME first generates an auxiliary, synthetic dataset by randomly perturbing the actual 

observations in the sample.8 Then, a local surrogate is trained to replicate the 

predictions generated by the true model on the synthetic data. In order to obtain a 

surrogate which explains the model in the vicinity of a specific observation, the 

training procedure uses a weight function that gives more relevance to the synthetic 

observations which are closer to it.

Perhaps the most relevant drawback of LIME is that the method requires the 

specification of several parameters, and there is no silver bullet when selecting them. 

Some of these parameters are needed to specify the weighting function which 

defines the notion of vicinity, while other parameters, such as the number of features 

used, are needed to define the structure of the surrogate model. One of these 

parameters allows for the application of a discretization on continuous features, in 

order to obtain comparable coefficients and avoid double negations. However, it is 

our understanding that discretization should be used with care, as the resulting 

surrogate model could be non-monotonic and hard to interpret.

3.3 SHAP

Shapley values are a concept that originated in the field of game theory, and have 

been proposed in machine learning for defining the contribution of each feature of a 

model to a specific prediction. In order to define them, let F be a model with n 

features as inputs, let FS denote a version of the model which uses only the subset 

of features S, and let x be the observation whose prediction we want to analyse. The 

Shapley value ϕj for the feature j is defined as
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Shapley values allow us to decompose the prediction of the model by
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where ( )F X    is the average prediction of the model (across all observations).

8 The random perturbation used assumes that the features are independent.
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The main challenge of using Shapley values is their computational cost, since they 

require a different version of the model for every possible subset of features. This 

can be unfeasible even for a moderate number of features, as the number of subsets 

grows exponentially.

One of the most influential works based on Shapley values are Shapley Additive 

ExPlanations (SHAP), introduced in Lundberg and Lee (2017). In this paper and in 

the software library released by the authors a number of methods for estimating 

Shapley values are proposed, some of which are model-specific, while others are 

model-agnostic. These methods rely on different definitions of the terms FS, which 

do not require a model to be trained for each subset of features, and on 

approximations to address the computational cost. Perhaps the most relevant 

theoretical downside of SHAP is that some of the methods proposed, including the 

model-agnostic ones, assume that the features are independent. However, this 

assumption is usually not satisfied, and it is not clear beforehand what impact the 

dependence present in our data has on the quality and reliability of the explanations 

obtained.9

4 Model developed

The dataset is composed of mortgages at January 2018, with no additional guarantor 

and denominated in Euro, containing 3,184,956 observations. The January 2018 

snapshot was chosen as it was the most recent one available not affected by the 

Covid-19 pandemic.

The model uses 19 features, containing both numerical and categorical data, and 

covering loan and debtor characteristics. The objective variable is the indicator of 

default at January 2019, and its rate of positive values is 0.61% (i.e. the observed 

default rate). The model constructed is a neural network with two hidden layers, with 

128 neurons in each layer, and the total number of parameters is 24,577. The 

performance of the model, measured using the area under the receiver operating 

characteristic curve (AUC) on a validation sample, is 89.96%. See Appendix 1.3 for 

more details on the characteristics of the model.

5 Unboxing the model

The tools described in Section 3 are now applied to the model constructed. A few 

examples of the explanations obtained are presented to understand the how these 

tools work and what their utility and limitations are. In order to assess how intuitive 

9 See, for example, Aas et al. (2020) and Frye et al. (2021) for more details on this issue.
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the explanations obtained are, the graph in Chart 1 will be useful as an auxiliary 

tool.

In this graph we can see the average prediction of the model for different values of 

a feature. In order to compute the graph above, buckets are defined with an equal 

number of observations by discretizing the feature under analysis and the average 

prediction of the model for the observations in each bucket is computed. The average 

default rate in each bucket is also computed, and both graphs are placed on a 

common scale to improve comparability. It is important to note that this plot does 

not reflect a cause-and-effect relationship between the feature and the outcome of 

the model (the plot could be constructed for a feature that is not used in the model 

and still reveal a dependence).

5.1 Feature influence plots

In the graphs below, the x-axis is not at its natural scale for the continuous 

features, as the features have been normalized to facilitate the training of the 

model.  Similarly, due to the use of weights to mitigate the class imbalance in 

training,10 the predictions of the model (the y-axis of the PDPs) are not on the 

same scale as the default rates. 

10 When constructing a classifier where one of the categories is far more frequent than the other, this can hinder the 
training of the model. This issue can be addressed by introducing a weight function that gives more relevance to 
the minority class.

AUXILIARY PLOT EXAMPLE
Chart 1

SOURCE: Devised by the author.
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5.1.1 Age

In Chart 2 we can see the PDP (left), the ALE (right) and the average prediction 

(bottom) of the model for the feature Age. The concentration of mass of the density 

of the feature on the large, positive values corresponds to missing or erroneous 

values, as the value of the age is capped at 100.

Note that PDP and ALE coincide in how the feature influences the model, which 

suggests that the PDP for this feature is not distorted by possible out-of-distribution 

issues as a result of overwriting the values of Age. Moreover, both graphs are aligned 

with the average prediction and with the default rate, which makes these explanations 

intuitive.

In order to study whether the general influence captured by the PDP is representative 

of the influence on specific, individual observations, we can plot PDP and ICE 

jointly.

In chart 3 the left plot shows the PDP and ICEs on their natural scales and the right 

plot shows them on a common scale to enhance comparability. We can see that the 

INFLUENCE PLOTS FOR FEATURE AGE
Chart 2

SOURCE: Devised by the author.
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influence of the feature is similar in some observations, and is aligned with the 

average influence captured by the PDP, albeit not in all of them.

5.1.2 Principal amount

In Chart 4 we can see the PDP (left), the ALE (right) and the average prediction 

(bottom) of the model for the features Initial principal amount and Remaining principal 

amount.

It is worth noting that the PDPs and the ALEs coincide for these two features, 

although the pattern revealed by the two graphs is not aligned with the average 

prediction and the default rate. As both of these features are based on the principal 

outstanding amount of the loan, there is a strong dependency between the two, and 

it may be the case that this interdependence is behind this misalignment. The joint 

influence of both features in the model can be studied using a bivariate PDP11 (see 

Chart 5) to see if this sheds more light on the matter, but this plot does not seem to 

offer any further insight.

In order to study the representativeness of the PDP for specific, individual 

observations, the PDP and the ICE are plotted jointly, yielding graphs in Chart 6.

It is difficult to compare the influence of the features on different observations, as 

the ICEs are on different scales and normalization of the graphs to a common scale 

11 Bivariate PDP are a straightforward extension of PDP where the average prediction of the model is plotted for 
every combination of values of the features examined, while the values of the remaining features are left unaltered.

PDP AND IC FOR FEATURE AGE
Chart 3

SOURCE: Devised by the author.
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can be problematic, since the influence is very small in some observations. On the 

feature Initial principal amount, there seems to be a closer alignment between the 

ICEs and the PDP (a negative effect with small impact). On the feature Remaining 

principal amount, the pattern across the ICEs is less clear, and the PDP may not be 

as representative of the influence in individual cases.

INFLUENCE PLOTS FOR INITIAL PRINCIPAL AMOUNT AND REMAINING PRINCIPAL AMOUNT
Chart 4

SOURCE: Devised by the author.

SOURCE: Devised by the author.

BIVARIATE PDP FOR INITIAL PRINCIPAL AMOUNT AND REMAINING PRINCIPAL AMOUNT
Chart 5
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In short, the auxiliary plots show that there is a non-monotonic relationship between 

these features and the default rate and the average prediction, although the PDP and 

the ALE do not show an influence of this type in the model; a bivariate PDP has been 

used to analyse both features jointly, albeit without offering any further insight. Regarding 

the question of whether the influence is homogeneous across observations, it is difficult 

to draw any conclusions of this nature based on the ICEs due to the different scales of 

the plots and the fact that the influence of these features in the model appears small.

5.1.3 Gender

PDP can be applied to categorical features in a straightforward manner using bar-

plots. In Chart 7 we can see the PDP and the average prediction of the model for the 

feature Gender.

The PDP shows the influence of the category Other, which is the opposite of the 

model’s average prediction for the observations in this category. This misalignment 

may be due to the fact that this category contains the missing values of the feature, 

SOURCE: Devised by the author.

PDP AND ICE FOR INITIAL PRINCIPAL AMOUNT AND REMAINING PRINCIPAL AMOUNT
Chart 6
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and that the occurrence of missing values is correlated across features. An example 

of this correlation between the missing values is shown in Table 1.

5.2 Local explanations

5.2.1 LIME

This section analyses the explanations provided by LIME, studies its stability with 

respect to the choice of parameters and evaluates the noise stemming from the 

random sampling. 

Example

The graph in Chart 8 displays an explanation given by LIME based on the 6 most 

significant features. The values shown correspond to the weight of each feature in 

the local linear model.12

12 For categorical features the value reflects the weight of belonging to the category of the explained observation.

INFLUENCE PLOTS FOR FEATURE GENDER
Chart 7

SOURCE: Devised by the author.

JOINT DISTRIBUTION OF MISSING VALUES OF AGE AND GENDER
Table 1

SOURCE: Devised by the author.

Missing Age Informed Age

Missing Gender 15.203 338,969

Informed Gender 487,038,20
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Even though all of the numerical features are normalized, since LIME focuses on the 

vicinity of a specific observation, the features are no longer normalized, and the 

coefficients are not therefore fully comparable. A complementary analysis can be 

conducted to study the net effect of the features in the prediction, which can be 

computed by multiplying the weights of the explanation and the values of the 

features, and has the advantage that these values are comparable across features. 

The figure in Chart 9 shows the effects of the same features and the same observation 

as in the plot in Chart 8.

This second plot shows that some care is required when interpreting the first one. 

Note that even though Collateral amount is the third most influential variable in the 

LIME EXAMPLE
Chart 8

SOURCE: Devised by the author.

EFFECTS IN THE LOCAL SURROGATE
Chart 9

SOURCE: Devised by the author.
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local model, it has no effect on this particular prediction (since the value of this 

feature is zero). Note also that the influences observed can have an effect in the 

opposite direction (where the value of a feature is negative).

Estimation error

The sensitivity of the explanations to the random sampling is assessed by computing 

the explanation of a specific prediction multiple times.13 Table 2 shows the mean and 

dispersion of the coefficients of the most relevant features.

We can see that the explanations obtained are fairly stable with respect to the 

randomness stemming from the random sampling.14

Sensitivity to the choice of parameters

In order to assess the sensitivity of the method to the choice of discretization applied 

to the numerical features, Table 3 compares the explanations obtained using different 

discretization criteria on the same observation.15

We can see that the choice of the discretization method affects the explanation 

obtained, as the most significant features in the explanation vary. In particular, note 

that Age does not appear in the explanation using deciles and Remaining principal 

amount is not present when no discretization is applied.

It is important to note that the coefficients with different signs for the features Initial 

principal amount and Original maturity are not contradictory, since the value of these 

13 1,000 simulations, using kernel width 3, no discretization on the continuous features and 5,000 observations for 
fitting each local model (default value).

14 A similar question has been considered in Visani et al. (2020), where they find that the stability of LIME depends 
upon the choice of parameters, even though a quantification of the instability found is not provided.

15 Using kernel width 3 and 100,000 observations.

DISPERSION OF THE LIME COEFFICIENTS
Table 2

SOURCE: Devised by the author.

dtSnaeMerutaeF
810.0082.0-sutats naoL
900.0380.0esoprup naoL
700.0940.0-epyt tnediseR
600.0740.0-ytivitca cimonocE
100.0340.0-tluafed suoiverP
300.0340.0egarevoc eetnaraug laeR
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features is negative in this observation. Thus, in all of the tree explanations obtained, 

the influence of these features results in a decrease in the prediction.

The graphs in Chart 10 show the impact of modifying the number of features in the 

explanation. We can see that the explanations differ significantly, except for the two 

most relevant features, which play the same role in both explanations. The source of 

this divergence seems to be that LIME adopts a different strategy for selecting which 

features are the most relevant depending on the number specified.16

16 The forward method is used when the number of features is six or less. Otherwise, the weight of each feature is 
used (see https://cran.r-project.org/web/packages/lime/vignettes/Understanding_lime.html).

LIME EXPLANATIONS DEPENDING ON THE DISCRETIZATION
Table 3

SOURCE: Devised by the author.

eulaVerutaeFeulaVerutaeFeulaVerutaeF
Previous default -0.548 Previous default -0.551 Previous default -0.519
Loan status -0.521 Loan status -0.519 Loan status -0.476

670.0-.a .p laitinI260.0-.c .g laeR031.0egA
550.0-.c .g laeR040.0-yrtnuoc htriB160.0-.c .g laeR
840.0egA820.0-.a .p gniniameR840.0-.a .p gniniameR
920.0-yrtnuoc htriB520.0-redneG440.0.a .p laitinI

Birth country -0.033 Loan origination -0.024 Loan origination -0.024
710.0-redneG120.0-ytirutam lanigirO520.0-redneG

Original maturity -0.025 Loan purpose -0.020 Original maturity 0.014
410.0.c .g lanosreP910.0.a .p laitinI910.0-noitanigiro naoL

noitazitercsid oNseliceDselitrauQ

LIME EXPLANATIONS WITH DIFFERENT NUMBER OF FEATURES
Chart 10

SOURCE: Devised by the author.
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We have also studied the stability of the results with respect to the size of the kernel, 

and we have not found any relevant deviations. 

5.2.2 SHAP

This section analyses the explanations provided by SHAP and studies the noise 

generated from the random sampling. The explanations have been computed using 

the default method,17 which does not require any relevant parametrization.

Example

The graph in Chart 11 shows an explanation provided by SHAP for a given observation. 

Each row represents the contribution of a feature to the prediction generated by the 

model. The sum of the contributions of all of the features is equal to the difference 

between the prediction obtained on this observation and the average prediction 

across all observations.

Estimation error

In order to assess the noise introduced by the random sampling, the explanation of 

a specific prediction has been computed 20 times. There are two sources of 

sampling error in the method, one due to the choice of the background sample and 

the other to a simulation performed within the method. In order to understand the 

impact of each source, two analyses have been carried out, using the same 

background sample in one and different background samples in the other.18 Table 4 

summarizes the distribution of the most significant features.

We can see that the volatility of the estimations, relative to their average value, is not 

negligible in either case. In order to gain further insight into the contributions the 

different noises make, the same computation has been carried out with a smaller 

sample (see Table 5).19

Using a smaller background sample does not appear to significantly affect the 

explanations obtained in either case. 

17 The default model agnostic explainer is the so-called permutation explainer. 

18 The results shown have been computed with background samples of 4,000 observations.

19 Background samples of 1,000 observations.

https://shap-lrjball.readthedocs.io/en/latest/generated/shap.PermutationExplainer.html
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SHAP EXAMPLE
Chart 11

SOURCE: Devised by the author.

SIMULATION WITH THE SAME BACKGROUND (LEFT) AND WITH DIFFERENT BACKGROUNDS (RIGHT). SAMPLE SIZE 4,000
Table 4

SOURCE: Devised by the author.

.dtSnaeMerutaeF.dtSnaeMerutaeF

Loan origination -0.0447 0.0096 Loan origination -0.0523 -0.0523

7630.07630.0 ecnivorP9900.03630.0 ecnivorP

0430.0-0430.0-redneG0500.00330.0egA

6820.0-6820.0- tluafed suoiverP2600.09520.0-redneG

9220.09220.0egA0110.07720.0-ytirutam lanigirO

Previous default -0.0250 0.0012 Remaining maturity -0.0152 -0.0152

SIMULATION WITH THE SAME BACKGROUND (LEFT) AND WITH DIFFERENT BACKGROUNDS (RIGHT). SAMPLE SIZE 1,000
Table 5

SOURCE: Devised by the author.

.dtSnaeMerutaeF.dtSnaeMerutaeF

0410.06740.0- noitanigiro naoL5800.06940.0 ecnivorP

4310.08630.0 ecnivorP7010.05240.0- noitanigiro naoL

7210.09130.0-redneG2600.03030.0egA

3210.01920.0- tluafed suoiverP6700.03920.0-redneG

6900.07620.0egA0900.02220.0-ytirutam lanigirO

6800.09410.0-ytirutam lanigirO4210.05510.0-ytirutam gniniameR
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5.2.3 Comparison

This section compares the explanations obtained using LIME and SHAP, both on an 

individual observation basis and on an aggregate basis.

Individual level

In Chart 12, the top two graphs show the explanation obtained using LIME (the left 

plot shows the output of the method, corresponding to the coefficients of the 

surrogate regression, while the right plot shows the effect of each feature) and the 

bottom graph shows the explanation obtained from SHAP.

The explanations obtained do not seem incompatible, since they coincide in several 

of the features on which they rely and the effects are aligned in all cases. However, 

LIME VS SHAP
Chart 12

SOURCE: Devised by the author.
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there are also significant differences, especially with respect to the feature Previous 

default, which is the most significant feature for LIME, but does not appear among 

the relevant features for SHAP. Chart 13 shows the same comparison when made 

with a different observation.

The conclusions in this case are the same. The two explanations do not seem to be 

incompatible, though there are relevant differences between them, especially with 

respect to the feature Loan status, which plays a major role for LIME but is not 

relevant for SHAP.

Aggregated level

Table 6 compares the importance given by LIME and SHAP to each feature,20 and 

includes two additional metrics. The column marginal contribution refers to the 

20 Defined as the average absolute value of the LIME and SHAP effects on a sample of 4,000 observations.

LIME VS SHAP
Chart 13

SOURCE: Devised by the author.
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influence of a feature in the model with all other features present (the measure as the 

decay in the predictive capacities of the model when the feature is removed21). The 

idea is to provide a complementary view to the information value, which assesses 

the predictive capacity of each feature on a standalone basis.

There are notable differences in the importance given to the features by the two 

explanations, the most notable being Loan status, which is of very little relevance for 

SHAP, but is the second most significant feature for LIME and the other two 

measures. 

The scatter plot in Chart 14 shows how the effects of the feature Age are distributed. 

The distribution is very similar in both methods and is aligned with the results 

obtained using PDP and ALE (see Section 5.1.1). We can see how the influences 

estimated by LIME are less volatile than those of SHAP. The volatility observed in the 

SHAP explanations could be explained, at least partially, by the estimation error (see 

Section 5.2.2), but it could also be the result of the explanations’ greater dependence 

21 We have used the average AUC between training epochs 100 and 300 in order to stabilise the measure, as in 
most cases the decrease in the AUC is small and can be masked by the randomness of the AUC on a fixed 
epoch.

IMPORTANCE OF THE FEATURES
Table 6

SOURCE: Devised by the author.

Feature
Information

value
Marginal

contribution
Lime score SHAP Score

714.4943.0662.0851.0egA

159.0792.0701.0121.0htrib fo yrtnuoC

178.0001.0171.0411.0tnuoma laretalloC

684.3532.0606.0113.0ytivitca cimonocE

170.3204.0652.0511.0redneG

522.1421.0240.0451.0tnuoma lapicnirp laitinI

444.1343.0030.0330.0noitanigiro naoL

356.3542.0574.0714.0esoprup naoL

817.0516.4422.1309.0sutats naoL

100.0100.0330.0300.0sredloh fo rebmuN

457.2641.0033.0011.0ytirutam lanigirO

Personal guarantee coverage 0.034 0.031 0.123 0.591

866.0850.0860.0440.0epyt eetnaraug lanosreP

458.6980.5170.7403.1tluafed suoiverP

737.3082.0252.0060.0ecnivorP

019.2155.0433.0801.0egarevoc eetnaraug laeR
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584.0101.0940.0510.0epyt tnediseR
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on the values of the other features (two observations with the same value for the 

feature Age, having different explanations and different contributions for this feature).

The plot in Chart 15 shows the contribution of the feature Resident type to the model 

estimated by LIME and by SHAP depending on the value of the feature. For this 

feature, we can see that there is an alignment between both methods and the PDP. 

In this case, the explanation of LIME shows greater volatility.

6 Conclusions

The interpretability techniques analysed are useful for gaining an insight into the 

model, and the explanations provided by the different techniques are, in general, 

compatible with each other. However, the explanations obtained require a careful 

assessment and, in some cases, may not lead to a complete understanding. 

Specifically, aggregating the information obtained from the different techniques, and 

obtaining a sufficient understanding of the theoretical basis of the tools, are by no 

means trivial tasks and can be laborious. 

DISPERSION OF LIME AND SHAP EFFECTS
Chart 14

SOURCE: Devised by the author.

DISPERSION OF LIME AND SHAP EFFECTS
Chart 15

SOURCE: Devised by the author.
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Influence plots provide plausible and robust explanations for some features, but 

they do not work well in all cases. For some features the ICE shows different model 

behaviours depending on the observation, which can make the information provided 

by PDP hard to interpret. Also, in some cases there are deviations between the 

influence revealed by these plots and the actual average predictions, and it is not 

clear what the implications of this divergence are or how to determine its cause.

The LIME and SHAP methods seem useful for delivering local explanations, though 

both methods also have their limitations. The most relevant are the sensitivity of 

LIME to the choice of parameters and the fact that SHAP has failed to capture the 

influence of a very relevant feature according to other measures. Also, the local 

explanations obtained with these two methods can differ significantly in some cases.

It is our understanding that there are certain aspects of our dataset that adversely 

affect the performance of the interpretability tools:

 — A large proportion of categorical features, which makes it harder to define 

the vicinity of an observation.

 — A strong dependency between the features, which contravenes the 

independence assumption on which some of these methods rely.

 — A non-negligible amount of missing values in some of the features.

It is important to note that these characteristics are usually present, to a greater or 

lesser extent, in credit datasets, and caution should therefore be taken when using 

these tools on credit scoring models.

It is also worth pointing out that the work has been greatly facilitated by the open-

source libraries available, some of which have been implemented and released by 

the authors of the methods themselves. Nevertheless, newcomers should be aware 

that some of these libraries are still being developed and complete documentation 

may not be available, and they can therefore be laborious to use.

This work should be complemented with other studies to determine how dependent 

the results drawn here are on the specificities of the dataset, the selection of the 

features and the choice of the model. It would also be interesting to extend the 

analysis to other techniques, considering other model-agnostic tools as well as 

model-specific ones.
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Appendix 1 Details of the implementation

1 Dataset

The features used in the model are the following:

 — Real guarantee coverage: The extent of funded credit protection.

 — Personal guarantee type: The type of unfunded credit protection.

 — Personal guarantee coverage: The extent of unfunded credit protection.

 — Loan origination: How the loan was originated.

 — Loan purpose: The type of residential asset financed by the loan.

 — Loan status: Indicates if the payments are up to date.

 — Province: The province where the residential asset financed by the loan is 

located.

 — Previous default: Indicates if there has been a previous default in the 

previous 2 years.

 — Initial principal amount: The initial principal amount of the loan.

 — Remaining principal amount: The remaining principal amount of the loan.

 — Collateral amount: The value of the collateral.

 — Initial maturity: The maturity of the loan at origination.

 — Remaining maturity: The remaining maturity of the loan.

 — Number of holders: The number of holders of the loan.

 — Resident type: The residential status of the debtor.

 — Economic activity: The economic sector of the debtor.

 — Age: The age of the debtor.

 — Country of birth: The country where the debtor was born.

 — Gender: The gender of the debtor.
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There are two aspects concerning this dataset worth highlighting with respect to 

their potential impact on the interpretability techniques. First, of the 19 features 

used, 7 are numerical and 12 are categorical (of which 4 are binary). Second, some 

of these features have a strong dependency between them. This can be seen in 

Table A1.1, which displays the Pearson’s correlation matrix (on the numerical variables 

and the binary variables), and in Chart A1.1, which shows the joint distribution of the 

two most correlated features, Initial principal amount and Remaining principal 

amount.

PEARSON'S RANK CORRELATION BETWEEN THE FEATURES
Table A1.1

SOURCE: Devised by the author.

Real
guarantee
coverage

Previous
default

Remaining
principal
amount

Initial
principal
amount

Remaining
maturity

Initial
maturity

Number of 
holders

Collateral
amount

Loan
status

Age
Country of 

birth

Real guarantee coverage 100.0 5.8 1.0 1.1 -1.4 0.7 -2.3 -0.6 -5.0 -4.9 -0.5 

Previous default 5.8 100.0 0.7 0.4 0.3 1.3 -0.2 -0.3 16.8 6.1 -6.6

Remaining principal 
amount 1.0 0.7 100.0 87.1 7.8 2.5 0.4 47.2 2.3 11.8 -12.9 

Initial principal amount 1.1 0.4 87.1 100.0 0.4 -1.5 0.5 46.3 1.9 15.8 -15.0 

Remaining maturity -1.4 0.3 7.8 0.4 100.0 83.5 0.1 -2.1 6.2 -39.4 15.2

Initial maturity 0.7 1.3 2.5 -1.5 83.5 100.0 -0.2 -3.4 4.2 -40.6 23.3

Number of holders -2.3 -0.2 0.4 0.5 0.1 -0.2 100.0 0.0 1.0 0.3 -2.8 

Collateral amount -0.6 -0.3 47.2 46.3 -2.1 -3.4 0.0 100.0 1.2 11.3 -9.0 

Loan status -5.0 16.8 2.3 1.9 6.2 4.2 1.0 1.2 100.0 8.4 -7.0

9.66-0.0014.83.113.06.04-4.93-8.518.111 .6 9.4-egA

Country of birth -0.5 -6.6 -12.9 -15.0 15.2 23.3 -2.8 -9.0 -7.0 -66.9 100.0

%

JOINT DISTRIBUTION OF INITIAL PRINCIPAL AMOUNT AND REMAINING PRINCIPAL AMOUNT
Chart A1.1

SOURCE: Devised by the author.
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2 Data pre-processing

Categorical features are represented using one-hot-vector encodings. Provinces 

have been grouped by autonomous communities and, for the rest of the categorical 

features, categories containing less than 1% of the observations have been grouped 

together. In order to prevent numerical instabilities in the training of the model, the 

values of the numerical features have been truncated at their 0.01% and 99.99% 

percentiles. All the features have been normalized to facilitate the training process.

3 Structure of the model

The model is a feedforward fully-connected neural network with no leaping 

connections. The activation function is the ReLu in the hidden layers and the sigmoid 

in the output. The model has been trained using weights to address class imbalance 

and with drop-out regularization. The hyperparameters used are:

 — Number of hidden layers: 2.

 — Number of neurons per layer: 128.

 — Drop-out rate: 0.4.

 — Optimizer: ADAM.

 — Learning rate: 1e-2.

 — Batch size: 2048.

VALIDATION SAMPLE AUC AT EACH TRAINING EPOCH
Chart A1.2

SOURCE: Devised by the author.
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The values of the hyperparameters have been chosen by minimizing the error in the 

validation sample, taking a sample split of 80% for training and 20% for validation. 

We trained the model for 300 epochs, where the performance of the model, measured 

using the AUC, stabilizes (see Chart A1.2).

4 Software and hardware used

The model, accuracy metrics and interpretability tools have been implemented in 

python using the libraries Tensorflow 2.5.0, Keras 2.5.0, Numpy 1.19.2, Sklearn 

0.24.1, Matplotlib 3.4.2, Shap 0.39.0, Lime 0.2.0.0 and Alibi 0.6.0.

All the computations have been carried out on a laptop with an Intel Core i5-10210U 

processor, 16 GB of RAM and no GPU or TPU.
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