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Abstract

We propose a regression-based approach to estimate how individuals’ expectations 

influence their responses to a counterfactual change. We provide conditions under 

which average partial effects based on regression estimates recover structural effects. 

We propose a practical three-step estimation method that relies on subjective beliefs 

data. We illustrate our approach in a model of consumption and saving, focusing on the 

impact of an income tax that not only changes current income but also affects beliefs 

about future income. Applying our approach to Italian survey data, we find that individuals’ 

beliefs matter for evaluating the impact of tax policies on consumption decisions. 

Keywords: dynamics, subjective expectations, beliefs, semi-structural estimation. 

JEL classification: C10, C50. 



Resumen

En este documento proponemos un enfoque basado en regresiones para estimar cómo 

las expectativas de los individuos influyen en sus respuestas a un cambio contrafactual. 

Proporcionamos condiciones bajo las cuales los efectos parciales promedio estimados 

sobre la base de regresiones recuperan los efectos estructurales. Proponemos un 

método práctico de estimación en tres pasos que utiliza datos de expectativas subjetivas. 

Ilustramos nuestro enfoque con un modelo de consumo y ahorro, centrándonos en el 

impacto de un impuesto sobre la renta que no solo cambia los ingresos actuales, sino 

que también afecta a las expectativas de ingresos futuros. Aplicando nuestro enfoque a 

Italia, encontramos que las expectativas de los individuos son importantes para evaluar 

el impacto de las políticas fiscales en las decisiones de consumo. 

Palabras clave: dinámicas, expectativas subjetivas, creencias, estimación semiestructural.

Códigos JEL:  C10, C50.



BANCO DE ESPAÑA 7 DOCUMENTO DE TRABAJO N.º 2405

1 Introduction

Economists often seek to assess how changes in the economic environment affect individual

decisions. A leading example is the ex ante evaluation of policies that have not yet taken place.

However, a key challenge is that, when the environment changes, individual decision rules are

generally affected as well. In dynamic settings characterized by uncertainty, it is necessary to

consider not only the immediate effect of the change but also its influence on expectations.

A common approach in applied work is to regress outcomes on covariates that one is inter-

ested in shifting in the counterfactual (e.g., under a new policy). Average partial effects based

on regression estimates can be structurally interpreted as counterfactual policy effects under

suitable conditions (Stock, 1989). However, underlying this interpretation is the assumption

that the regression function remains invariant in the counterfactual. This invariance assumption

can be restrictive in many settings where individuals’ beliefs about the future matter.

Consider the introduction of a permanent income tax in a standard model of consumption

and saving (see Deaton, 1992, for a textbook treatment). The effect of the tax can be estimated

by regressing consumption on income (in logs), and by then computing an average partial effect

associated with the tax change. However, such an effect is likely to be empirically misleading,

since both current income and beliefs about future income will be affected by the tax. Not

accounting for the change in beliefs will produce biased predictions of the effect of the tax, as

emphasized by Lucas (1976) in his influential critique.

As a second example, consider the effect of a change in the weather process in a model of

agricultural production. Suppose that farmers choose dynamic inputs (such as irrigation or a

fertilizer) based on their forecasts of future weather. In addition to affecting contemporaneous

weather conditions, a change in the weather process will affect farmers’ beliefs about future

weather, which may lead them to modify their input choices. Not accounting for farmers’

adaptation will bias calculations of the impact of a change in the weather process (Deschênes

and Greenstone, 2007, Burke and Emerick, 2016).

In this paper, our aim is to study and estimate average partial effects in an analysis that

explicitly accounts for the role of individual expectations. In our setup, individual beliefs are

determinants of decisions, and they enter as additional state variables in the agent’s decision

problem. In this setting, we show how to assess the total effect of a counterfactual change by

means of average partial effects calculations. In addition, we show how to decompose this total

effect into a contemporaneous effect where beliefs are held fixed, and a purely dynamic effect

that solely reflects the change in beliefs.

2

To implement this approach we rely on data on subjective expectations. Beliefs data are

increasingly available in a variety of settings (Manski, 2004). Given estimates of subjective

densities based on such survey responses, we account for those in the definition and estimation of

average partial effects. There are many examples of the use of beliefs data on the right-hand side

of a regression. Our contribution is to show how to interpret the estimates of such regressions,

and to provide conditions under which those can be used for counterfactual prediction.

To interpret regression-based average partial effects, we propose a structural dynamic frame-

work where agents choose actions based on their beliefs about the future. Following a semi-

structural approach, we use the framework to justify the use of average partial effects, yet

we do not specify or estimate a structural model. As a result, the counterfactuals we focus

on are restricted to changes in covariates and beliefs, and our approach cannot answer other

counterfactual questions related to changes in preferences or technology, for example.

In the structural framework that we outline, beliefs are time-varying state variables in the

agent’s decision problem. Variation in beliefs over time is crucial, since it allows us to control

for preference heterogeneity, which we assume to be constant over time, by including individual

fixed effects. We assume that current beliefs provide sufficient information to predict future

beliefs, an assumption that we refer to as “belief sufficiency”. We show this assumption is com-

patible with various popular models of belief formation, with and without rational expectations,

including various forms of learning.

The structural framework implies that the agent’s decision rule is a function of exogenous

state variables such as income or the weather, beliefs about them, and endogenous dynamic

state variables such as assets or capital. We assess the effects of a change in the exogenous

state variables by computing average partial effects which, unlike in the static case, account for

changes in beliefs. Such effects correspond to well-defined structural counterfactuals under the

assumption that the dynamic decision rule is invariant to the change. Hence, while we rely on

a weaker type of invariance assumption than standard average partial effects that do not allow

for belief responses, a certain form of invariance is still needed to structurally interpret average

partial effects in our setup.

To estimate average partial effects, we proceed in three easy-to-implement steps. In the

first step, we estimate the belief densities. To account for the fact that survey responses on

subjective beliefs tend to be coarse, we assume that belief densities depend on a low-dimensional

parameter vector. However, we also describe semi- and nonparametric extensions that can be

implemented with rich beliefs data. In the second step, we estimate the regression function

(i.e., the individual’s decision rule). In the third step, we use these estimates to compute
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the impact of a change in the covariates (i.e., of a change in the state variables). Without

additional assumptions, nonparametric identification is limited to the empirical support of the

conditioning covariates.

As an empirical illustration, we study how consumption decisions depend on current income

and beliefs about future income. We rely on Italian data from the Survey on Household Income

and Wealth (SHIW), which contain information on respondents’ probabilistic income expecta-

tions. We then use our approach to predict the impact of various counterfactual income taxes,

involving transitory or permanent increases in marginal tax rates, and a change in the degree

of progressivity of the tax. We find that, conditional on current income, income beliefs shape

consumption responses, and that they matter for predicting the effects of income taxes.

Related literature and outline. Subjective belief data are commonly included on the right-

hand side of regressions. For example, Guiso and Parigi (1999) study how a firm’s investment

depends on its beliefs about future demand; Hurd, Smith, and Zissimopoulos (2004) study

the effects of subjective survival probabilities on decisions about retirement and social security

claims; Dominitz and Manski (2007) analyze how beliefs about equity returns affect portfolio

choice; Bover (2015) studies how subjective expectations about future home prices affect car

and secondary home purchases; and Attanasio, Cunha, and Jervis (2019) study how parental

investment in children is influenced by beliefs about the production function. We provide

assumptions under which such regressions can be interpreted structurally and used for coun-

terfactuals. A different line of research considers (state-contingent) subjective expectations as

dependent variables (Arcidiacono, Hotz, Maurel, and Romano, 2020, Giustinelli and Shapiro,

2019).

Our focus on the estimation of policy effects without a full structural model follows Marschak

(1953), Ichimura and Taber (2000, 2002), and Keane and Wolpin (2002a,b), among others; see

also Wolpin (2013). In our approach, we rely on subjective belief data and do not assume

rational expectations.

There is a growing literature on the combination of structural models and subjective beliefs

data, see among others Van der Klaauw and Wolpin (2008), Delavande (2008), Van der Klaauw

(2012), Stinebrickner and Stinebrickner (2014), Wiswall and Zafar (2015), and Koşar and O’Dea

(2022); see also the recently released handbook on economic expectations (Bachmann, Topa,

and van der Klaauw, 2022). Our approach, which is tailored to specific counterfactuals, does

not require to specify a full structural model.

Lastly, elicited beliefs about future income are increasingly available. Surveys with this

4
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information include the SHIW in Italy, the Survey of Economic Expectations and the Survey of

Consumer Expectations in the US, the Survey of Household Finances in Spain, and the Copen-

hagen Life Panel in Denmark, among others. Previous contributions using income belief data

include, among others, Pistaferri (2001), Guiso, Jappelli, and Pistaferri (2002), and Kaufmann

and Pistaferri (2009), who use data on income expectations in the SHIW in combination with

models of consumption and saving; Stoltenberg and Uhlendorff (2022), who estimate a struc-

tural model with subjective income expectations using the same data; Lee and Sæverud (2023),

who use data on subjective expectations and earnings realizations in Denmark to estimate a

model where agents have partial information about earnings shocks; and Attanasio, Kovacs,

and Molnar (2020), who combine data on subjective expectations with data on actual income

and estimate an Euler equation for consumption.

The outline is as follows. In Section 2 we introduce average partial effects for dynamic

settings. In Section 3 we describe a structural framework and discuss the interpretation of

average partial effects in this context. We present two examples in Section 4. We study

identification and estimation in Section 5, and we present our consumption application in

Section 6. Finally, in Section 7 we describe some extensions of the approach. Replication files

are available online.

2 Average partial effects when tomorrow matters

Consider an individual outcome yit that depends on some covariates xit and zit. Suppose that,

for some function gi,

yit � gi�xit, zit� � εit, (1)

where εit has zero mean given xit and zit. To fix ideas, we will refer to the case where yit denotes

consumption, xit is income, and zit includes other determinants such as assets.

Consider an exogenous change in xit, from xit � x to some other value xit � x�δ�. For

example, if one is interested in a mean shift of (log) income by a δ amount, corresponding

to a proportional tax or subsidy, one will set x�δ� � x � δ. A standard average partial effect

associated with the change in xit is then

∆APE
i �δ, x, z� � gi�x

�δ�, z� � gi�x, z�, (2)

possibly averaged across individual observations. By estimating quantities such as ∆APE
i , one

can document how individual responses vary across individuals and values of x and z.
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(2022); see also the recently released handbook on economic expectations (Bachmann, Topa,

and van der Klaauw, 2022). Our approach, which is tailored to specific counterfactuals, does

not require to specify a full structural model.

Lastly, elicited beliefs about future income are increasingly available. Surveys with this

4



BANCO DE ESPAÑA 10 DOCUMENTO DE TRABAJO N.º 2405

information include the SHIW in Italy, the Survey of Economic Expectations and the Survey of

Consumer Expectations in the US, the Survey of Household Finances in Spain, and the Copen-

hagen Life Panel in Denmark, among others. Previous contributions using income belief data

include, among others, Pistaferri (2001), Guiso, Jappelli, and Pistaferri (2002), and Kaufmann

and Pistaferri (2009), who use data on income expectations in the SHIW in combination with

models of consumption and saving; Stoltenberg and Uhlendorff (2022), who estimate a struc-

tural model with subjective income expectations using the same data; Lee and Sæverud (2023),

who use data on subjective expectations and earnings realizations in Denmark to estimate a

model where agents have partial information about earnings shocks; and Attanasio, Kovacs,

and Molnar (2020), who combine data on subjective expectations with data on actual income

and estimate an Euler equation for consumption.

The outline is as follows. In Section 2 we introduce average partial effects for dynamic

settings. In Section 3 we describe a structural framework and discuss the interpretation of

average partial effects in this context. We present two examples in Section 4. We study

identification and estimation in Section 5, and we present our consumption application in

Section 6. Finally, in Section 7 we describe some extensions of the approach. Replication files

are available online.

2 Average partial effects when tomorrow matters

Consider an individual outcome yit that depends on some covariates xit and zit. Suppose that,

for some function gi,

yit � gi�xit, zit� � εit, (1)

where εit has zero mean given xit and zit. To fix ideas, we will refer to the case where yit denotes

consumption, xit is income, and zit includes other determinants such as assets.

Consider an exogenous change in xit, from xit � x to some other value xit � x�δ�. For

example, if one is interested in a mean shift of (log) income by a δ amount, corresponding

to a proportional tax or subsidy, one will set x�δ� � x � δ. A standard average partial effect

associated with the change in xit is then

∆APE
i �δ, x, z� � gi�x

�δ�, z� � gi�x, z�, (2)

possibly averaged across individual observations. By estimating quantities such as ∆APE
i , one

can document how individual responses vary across individuals and values of x and z.

5

However, to interpret ∆APE
i as the impact on outcomes when xit changes from x to x�δ�, one

needs to assume that, as xit changes while zit is kept constant, the function gi remains constant

(Stock, 1989). This invariance assumption is often implausible in applications where dynamics

matter. Indeed, in many settings where the current value of xit changes, beliefs about future

xit’s, which are implicitly contained in the function gi, are likely to change as well. For example,

under a (permanent) income tax, both current income and beliefs about future income change.

Our approach to alleviate this well-known issue is to augment (1) by including beliefs about

future xit values as additional determinants of yit. Letting πit denote the subjective density of

xi,t�1 at time t, we postulate that, for some function ϕi,

yit � ϕi�xit, πit, zit� � εit, (3)

where εit has zero mean given xit, πit and zit. In the consumption example, this amounts to

including income beliefs as additional determinants of the consumption function.

In model (3), we will be interested in documenting the effects of a change from xit � x

to xit � x�δ�, associated with a change in beliefs from πit � π to πit � π�δ�. As an example,

consider again the effect of shifting current (log) income xit by a δ amount. In this case, π�δ� is

the belief about future income xi,t�1 under the δ mean shift. The tax has two distinct effects

on outcomes: a contemporaneous effect associated with the change in xit, and a dynamic effect

associated with the change in beliefs πit.

In this setup, we define the total average partial effect, or TAPE, as

∆TAPE
i �δ, x, π, z� � ϕi�x

�δ�, π�δ�, z� � ϕi�x, π, z�. (4)

We then further decompose this total effect as the sum of two terms: a contemporaneous APE

(or CAPE), where beliefs are held constant, and a dynamic APE (or DAPE), which solely

captures the change in beliefs. Formally, we decompose

∆TAPE
i �δ, x, π, z� � ϕi�x

�δ�, π, z� � ϕi�x, π, z�
�������������������������������

�∆CAPE
i �δ,x,π,z�

� ϕi�x
�δ�, π�δ�, z� � ϕi�x

�δ�, π, z�
���������������������������������������

�∆DAPE
i �δ,x,π,z�

. (5)

To interpret ∆TAPE
i as the impact on outcomes when xit changes from x to x�δ� and πit

changes from π to π�δ�, one needs to assume that the function ϕi remains invariant in the

counterfactual. Although this assumption is not without loss of generality (and we will discuss

it in the context of a structural framework in the next section), it is weaker than the assumption

that gi in (1) is invariant to the change. The key difference is that, unlike (1), (3) explicitly

accounts for variation in beliefs.
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i �δ,x,π,z�

� ϕi�x
�δ�, π�δ�, z� � ϕi�x

�δ�, π, z�
���������������������������������������

�∆DAPE
i �δ,x,π,z�

. (5)

To interpret ∆TAPE
i as the impact on outcomes when xit changes from x to x�δ� and πit

changes from π to π�δ�, one needs to assume that the function ϕi remains invariant in the

counterfactual. Although this assumption is not without loss of generality (and we will discuss

it in the context of a structural framework in the next section), it is weaker than the assumption

that gi in (1) is invariant to the change. The key difference is that, unlike (1), (3) explicitly

accounts for variation in beliefs.

6
In the next section we will describe a class of structural models under which (3) is the

individual’s optimal decision rule in an intertemporal economic model. This will allow us to

transparently discuss the assumptions needed to structurally interpret the above average partial

effects (TAPE, CAPE and DAPE).

The structural framework has two main features. First, πit is sufficient to predict future

beliefs πi,t�1, as formally defined in Assumption 2 in the next section. This implies that xit,

πit, and zit are the state variables in the economic model (in addition to some shocks subsumed

in εit). This belief sufficiency assumption imposes restrictions on the belief formation process,

however we show it is satisfied in several popular models of beliefs. Second, in the structural

model ϕi depends on preferences, discounting, the law of motion of zit, and the law of motion

of the beliefs πit. To guarantee the invariance of ϕi, one will need to assume that none of these

quantities varies under the policy change.

Assuming that the law of motion of the beliefs, which we denote as ρi, is invariant requires

that, while agents account for the impact of the change on their beliefs about xi,t�1, the way they

update their beliefs after period t� 1 is unaffected. Under this assumption, ρi is an individual

“type” that is invariant to the change. We will see that this assumption is automatically

satisfied in a popular version of the consumption example.1

Finally, note that, when beliefs matter in (3), an approach based on (1) is incorrect for two

reasons. The first one is that beliefs πit, which are generally correlated with xit, are omitted

variables in (1). Hence, not controlling for πit gives incorrect estimates of the contemporaneous

APE. The second one is that relying on (1) makes it impossible to estimate the total APE,

and to decompose it into contemporaneous and dynamic APEs. Hence, when (3) holds, ∆APE
i

defined in equation (2) is not economically interpretable in general.

3 Structural interpretation

In this section we describe a structural dynamic framework where individual decision rules take

the form (3), and we provide a structural interpretation for average partial effects.

1Relaxing this assumption is conceptually straightforward in our framework, by defining πit in (3) as beliefs

about a sequence of future x’s, xi,t�1, xi,t�2, ..., xi,t�S . However, doing so imposes stronger demands on the

data. We will return to this point in Section 7.
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3.1 Economic environment

Consider an individual i’s intertemporal decision making process in discrete time. In the pre-

sentation we focus on a stationary infinite-horizon environment. However, in Remark 1 we will

show how to apply the framework to finite-horizon environments.

The timing is as follows. At the end of period t�1, the individual’s information includes the

history of exogenous state variables xi,t�1, xi,t�2, ..., endogenous state variables zi,t�1, zi,t�2, ...,

actions yi,t�1, yi,t�2, ..., and shocks νi,t�1, νi,t�2, .... In addition, the individual may have observed

other information, such as signals, that are relevant to her beliefs and future actions.

Then, at the beginning of period t, zit, xit and νit are realized and observed by the individual,

and additional signals about future values xi,t�1 may be observed as well. We denote the

information set at that moment as Ωit. Given this information, the individual forms beliefs

about xi,t�1. Finally, she chooses the action yit based on the state variables in Ωit.

We make the following assumption regarding beliefs, where we use A � B to denote that

A and B follow the same distribution, and densities are defined with respect to appropriate

measures.

Assumption 1. (beliefs)

�xi,t�1 
 yit,Ωit� � �xi,t�1 
Ωit� .

We denote the corresponding conditional density as πit�xi,t�1�.

Assumption 1 requires that beliefs about xi,t�1, which are relevant to the choice of yit, do

not depend on yit. In other words, beliefs are not contingent on actions. At the same time,

Assumption 1 allows past choices yi,t�1, yi,t�2, ... to influence current beliefs πit. We will outline

a generalization where agents have state-contingent beliefs in Section 7. The framework is

unchanged in this case, except for the fact that πit then consists of a set of conditional densities

indexed by action values y.

In Assumption 1, πit is the subjective density of xi,t�1, which we will refer to as the belief

density, or simply beliefs. πit is included in Ωit, and is a random function. Note that we do not

impose a rational expectations assumption, so perceived and realized laws of motion may not

coincide. This is an important point since we will show that, when subjective expectations data

are available, it is not necessary to impose rational expectations in order to estimate decision

rules.

We make the following assumption regarding belief updating.

Assumption 2. (belief sufficiency)

�πi,t�1 
 xi,t�1, yit,Ωit� � �πi,t�1 
 xi,t�1, yit, πit, xit, νit� .
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We denote the corresponding conditional density as ρi�πi,t�1; xi,t�1, yit, πit, xit, νit�.

We will refer to ρi as the belief updating rule. Belief sufficiency, as stated by Assumption

2, is a key condition in our framework. It requires that current beliefs πit, along with xit and

νit, be sufficient statistics for Ωit when predicting future beliefs.2 Assumption 2 allows future

beliefs πi,t�1 to depend on actions yit. However, a special case of the assumption is

�πi,t�1 
 xi,t�1, yit,Ωit� � �πi,t�1 
 xi,t�1, πit, xit� , (6)

which implies that πit is an exogenous process. We will assume (6) in our illustration to

consumption and income.

We make the following assumption regarding the endogenous state variables zit.

Assumption 3. (endogenous state variables)

zi,t�1 � γi�zit, xit, yit�,

where γi is a non-stochastic function.

Assumption 3 can be generalized in various ways without affecting the rest of the framework.

For example, zit might depend on beliefs πi,t�1, or on an idiosyncratic i.i.d. shock whose

distribution is known to the agent.

Lastly, we make the following assumption regarding the shocks νit.

Assumption 4. (shocks)

�νi,t�1 
 xi,t�1, πi,t�1, yit,Ωit� � νi,t�1.

We denote the corresponding density as τ i�νi,t�1�.

3.2 Compatibility with belief formation models

We now illustrate that our belief sufficiency condition, Assumption 2, is consistent with several

models of belief formation in economics, see Pesaran and Weale (2006) for references.

As a first example, suppose that agents have rational expectations, and that agent i’s

information set at time t is Ωit � �xit, xi,t�1, ..., ηit, ηi,t�1, ...�, where xit � ηit � εit, ηit is

homogeneous first-order Markov, and εit is independent of ηit with a stationary distribution.

2The framework is unchanged if, in addition, πi,t�1 depends on zit, in which case the belief updating rule is

ρi�πi,t�1;xi,t�1, yit, πit, xit, zit, νit�.
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An example is a permanent-transitory specification of the income process, which we will study

in our consumption example. Since πit is the conditional density of xi,t�1 given Ωit, it coincides

with the conditional density of xi,t�1 given ηit. Given that ηit is an exogenous first-order Markov

process, Assumption 2 is thus satisfied. However, it generally fails if ηit is not first-order Markov.

As a second example, suppose that xit � αi�εit, yet agents do not know αi and try to learn

it given the observations xit. We show in Appendix A that, when εit is Gaussian and Bayesian

agents have Gaussian priors about αi and rational expectations, belief sufficiency, as stated by

Assumption 2, holds. Note that this example does not allow for learning from past choices,

since beliefs are exogenous.

As a third example, consider a case where there are two possible choices yit � 1 and yit � 0.

Suppose that the agent observes xit � αi� εit no matter what action she chooses, and that she

observes an additional signal sit � αi�vit only when choosing yi,t�1 � 1. We show in Appendix

A that, when �εit, vit� is Gaussian and agents have rational expectations and a Gaussian prior

about αi, Assumption 2 is satisfied. In this example, beliefs are endogenous, affected by past

choices.3

Our setup is also compatible with some models of non-rational expectations. As a fourth

example, consider a simple model of adaptive expectations, where mean beliefs evolve as

Eπit
�xi,t�1� � Eπi,t�1

�xit� � λi

�

xit � Eπi,t�1
�xit�

�

. (7)

Armona, Fuster, and Zafar (2019) refer to individuals with λi  0 as “extrapolators”, to those

with λi � 0 as “non-updators”, and to those with λi � 0 as “mean reverters”. Assumption 2 is

satisfied if (7) holds, and, say, beliefs are normally distributed with constant variance σ2
i . More

generally, Assumption 2 is consistent with models of adaptive expectations where the entire

belief density πit depends on πi,t�1 and xit.

This discussion provides several examples of belief formation models where belief sufficiency,

as stated by Assumption 2, holds. Under this assumption, along with Assumptions 1, 3 and 4,

the vector �xit, πit, zit, νit� contains all the relevant state variables when making the decision.

An advantage of our approach is that, since beliefs πit are state variables, we can perform

counterfactual exercises that account for changes in beliefs without the need for a full-fledged

structural model.

3However, beliefs are not state-contingent in this example, and Assumption 1 holds. We will show in Section

7 that our framework can be extended to allow for state-contingent beliefs, and we will provide a learning model

as an illustration.
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3.3 Decisions and policy rule

Let ui�yit, xit, zit, νit� denote period t’s contemporaneous payoffs.4 Here the action may be

continuous or discrete, so our framework covers structural dynamic discrete choice models as

well as models with continuous choices. It also covers settings with vector-valued actions,

including mixed discrete-continuous choices (e.g., Bruneel-Zupanc, 2022). Let βi denote the

time discount factor. The individual solves the infinite horizon program

�yi,1, yi,2, ...� � max
�y1,y2,...�

E

�

�

�

t�1

βt�1
i ui �yt, xit, zit, νit�

�

,

where, by Assumptions 1, 2, 3, and 4, the expectation is taken with respect to the process of

xit, πit, zit, νit.

Let Vi�x, π, z, ν� denote the value function associated with any given state �x, π, z, ν�. Bell-

man’s principle then implies5

Vi�xt, πt, zt, νt� � max
yt

�

ui�yt, xt, zt, νt�

� βi

�

Vi�xt�1, πt�1, γi�zt, xt, yt�, νt�1�πt�xt�1�ρi�πt�1; xt�1, yt, πt, xt, νt�τ i�νt�1�dxt�1dπt�1dνt�1

�

.

(8)

The implied policy rule for actions is then, under suitable regularity conditions (e.g., Stokey,

Lucas, and Prescott, 1989),

yit � ϕ �xit, πit, zit, νit, ρi, ui, βi, γi, τ i� , (9)

for some function ϕ. Then, let

ϕi �xit, πit, zit� �

�

ϕ �xit, πit, zit, νit, ρi, ui, βi, γi, τ i� τ i�νit�dνit

denote the average decision rule with respect to the shocks νit. It follows from Assumption 4

that6

ϕi �xit, πit, zit� � E �ϕ �xit, πit, zit, νit, ρi, ui, βi, γi, τ i� 
 xit, πit, zit� .

4Here πit are not payoff-relevant. However, the nonparametric decision rule below will remain the same if

payoffs ui�yit, xit, πit, zit, νit� depend on πit.
5Here the integral in �xt�1, πt�1, νt�1� is taken relative to an appropriate measure.
6We treat ρi, ui, βi, γi, τ i as non-random quantities.
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4Here πit are not payoff-relevant. However, the nonparametric decision rule below will remain the same if
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5Here the integral in �xt�1, πt�1, νt�1� is taken relative to an appropriate measure.
6We treat ρi, ui, βi, γi, τ i as non-random quantities.
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Hence, (3) holds for εit � yit � ϕi �xit, πit, zit�, which has zero mean given xit, πit, zit. In this

framework, ϕi in (3) can thus be interpreted as the individual’s decision rule averaged over the

shocks νit.
7

Remark 1. (Finite horizon)

In a finite horizon environment where t � �1, ..., Ti�, the Bellman equation (8) becomes, for

t � Ti and some terminal value Vi,Ti
,

Vit�xt, πt, zt, νt��max
yt

�

ui�yt, xt, zt, νt�

�βi

�

Vi,t�1�xt�1, πt�1, γit�zt, xt, yt�, νt�1�πt�xt�1�ρit�πt�1; xt�1, yt, πt, xt, νt�τ i�νt�1�dxt�1dπt�1dνt�1

�

.

Here, differently from the infinite-horizon setup, the transitions ρit between πit and πi,t�1 are

time-specific, and zi,t�1 � γit�zit, xit, yit�. In this case, actions take the form

yit � ϕit �xit, πit, zit� � εit,

where the dependence of ϕ on �i, t� stems from the presence of ui, βi, τ i, the terminal value

Vi,Ti
, and the ρis and γis in all periods s � t. A difference with the infinite-horizon case is that,

since ϕit is time-varying, it is no longer possible to identify individual responses while leaving

the individual heterogeneity fully unrestricted.

3.4 Interpreting average partial effects

Structurally interpreting an average partial effect as the effect of a counterfactual change re-

quires ϕi to remain invariant in the counterfactual. We now discuss this invariance condition.

Keeping ui and βi constant requires assuming that ui (such as preferences) and βi (discount-

ing) are invariant to changes in the environment. This is a common assumption in dynamic

structural models. Invariance of the density of taste shocks τ i is also commonly assumed. In

turn, keeping γi constant requires assuming that the process through which past actions and

states feed back onto future zit values is invariant in the counterfactual. When zit is a stock

that depreciates over time or an asset with some return, for example, this requires assuming

away the presence of general equilibrium effects through which the return or the depreciation

rate might change in the counterfactual.

7It is straightforward to include additional state variables in (9), under the assumption that beliefs about

them are constant and invariant to counterfactual changes. Accounting for additional state variables can be

empirically relevant, and we will include a number of such variables as controls in our application.
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In addition, as our framework makes clear, structurally interpreting average partial effects

generally requires assuming that the belief updating rule ρi remains constant in the counter-

factual. A change in ρi corresponds to a steady-state or “long-run” counterfactual where the

entire process of xit, as perceived by the agent, changes. In our setup, we allow for policies or

other counterfactuals to affect beliefs πit, yet we assume that the belief updating rule ρi is an

individual characteristic that remains unaffected. In Section 7 we will describe how to extend

the approach to account for beliefs over longer horizons, hence making the invariance assump-

tion about ρi less restrictive. Our focus on counterfactuals involving changes in xit and πit,

while ρi is kept constant, can be viewed as an intermediate case between a static counterfactual

where only xit varies, and a long-run, steady-state counterfactual where the entire long-run

belief process, including the belief updating rule ρi, is allowed to vary.8

4 Examples

In this section, we describe two examples of our framework. In the first one, we consider a

model of consumption, savings, and income, with the aim to assess the effects on consumption

of a change in the income process. In the second example, we outline a model of agricultural

production that allows farmers to adapt to new climate, with the goal to estimate the effects

of current and expected weather.

4.1 Consumption, saving, and income

In the first example, we consider a standard incomplete markets model of consumption and

saving behavior. For simplicity, we focus on infinite-horizon environment, as in Chamberlain

and Wilson (2000), although the analysis can easily be adapted to a life-cycle environment.

In the model, yit is household i’s log consumption in period t, and household utility over

consumption is ui�yit, νit�, where ui is an increasing utility function and νit are i.i.d. taste

shocks with density τ i. Household i’s discount factor is βi. Log income xit and beliefs πit about

xi,t�1 are exogenous, and Assumptions 1 and 2 hold. Households can self-insure using a risk-free

8To identify such long-run counterfactuals in a semi-structural, regression-based approach, one would need

to recover the effect of the belief updating rule ρi on decisions. This would require the availability of empirical

counterparts for ρi, as well as suitable cross-sectional exogeneity assumptions (or a valid instrument for ρi).

Both conditions would impose strong demands on the data. In particular, ρi is a subjective process perceived

by the agent, which is not directly informed by responses to subjective expectations questions (since ρi need

not coincide with the process of realized beliefs πit).
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xi,t�1 are exogenous, and Assumptions 1 and 2 hold. Households can self-insure using a risk-free

8To identify such long-run counterfactuals in a semi-structural, regression-based approach, one would need

to recover the effect of the belief updating rule ρi on decisions. This would require the availability of empirical

counterparts for ρi, as well as suitable cross-sectional exogeneity assumptions (or a valid instrument for ρi).

Both conditions would impose strong demands on the data. In particular, ρi is a subjective process perceived

by the agent, which is not directly informed by responses to subjective expectations questions (since ρi need

not coincide with the process of realized beliefs πit).
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bond with constant interest rate ri, and assets zit follow

zi,t�1 � �1� ri��zit � wit� � cit, (10)

where wit � exp�xit� and cit � exp�yit� denote income and consumption, respectively. As in

(9), the (log) consumption rule takes the form9

yit � ϕ �xit, πit, zit, νit, ρi, ui, βi, ri, τ i� .

As a specific example for the income process perceived by the agent, consider a permanent-

transitory model (e.g., Hall and Mishkin, 1982):

xit � ηit � uit, ηit � ηi,t�1 � vit,

where uit � N �0, σ2
iu� and vit � N �0, σ2

iv� are independent over time and independent of each

other at all leads and lags. At time t, the agent observes xit and ηit, but neither xi,t�1 nor

ηi,t�1. In this case, we have

πit�
x� �
1

�

σ2
iu � σ2

iv

φ

�


x� ηit
�

σ2
iu � σ2

iv

�

, (11)

where φ is the standard Gaussian density, and Assumption 2 holds (in fact, beliefs are exogenous

in this case, and the stronger condition (6) holds). In this specific example, only the mean of

πit varies over time and its variance is constant.

Suppose we wish to assess the impact on consumption of a proportional income tax T �w� �

�1� δ�w introduced at time t, where recall that w � exp�x� denotes household income. Under

the tax, log income is thus x�δ� � x � log δ. Suppose households believe the tax change will

continue being implemented in the future, and they fully adjust their beliefs to the tax. When

πit is given by (11) in the absence of the tax, implementing the tax will lead to the new beliefs

π
�δ�
it �
x� �

1
�

σ2
iu � σ2

iv

φ

�


x� ηit � log δ
�

σ2
iu � σ2

iv

�

.

Hence, the tax affects both the mean of log income and the perceived conditional mean of future

log income.

In this model, a proportional tax does not affect the belief updating rule ρi.
10 Hence, the

total APE fully captures the effect of the tax on consumption. In this case, the contemporaneous

9Alternatively, in a finite-horizon environment, we obtain a counterpart to this equation, as in Remark 1,

which involves a time-varying ϕt.
10Indeed, the introduction of the tax is isomorphic to a change in the permanent component, from ηit to

η
�δ�
it 	 ηit � log δ. Moreover, the distribution of �xi,t�1, ηi,t�1� given �xit, ηit� does not change under the tax.
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the tax, log income is thus x�δ� � x � log δ. Suppose households believe the tax change will

continue being implemented in the future, and they fully adjust their beliefs to the tax. When
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Hence, the tax affects both the mean of log income and the perceived conditional mean of future

log income.

In this model, a proportional tax does not affect the belief updating rule ρi.
10 Hence, the

total APE fully captures the effect of the tax on consumption. In this case, the contemporaneous

9Alternatively, in a finite-horizon environment, we obtain a counterpart to this equation, as in Remark 1,

which involves a time-varying ϕt.
10Indeed, the introduction of the tax is isomorphic to a change in the permanent component, from ηit to

η
�δ�
it 	 ηit � log δ. Moreover, the distribution of �xi,t�1, ηi,t�1� given �xit, ηit� does not change under the tax.
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APE corresponds to the effect of a purely transitory tax at t that will disappear at t � 1;

equivalently, it is the effect of a log δ-shift in the transitory income shock uit. In turn, the

dynamic APE can be interpreted as the effect of a tax that is announced at t and will be

implemented at t � 1.11 Lastly, the total APE, which is the sum of the contemporaneous and

dynamic APEs, corresponds to the effect of a log δ-shift in the permanent income shock vit.

This model relies on specific assumptions about the income process, information, and beliefs.

Those assumptions could be incorrect; for example, agents might have different beliefs about

future income. In our approach we do not assume that the consumption model with permanent-

transitory income beliefs describes the data. However, interpreting an average partial effect as

the structural effect of a counterfactual tax requires that, while beliefs πit are affected by the

tax, the belief updating rule ρi is not.

4.2 Structural and semi-structural tax counterfactuals: a compari-

son

To illustrate how structural modeling and our approach relate to each other in the context of

this example, we simulate a large sample from a life-cycle model of consumption and savings

based on Kaplan and Violante (2010), where identical, risk-averse households save to smooth

consumption while facing borrowing constraints. We study two versions of the model, with

rational and adaptive expectations, respectively. In both cases, income beliefs, which are key

state variables in the model, can be summarized by their time-varying means, which follow a

first-order Markov process jointly with log income.

Under both versions of the model, we compute the true effect of a 10% permanent propor-

tional income tax, and we decompose it under the model into a contemporaneous effect due

to current income and a dynamic effect due to beliefs. Then, we compare these counterfactual

predictions with our average partial effects (TAPE, CAPE, and DAPE), which we obtain by es-

timating consumption regressions in the simulated sample. Since the model has a finite horizon,

the consumption function ϕt is age-dependent, and we proxy for this dependence by controlling

for age and its square in the regressions. Note that, as we discussed, the belief updating rule ρi

is invariant under the counterfactual in the rational expectations version of the model. In the

adaptive expectations version we assume that invariance is satisfied as well. We provide details

about the model, parameter values, and calculation of counterfactuals in Appendix C.

11The DAPE in (5) is evaluated at income x�δ� after the tax, so that the CAPE and the DAPE add up

to the TAPE. It is also possible to compute an alternative DAPE evaluated under income x before the tax,

�∆DAPE
i �δ, x, π, z� 	 ϕi�x, π

�δ�, z� � ϕi�x, π, z�.
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bond with constant interest rate ri, and assets zit follow

zi,t�1 � �1� ri��zit � wit� � cit, (10)

where wit � exp�xit� and cit � exp�yit� denote income and consumption, respectively. As in

(9), the (log) consumption rule takes the form9

yit � ϕ �xit, πit, zit, νit, ρi, ui, βi, ri, τ i� .

As a specific example for the income process perceived by the agent, consider a permanent-

transitory model (e.g., Hall and Mishkin, 1982):

xit � ηit � uit, ηit � ηi,t�1 � vit,

where uit � N �0, σ2
iu� and vit � N �0, σ2

iv� are independent over time and independent of each

other at all leads and lags. At time t, the agent observes xit and ηit, but neither xi,t�1 nor

ηi,t�1. In this case, we have
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�
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where φ is the standard Gaussian density, and Assumption 2 holds (in fact, beliefs are exogenous

in this case, and the stronger condition (6) holds). In this specific example, only the mean of

πit varies over time and its variance is constant.
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APE corresponds to the effect of a purely transitory tax at t that will disappear at t � 1;

equivalently, it is the effect of a log δ-shift in the transitory income shock uit. In turn, the

dynamic APE can be interpreted as the effect of a tax that is announced at t and will be

implemented at t � 1.11 Lastly, the total APE, which is the sum of the contemporaneous and

dynamic APEs, corresponds to the effect of a log δ-shift in the permanent income shock vit.

This model relies on specific assumptions about the income process, information, and beliefs.

Those assumptions could be incorrect; for example, agents might have different beliefs about

future income. In our approach we do not assume that the consumption model with permanent-

transitory income beliefs describes the data. However, interpreting an average partial effect as

the structural effect of a counterfactual tax requires that, while beliefs πit are affected by the

tax, the belief updating rule ρi is not.

4.2 Structural and semi-structural tax counterfactuals: a compari-

son

To illustrate how structural modeling and our approach relate to each other in the context of

this example, we simulate a large sample from a life-cycle model of consumption and savings

based on Kaplan and Violante (2010), where identical, risk-averse households save to smooth

consumption while facing borrowing constraints. We study two versions of the model, with

rational and adaptive expectations, respectively. In both cases, income beliefs, which are key

state variables in the model, can be summarized by their time-varying means, which follow a

first-order Markov process jointly with log income.

Under both versions of the model, we compute the true effect of a 10% permanent propor-

tional income tax, and we decompose it under the model into a contemporaneous effect due

to current income and a dynamic effect due to beliefs. Then, we compare these counterfactual

predictions with our average partial effects (TAPE, CAPE, and DAPE), which we obtain by es-

timating consumption regressions in the simulated sample. Since the model has a finite horizon,

the consumption function ϕt is age-dependent, and we proxy for this dependence by controlling

for age and its square in the regressions. Note that, as we discussed, the belief updating rule ρi

is invariant under the counterfactual in the rational expectations version of the model. In the

adaptive expectations version we assume that invariance is satisfied as well. We provide details

about the model, parameter values, and calculation of counterfactuals in Appendix C.

11The DAPE in (5) is evaluated at income x�δ� after the tax, so that the CAPE and the DAPE add up

to the TAPE. It is also possible to compute an alternative DAPE evaluated under income x before the tax,

�∆DAPE
i �δ, x, π, z� 	 ϕi�x, π

�δ�, z� � ϕi�x, π, z�.
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Table 1: Tax counterfactuals under rational and adaptive expectations

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0163 -0.0151 -0.0150 -0.0150 -0.0122 -0.0344 -0.0191 -0.0133

DAPE -0.0802 -0.0917 -0.0863 -0.0860 -0.0496 -0.0518 -0.0512 -0.0513

TAPE -0.0965 -0.1068 -0.1013 -0.1010 -0.0618 -0.0863 -0.0704 -0.0646

Notes: Effects of a 10% permanent income tax on log consumption in two model economies, where households

have rational (in the left panel) or adaptive expectations (in the right panel), respectively. In both economies, log

income follows a permanent-transitory process. For the structural counterfactuals we compute the effect of the

tax under the model. For semi-structural ones we regress log consumption on log income, income belief and its

interaction with log income, age, age squared, and a function of log assets (linear, quadratic, or 20-knot spline

depending on the specification). Households with positive assets, age 26–49.

We report the counterfactual calculations in Table 1. Focusing first on the version with

rational expectations (in the left panel), the model predicts a decrease in log consumption of

�0.097, which is almost one-for-one with the tax increase, as is expected in this model, and a

large part can be attributed to a change in beliefs. The semi-structural predictions, which do

not rely on the knowledge of the structure and the parameter values of the structural model but

are computed using regressions, come close to these numbers. We report the results of three

specifications, where we control for linear, quadratic, or spline functions of log assets, and all

of them give comparable results in this case.

Turning next to the version with adaptive expectations (in the right panel), the model pre-

dicts a smaller effect of the tax (�0.062), given the expectations process that we assume. When

using a structural approach to predict counterfactuals, specifying belief formation correctly is

key. However, the semi-structural predictions, which do not rely on correct specification of the

model (including the belief formation part of the model), again come close to the tax effects,

albeit in this case only when the regression specification is flexible enough (i.e., quadratic or

spline).

4.3 Weather and agricultural production

In the second example, we consider a model of agricultural production with costly investment.

Output qi,t�1 � gi�xi,t�1, ki,t�1� depends on the weather xi,t�1 and on a dynamic input ki,t�1
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(such as capital). The weather xit, and farmer i’s beliefs πit about xi,t�1, satisfy Assumptions

1 and 2. The farmer can invest yit in the dynamic input kit at a cost ci�yit, νit�, for some

i.i.d. cost shifters νit with density τ i. The dynamic input follows the law of motion ki,t�1 �

�1 � δi�kit � yit. The farmer decides on yit after observing today’s weather xit and her beliefs

πit about tomorrow’s weather, but before observing xi,t�1. Lastly, the instantaneous profit in

period t is qit � ci�yit, νit�, and the farmer’s discount factor is βi.

The state variables of the decision problem are xit, πit, kit, and νit, and, under suitable

regularity conditions, the optimal investment rule takes the form

yit � ϕ �xit, πit, kit, νit, ρi, βi, ci, δi, gi, τ i� , (12)

for some function ϕ. Substituting (12) into the output equation, output in period t � 1 can

thus be written as

qi,t�1 �

ϕ �xi,t�1, xit, πit, kit, νit, ρi, βi, ci, δi, gi, τ i� , (13)

for some function 
ϕ. The presence of πit in (12) and (13) reflects that the farmer may adapt to

the prospect of harmful weather in the future by investing today.12

The production function in (13) motivates regressing output on current and past weather

and on the weather beliefs. Exploiting changes over time in xit and πit, within farmer, is

robust to the presence of individual heterogeneity. As an application, one can estimate our

belief-augmented average partial effects to assess the impact of a change in the weather process

that affects both weather realizations and weather beliefs. In this case as well, structurally

interpreting the total APE as reflecting the total effect of such a change relies on the assumption

that ρi, the belief updating process, is invariant. While this assumption may be tenable in the

short or medium run, the total APE will not capture the full impact of long-run changes in the

climate under which ρi could be affected.

12Farmers’ adaptation has been studied in the literature using various approaches. Burke and Emerick (2016)

rely on a long-difference approach to account for farmers’ responses to a changing climate. Shrader (2020)

proposes a framework to account for adaptation in a model where, in contrast with our dynamic framework,

the firm’s current choice does not affect outcomes (i.e., profit) in later periods. See also Dell, Jones, and Olken

(2014) and Keane and Neal (2020). Other approaches in the literature rely on specific aspects of the production

model, such as envelope condition arguments (Hsiang, 2016, Lemoine, 2018, Gammans, Mérel, Paroissien, et al.,

2020).
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5 Estimating average partial effects

In this section we study identification and estimation of ϕi and average partial effects based on

model (3).

5.1 Specification and identification

We impose the following mean independence condition,

E�εit 
 xit, πit, zit� � 0. (14)

Note that (14) is satisfied in the structural framework of Section 3. To enhance the plausibility

of this condition in applications, one can control for additional time-varying regressors (which

can be interpreted as additional state variables), as well as for time-invariant fixed-effects. We

will account for both factors in our empirical application.13

Our approach to the measurement of beliefs πit relies on data about respondents’ expecta-
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of this section, we will discuss how one could relax the parametric specification on πit with rich
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then require suitable relevance conditions (see Newey and Powell, 2003).
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Given (3), (14), and (15), we have

ϕi�xit, πit, zit� � E �yit 
 xit, θit, zit� , (16)

so ϕi�x, π, z� is identified for all x, π, z in the empirical support of xit, πit � π��; θit�, and zit. In

turn, given ϕi, average partial effects (TAPE, CAPE and DAPE) are all identified, provided the

support of covariates after the change in xit and πit lies within the support before the change.

The definition of an average partial effect depends on a change in xit and an associated

change in beliefs πit. We assume that beliefs remain in the same parametric family after the

change, so

π�δ� � π
�

�; θ�δ�
�

,

for some parameter θ�δ�. As a benchmark, we assume that the individual fully incorporates the

effect of the change from x to x�δ� in her beliefs, and set

θ�δ� � argmax
�θ

E
�

log
�

π
�

x
�δ�
t�1;


θ
���

, (17)

where the expectation is taken with respect to π�xt�1; θ�, the belief density before the change.

As an example, suppose x is log income before a counterfactual tax and x�δ� � x� δ is post-tax

income. Suppose πit is normal with mean µit and variance σ2
it, so θit � �µit, σ

2
it�. Under (17),

π
�δ�
it remains normal after the tax, with mean and variance θ

�δ�
it � �µit � δ, σ2

it�.

Remark 2. (Partial adjustment of beliefs)

One can define average partial effects associated with other changes in beliefs. For example, as-

suming that individuals face a cost of adjusting their beliefs that is proportional to the Kullback-

Leibler divergence between the beliefs before and after the change, one can replace (17) by

θ�δ� � argmax
�θ

�

E
�

log
�

π
�

x
�δ�
t�1;


θ
���

� ξKL
�


θ, θ
��

, (18)

where KL
�


θ, θ
�

� E
�

log

�

π�xt�1;θ�

π
�

xt�1;�θ�

��

. According to (18), θ�δ� is given by (17) when the

adjustment cost ξ is zero, θ�δ� � θ is unchanged when the cost is infinite, and the individual

partially adjusts her beliefs for intermediate values of ξ. For example, consider a change x
�δ�
it �

xit�δ. If πit is normal with mean and variance θit � �µit, σ
2
it�, then π

�δ�
it has mean and variance

θ
�δ�
it �

�

µit �
δ

1�ξ
, σ2

it � ξ
�

δ
1�ξ

�2
�

. In our application we will focus on the benchmark case

ξ � 0 where individuals fully adjust their beliefs (while also commenting on the case ξ � �,

which corresponds to the contemporaneous APE where beliefs are held fixed). Alternatively,
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when empirical variation in policies and beliefs is available, one could rely on such variation to

discipline ξ.14

Remark 3. (Identification in short panels)

Here we focus on identifying ϕi and average partial effects for every individual i, which is

relevant for applications with a long time dimension. In short panels, it is not possible to allow

for unrestricted individual heterogeneity in ϕi. A simple approach is to replace (3) by

yit � ϕ �xit, πit, zit� � αi � εit, (19)

where ϕ is common across individuals, and αi is an additive individual fixed effect. Under

suitable exogeneity assumptions,15 identification of ϕ can be based on moment restrictions (e.g.,

Arellano and Bond, 1991).

5.2 Estimation

For estimation we proceed in three steps. First, we estimate the parameters θit that govern the

belief density. Assuming that subjective expectations responses mit � m�πit� are available, a

minimum-distance estimator solves

	θit � argmin
θ

d �mit,m�π��; θ��� ,

where d is some distance function (e.g., Euclidean).

In the second step, we estimate ϕi as the conditional expectation function in (16). Many

approaches are available. For example, Stock (1989) proposes a partially linear semiparametric

approach. We will rely on an linear specification of ϕi in a basis of functions,

ϕi�x, θ, z;α� �
R
�

r�1

αirPr�x, θ, z�, (21)

where Pr is a family of functions, such as polynomials, and R is the number of terms. In short

panels (as in our application), we restrict αir not to depend on i, except the coefficient that

corresponds to the intercept in the regression (see Remark 3).

14Such empirical variation may take the form of hypothetical questions. For example, Briggs, Caplin, Leth-

Petersen, Tonetti, and Violante (2020) and Roth, Wiederholt, and Wohlfart (2023) elicit individual expectations

under various policy counterfactual scenarios.
15For example, if �xit, πit� are strictly exogenous and zit are predetermined, one can replace (14) by

E�εit �xiT , πiT , ..., xi,1, πi,1, zit, zi,t�1, zi,1� 	 0. (20)
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Given observations yit, xit, zit and estimates 	θit, for i � 1, ..., n and t � 1, ..., T , we estimate

αir using penalized least squares regression

	α � argmin
α

n
�

i�1

T
�

t�1

�

yit �
R
�

r�1

αirPr�xit,	θit, zit�

�2

� Pen�α�. (22)

In our empirical application we will rely on two choices for the penalty term: no penalty (i.e.,

Pen�α� � 0) so the estimator is simply OLS, and an ℓ1 penalty (i.e., Pen�α� � λ


i,r 
αir
)

corresponding to the Lasso estimator.

Lastly, in the third step we estimate counterfactuals by plugging in the estimates 	θit and

	αir in the APE formulas, averaged over individuals and time periods. For example, we estimate

the total APE averaged over individuals and time periods as

	∆TAPE
�δ� �

1

nT

n
�

i�1

T
�

t�1

R
�

r�1

	αir

�

Pr

�

x
�δ�
it ,

	θ
�δ�

it , zit

�

� Pr

�

xit,	θit, zit

��

, (23)

with analogous expressions for the contemporaneous and dynamic APEs. When including a

large number R of terms in the expansion and relying on a penalty for regularization, plug-in

estimators such as (23) may be biased. To address this issue, in our application we implement

the double Lasso method of Belloni, Chernozhukov, and Hansen (2014).

Remark 4. (Without expectations data)

In certain applications, subjective expectations data are not available. For example, in an

agricultural production setting (as in Subsection 4.3) farmers’ subjective beliefs about future

weather may not be available. In such cases, our approach is still applicable provided one can

recover estimates of the belief density πit. A strategy to do so is to assume that agents have

rational expectations, and to make assumptions about the dynamic process of xit.

5.3 Relaxing parametric assumptions on beliefs

The parametric approach we adopt in our application is motivated by the coarse belief infor-

mation available in the SHIW. In other applications with richer information, a nonparametric

treatment of the belief density πit may be feasible. Póczos, Singh, Rinaldo, and Wasserman

(2013) propose a nonparametric regression estimator that, given a nonparametric estimate 	πit,

can be used to consistently estimate ϕi and average partial effects. However, their estimator

suffers from a slow convergence rate in general. An alternative is to assume that ϕi in (3) is

linear, or more generally polynomial, in beliefs, as in the literature on functional regression

21

(see, e.g., Ramsay and Dalzell, 1991, and Yao and Müller, 2010). Under linearity in beliefs,

there exists a function φi such that

ϕi�x, π, z� �

�

φi�x, 
x, z�π�
x�d
x, (24)

and one can estimate φi using functional regression estimators based on principal components

analysis or Tikhonov regularization (Hall and Horowitz, 2007). However, all these methods

require large samples and the availability of rich information about πit.

When subjective data are too coarse, the information in the expectations responses mit

may not be sufficient to point-identify πit nonparametrically. One possibility is to impose

parametric assumptions, as we do in our application. An alternative approach is to follow a

partial identification strategy. We outline such an approach in Appendix B.3.

6 Income, consumption, and income expectations

In this section we apply our approach to empirically study how consumption depends on current

and expected income, and to conduct various tax counterfactuals.

6.1 Data

The Italian Survey on Household Income and Wealth (SHIW) is a cross-sectional survey that

collects information on annual consumption, disposable income, and wealth of Italian families.

Since 1989, it includes a panel component. We use the 1989–1991 waves and the 1995–1998

waves, which include questions about income expectations asked to a subsample of households.

The expectations questions differ in both sets of waves. However, as we show in Appendix

D, the results are qualitatively similar when analyzing the waves separately, so we pool them

together to increase power. In 1989 and 1991, individuals are asked about the probability their

income growth will fall within a set of predetermined intervals. In 1995 and 1998, individuals

are asked the maximum and minimum amounts they expect to earn if employed, and the

probability of earning less than the mid-point between the maximum and minimum. We assume

beliefs about log income in the following year follow a normal distribution. In Appendix D we

describe our approach to estimate the mean µit and standard deviation σit of the beliefs for

each individual and time period, which follows Arellano, Bonhomme, De Vera, Hospido, and

Wei (2022). We will also comment on robustness checks obtained under different assumptions

and estimation strategies.
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We focus on employed household heads, while excluding the self-employed. Our cross-

sectional sample with information on beliefs has 7,796 household-year observations, and our

panel sample with data on beliefs in two consecutive waves for the same head has 1,646 observa-

tions. In Appendix Tables H2 and H3 we report descriptive statistics about income expectations

questions. In Appendix Table H4 we provide descriptive statistics about income, consumption,

assets, and the estimated means and variances of log income beliefs. Belief questions are about

individual income, while consumption, assets, and current income are reported at the house-

hold level. We will account for this discrepancy in our construction of average partial effects,

and we will also report estimates that control for spousal beliefs when available. Another issue

with the belief data in the SHIW is that expectations questions about income in the next 12

months are asked a few months after the end of the calendar year. We will return to this issue

in the next subsection. As a preliminary validation check for the expectations questions, in

Appendix Table H5 we document that beliefs have explanatory power for future log income,

even conditional on current log income and other controls, in line with what Kaufmann and

Pistaferri (2009) found for the 1995-1998 waves.

6.2 Estimates of the consumption function

We estimate several versions of the following regression of log consumption:

yit �ϕi�xit, πit, zit� � εit

�βxxit � β�θθit � β�θxθitxit � β�zzit � αi � εit, (25)

where yit is log consumption, xit is log income, θit contains the mean and variance of income

beliefs, and zit include log assets as well as a variety of controls (including age, household

composition, and a wave indicator).

6.2.1 Main estimates

We show our main estimates in Table 2, where we estimate equation (25) by OLS in first

differences in both sets of waves. In the table we show standard errors clustered at the household

level.16 The results in columns (2) and (3) show that the mean of log income beliefs influences

consumption decisions significantly over and beyond current income, while the variance of the

beliefs has an insignificant effect.

16Standard errors in Table 2 do not account for the estimation of the means and variances of beliefs. We will

return to the impact of belief elicitation on our estimates at the end of this subsection.
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even conditional on current log income and other controls, in line with what Kaufmann and

Pistaferri (2009) found for the 1995-1998 waves.

6.2 Estimates of the consumption function

We estimate several versions of the following regression of log consumption:

yit �ϕi�xit, πit, zit� � εit

�βxxit � β�θθit � β�θxθitxit � β�zzit � αi � εit, (25)

where yit is log consumption, xit is log income, θit contains the mean and variance of income

beliefs, and zit include log assets as well as a variety of controls (including age, household

composition, and a wave indicator).

6.2.1 Main estimates

We show our main estimates in Table 2, where we estimate equation (25) by OLS in first

differences in both sets of waves. In the table we show standard errors clustered at the household

level.16 The results in columns (2) and (3) show that the mean of log income beliefs influences

consumption decisions significantly over and beyond current income, while the variance of the

beliefs has an insignificant effect.

16Standard errors in Table 2 do not account for the estimation of the means and variances of beliefs. We will

return to the impact of belief elicitation on our estimates at the end of this subsection.
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It is also interesting to compare the estimates in column (2) with those in column (1) that

do not account for beliefs. When including beliefs, the coefficient of family income decreases

from 0.58 to 0.44. This finding is consistent with the presence of an upward omitted variable

bias in column (1).

In column (4) of Table 2, we interact the mean income beliefs with current income. While the

estimates suggest the effect of the mean belief tends to be larger for higher-income households,

the interaction effect is only marginally significant. Lastly, in column (5) we add the variance

of beliefs and its interaction with income. We find small differences compared to column (4),

with insignificant coefficients associated with the variance of beliefs.

In addition to these specifications we also estimated flexible models using the Lasso, and

used them to produce average partial effects (see the next subsection).

6.2.2 Robustness checks

In Appendix E we report a series of robustness checks. Our main estimates are obtained using

a particular approach to construct the mean and variance of log income beliefs. We first probe

the robustness of our estimates to different assumptions about the distribution of beliefs, and

to different construction methods for the mean and variance of beliefs. The results reported in

Appendix Table H6 show only minor differences compared to our baseline estimates.

While consumption and income correspond to households, the income beliefs questions

correspond to individual income. In the baseline results we only use the beliefs of household

heads (and adjust our counterfactual calculations). In a robustness check we control for spouses’

beliefs about their own income in the consumption regression. The results, also reported in

Appendix Table H6, are again very similar to our main estimates.

The estimates in Table 2 are obtained by pooling two sets of waves, 1989–1991 and 1995–

1998. Economic conditions, as well as the belief elicitation strategies, differ between these

two periods. As a robustness check, we report estimates for the two sets of waves separately.

The results, reported in Appendix Table H7, show general qualitative agreement and some

quantitative differences between the two periods, with a stronger effect of beliefs in 1995–1998.

Lastly, although assets are important determinants of consumption, their measurement in

the SHIW is imperfect. Indeed, respondents are asked about end-of-year assets, while the state

variable in the consumption function is beginning-of-period assets. We assess the robustness of

our results in this dimension in two ways. First, following Stoltenberg and Uhlendorff (2022)

we construct an alternative measure of assets by subtracting yearly savings from end-of-year

assets. A concern with this specification in our context is that savings in the SHIW are con-
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structed by netting out consumption expenditures from total income, so measurement error in

consumption might bias our regression coefficients. Given this, we also report the results of a

second specification where we do not include any control for assets. In addition to these checks,

we also report results based on an IV strategy that relies on first-period assets and income as

instruments for current assets. All the results for current income and income beliefs that we

report in Appendix Table H8 are overall quite similar to our main estimates.

6.2.3 Measurement error in beliefs

A possible concern with the estimates in Table 2 is measurement error in beliefs data. To

explore this issue, we focus on the 1989–1991 waves. In those two waves, individuals are asked

to distribute 100 balls into 12 bins, corresponding to different intervals of beliefs about log

income growth. Assuming log income growth beliefs to be normally distributed, a simple model

of the responses is that individuals draw 100 i.i.d. values from their normal belief distributions,

and put those in the bins.

However, this simple model does not provide a good approximation to individuals’ responses

in the SHIW. Indeed, by simulating income beliefs responses from the model, we document that,

if they were indeed drawing 100 values, respondents would be reporting a larger number of bins

than they do in the data (specifically, 3.61 bins on average according to the model compared

to 1.75 in the data). The results of this comparison are presented in Appendix Table H9.

As an alternative model, we postulate that individuals only draw M � 100 values. We

interpret these values as M income growth “scenarios” that the respondent contemplates before

giving her answer. The simulations reported in Appendix Table H9 show that, when M is of the

order of 5 or 10 draws, instead of 100, the predicted number of bins reported by the individuals

is much closer to the data.

Given this model of measurement error, for any given M we implement a “small-σ” ap-

proximation (e.g., Evdokimov and Zeleneev, 2022), and use it to bias-correct our regression

estimates. While different M values can imply very different belief responses, we find that the

resulting coefficient estimates vary little across values of M . We provide details about this

approach in Appendix F and report the main results in Appendix Figure H3. At the same

time, we acknowledge that, while this sensitivity analysis exercise is reassuring, it relies on a

specific model of measurement error and our ability to entertain other models is limited by the

short panel dimension available in the SHIW.

Lastly, a possible source of measurement error specific to the SHIW, and not captured by the

model we have just outlined, relates to the timing of the expectations questions. As pointed
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Table 2: Estimates of the log consumption function

(1) (2) (3) (4) (5)

Mean expected log income 0.235 0.238 0.229 0.231

(0.094) (0.095) (0.093) (0.093)

(Mean expect. log income)�(Log family income) 0.104 0.104

(0.061) (0.061)

Var expected log income -2.590 -2.613

(1.876) (1.941)

(Var expect. log income)�(Log family income) -1.144

(3.499)

Log family income 0.584 0.439 0.439 0.439 0.440

(0.070) (0.089) (0.089) (0.089) (0.089)

Log family assets 0.010 0.018 0.018 0.019 0.018

(0.023) (0.023) (0.023) (0.023) (0.023)

Household fixed effect Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes

N observations 1,536 1,536 1,536 1,536 1,536

N households 768 768 768 768 768

R-squared 0.24 0.26 0.26 0.26 0.26

Pvalue F beliefs 0.01 0.03 0.02 0.05

Notes: SHIW, 1989–1991 and 1995–1998. Regression for household heads. The expectations variables (mean

and variance) and log family income are centered around the weighted average in the sample. Controls include

age and age squared, existence of a spouse, marital status, family size, number of children 0-5, 6-13, 14-17 years

old in the household, number of children outside the household, number of income earners in the household, and

a wave indicator. Regression results are weighted using survey weights. Standard errors (shown in parenthesis)

are clustered at the household level.
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estimates. While different M values can imply very different belief responses, we find that the
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out by Pistaferri (2001), since income and consumption refer to the previous calendar year,

yet expectations are asked a few months after the end of the year, one needs to assume that

individuals do not update their information sets during these few months.17

6.3 Counterfactual taxes

We now use our framework, and our estimates of the consumption function, to assess the effects

of a counterfactual income tax on consumption. We assume that the tax schedule takes the

parametric form T �wg� � wg � λw1�τ
g , where wg denotes gross income (e.g., Benabou, 2002).

To define a baseline level of the tax, we rely on the estimates obtained by Holter, Krueger, and

Stepanchuk (2019) for Italy, averaged over family composition characteristics in our sample.

We consider three counterfactuals, corresponding to changes in the λ and τ parameters that

index the tax schedule. In the transitory tax and permanent tax counterfactuals, we increase

the average tax by 10 percentage points by decreasing λ, only for one period in the former

case and in all subsequent periods in the latter. In the regressivity counterfactual, we set the

parameter τ to its value in the French tax system (which is somewhat less progressive than the

Italian one) while at the same time decreasing λ such that the tax change is neutral in terms

of total tax revenue.

To estimate the effects of the counterfactuals we compute average partial effects. We report

estimates of TAPE, CAPE, and DAPE obtained using linear regression (see Table 2), as well

as estimates obtained using the Lasso. For the latter, we rely on the double/debiased Lasso

method introduced by Belloni, Chernozhukov, and Hansen (2014), based on interactions and

powers of the covariates up to the third order. In the calculations for the permanent tax and

regressivity counterfactuals, we assume that individuals fully adjust their beliefs to the new

tax; i.e., we implement the formula in (17). We report point estimates and standard errors

based on the bootstrap in Appendix Table H10.

The top panel in Figure 1 shows average partial effects based on the estimates from column

(5) in Table 2, while the bottom panel corresponds to estimates based on the Lasso. On the

left graphs we show the effects on log consumption of a 10% transitory tax. The overall effect

based on OLS is �0.049, and it is very similar according to the Lasso. In addition, in both

specifications there is only moderate variation along income quantiles (indicated on the x axis).

17Alternatively, one could instead follow a structural approach and specify a complete structural model of

consumption choices and belief formation. Stoltenberg and Uhlendorff (2022) propose such an approach and

find that income beliefs, corrected for the timing discrepancy within the structure of their model (which assumes

rational expectations), have larger effects on consumption than the original beliefs.
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Figure 1: Average partial effects for various tax counterfactuals

A. Average partial effects based on OLS estimates

(a) Transitory tax (b) Permanent tax (c) Regressivity
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B. Average partial effects based on the Lasso

(d) Transitory tax (e) Permanent tax (f) Regressivity
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On the middle graphs we show the effect of a 10% permanent tax. Note that the contem-

poraneous average partial effect (CAPE) coincides with the effect of a transitory tax (compare

with the left graphs). Beyond this contemporaneous effect, we find sizable dynamic effects.

The dynamic APE (DAPE), which reflects the impact of a changes in beliefs, contributes an

additional -0.024 according to OLS, and �0.028 according to the Lasso. The total change in

consumption, which is approximately �0.073 in both specifications, is less than the 10% de-

crease in income, as is expected if households are only partially insured against income changes

(Blundell, Pistaferri, and Preston, 2008). Moreover, the estimates from both specifications

indicate that dynamic effects are larger for higher-income households.

Lastly, on the right graphs we show the effect of a revenue-neutral decrease in the pro-

gressivity of the tax. While the total effects averaged over all households are relatively small
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poraneous average partial effect (CAPE) coincides with the effect of a transitory tax (compare
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The dynamic APE (DAPE), which reflects the impact of a changes in beliefs, contributes an

additional -0.024 according to OLS, and �0.028 according to the Lasso. The total change in

consumption, which is approximately �0.073 in both specifications, is less than the 10% de-

crease in income, as is expected if households are only partially insured against income changes
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indicate that dynamic effects are larger for higher-income households.

Lastly, on the right graphs we show the effect of a revenue-neutral decrease in the pro-

gressivity of the tax. While the total effects averaged over all households are relatively small
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(around �0.011), they show substantial heterogeneity along the income distribution: reducing

progressivity tends to favor the rich, and it hurts the log consumption of the poor proportionally

more. The estimates of OLS and the Lasso are very similar. However, in this case estimates

are less precise, see Appendix Table H10. As in the other two counterfactuals, we observe that

the contemporaneous and dynamic effects of the tax have the same sign.

It is interesting to compare these estimates to average partial effects calculations that do not

account for the role of beliefs. In that case, the average consumption effect over all households

of a 10% permanent income tax is �0.065. This is larger than the contemporaneous effect

(�0.049), consistently with beliefs being an omitted yet relevant regressor in the specification

without beliefs. However, this is lower than the total effect that accounts for both contempo-

raneous and dynamic margins (�0.073). These differences underscore the need to account for

beliefs when computing average partial effects. In addition, note that an estimation method

that does not include beliefs cannot account for the difference in impact between a permanent

tax and a transitory one.

Lastly, it is worth emphasizing that two conditions are needed in order to interpret the

average partial effects in Figure 1 as structural tax counterfactuals. The first one is that

individual beliefs respond one-to-one to the tax. By varying the parameter ξ in (18), we can

predict tax effects under different assumptions about belief responses, in the spirit of sensitivity

analysis. The second condition is that the belief updating rule ρi is invariant under the tax.

When tax changes have a long-lasting effect, changes in ρi may occur and induce a third margin

of response, beyond contemporaneous and dynamic effects (i.e., beyond CAPE and DAPE).

While this third margin may be small or zero in certain cases (as in the permanent-transitory

model with a proportional tax, see Subsection 4.1), accounting for it may be important in other

cases. The extension to beliefs over longer horizons that we outline in the next section provides

a possible way forward.

7 Extensions

In this paper we provide a method to account for the role of individual expectations in assessing

the impact of policies and other counterfactuals. Our approach is semi-structural, in the sense

that it is justified under dynamic structural assumptions, yet implementing the method does

not require full specification and estimation of a structural model.

Among possible extensions of the method, it is interesting to allow for endogenous and

exogenous state variables in xit, and for state-contingent beliefs about them. For example, in

29

a model of occupational choice, individual income beliefs contingent on occupational choice

may be available (e.g., Patnaik, Venator, Wiswall, and Zafar, 2020, Arcidiacono, Hotz, Maurel,

and Romano, 2020). In that case, our framework is unchanged except for the fact that the

state-contingent beliefs enter as arguments in the decision rule. We describe this extension in

Appendix B.1, and provide a learning model as an illustration.

A second extension is to introduce beliefs over longer horizons. If one had access to data on

the sequence of beliefs about xi,t�1, xi,t�2, ... into the far future, accounting for those as determi-

nants of the decision, and shifting them in the counterfactual, would provide valid predictions

without the need for an invariance assumption about some ρi process. To go one step in this

direction, one can elicit beliefs over multiple horizons xi,t�1, xi,t�2, ..., xi,t�S (Koşar and van der

Klaauw, 2022), and account for variation in those beliefs in estimation and counterfactuals. We

describe this second extension in Appendix B.2.
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a model of occupational choice, individual income beliefs contingent on occupational choice

may be available (e.g., Patnaik, Venator, Wiswall, and Zafar, 2020, Arcidiacono, Hotz, Maurel,

and Romano, 2020). In that case, our framework is unchanged except for the fact that the

state-contingent beliefs enter as arguments in the decision rule. We describe this extension in

Appendix B.1, and provide a learning model as an illustration.

A second extension is to introduce beliefs over longer horizons. If one had access to data on

the sequence of beliefs about xi,t�1, xi,t�2, ... into the far future, accounting for those as determi-

nants of the decision, and shifting them in the counterfactual, would provide valid predictions

without the need for an invariance assumption about some ρi process. To go one step in this

direction, one can elicit beliefs over multiple horizons xi,t�1, xi,t�2, ..., xi,t�S (Koşar and van der

Klaauw, 2022), and account for variation in those beliefs in estimation and counterfactuals. We

describe this second extension in Appendix B.2.
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APPENDIX

A Belief formation models with learning

In this section of the appendix we describe two models of belief formation with learning that

we mentioned in Subsection 3.2.

A.1 Exogenous beliefs

We start with the model where beliefs are not affected by past actions. Suppose that

xit � αi � εit,

where εit are i.i.d. N �0, σ2
εi
�. Suppose agents have rational expectations, with information

set Ωit � �xit, xi,t�1, ...�, which does not include αi. Furthermore, assume agents are Bayesian

learners with prior beliefs about αi that are normally distributed. Then, by Bayes rule, posterior

beliefs about αi over time are also normally distributed with mean µit and variance σ2
it satisfying

µit � µi,t�1 �
σ2
it

σ2
εi

�

xit � µi,t�1

�

, (A1)

�σ2
it�

�1
� �σ2

i,t�1�
�1

� �σ2
εi
�

�1. (A2)

Then, πit is a normal density with mean Eπit
�xi,t�1� � µit and variance Varπit

�xi,t�1� � σ2
it�σ2

εi
.

Hence, by (A1)-(A2) the belief process satisfies Assumption 2. Note that the mean beliefs in

(A1) are as in the adaptive expectations case, see (7), but with a parameter λit �
σ2
it

σ2
εi

that is

time-varying and converges to zero over time.

A.2 Endogenous beliefs

We now describe a variation of the previous model, where actions yit � �0, 1� are binary, and

the agent observes an additional signal about αi,

sit � αi � vit,

only when yi,t�1 � 1. We assume that vit are i.i.d. N �0, σ2
vi
�, independent of εit at all leads and

lags. The posterior mean of αi is N �µit, σ
2
it�, where now µit and σ2

it depend on yi,t�1. When

yi,t�1 � 0, µit and σ2
it are given by (A1)-(A2), while when yi,t�1 � 1 they are given by

µit � µi,t�1 �
σ2
it

σ2
εi

�

xit � µi,t�1

�

�

σ2
it

σ2
vi

�

sit � µi,t�1

�

, (A3)
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�1

� �σ2
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�1
� �σ2

vi
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�1. (A4)

36Now, denoting 
σ2
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�

�1
�

�1
, we have
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 xit, yi,t�1 � 1,Ωi,t�1� � N
�
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σ2
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�
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σ2
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Hence, by (A3),
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�
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(A5)

It thus follows from (A4)-(A5) in the case yi,t�1 � 1, and from (A1)-(A2) in the case yi,t�1 � 0,

that πit, which is the normal density with mean µit and variance σ2
it�σ2

εi
, satisfies Assumption

2. Note that, in this case, beliefs πit depend on past actions yi,t�1, so (6) does not hold.

B Extensions

In this section we outline three extensions of our approach that we mentioned in the main text.

B.1 State-contingent beliefs

Our framework can easily be generalized to allow for endogenous and exogenous states in xit,

and for contingent beliefs about them. To see this, suppose for simplicity that actions yit

belong to a finite set Y with n elements. In this case, one can define πit � �πit��; y� : y � Y�
to be a set of n conditional densities where, for all y � Y , π��; y� is the conditional density of

�xi,t�1 
 yit � y,Ωit�. With this new definition of πit, and the associated change in the definition

of ρi in Assumption 2, the framework is unchanged relative to Section 3. In particular, the

decision rule is still given by (9), so actions depend on the n belief densities πit��; y�.

As an example of a model with state-contingent beliefs, suppose xit � αi � εit�k� when

yi,t�1 � k, for k � �0, 1�.1 Suppose in addition that εit�k� � N �0, σ2
εi�k�

�, independent across i

and t, and that agents are Bayesian with a normal prior on αi. The posterior distribution of

αi when yi,t�1 � k is then N �µit, σ
2
it�, where µit and σ2

it are functions of k satisfying

µit � µi,t�1 �
σ2
it

σ2
εi
�k�

�

xit � µi,t�1

�

, (A6)

�σ2
it�

�1
� �σ2

i,t�1�
�1

� �σ2
εi�k�

�

�1. (A7)

1This is equivalent to assuming the individual only observes xit�k� 	 αi � εit�k� when yi,t�1 	 k. As an

extension, αi may also depend on k (for example, αi may represent a vector of occupation-specific abilities),

and xit�k� 	 αi�k�� εit�k�. In that case, the updating formulas (A6)-(A7) need to be adjusted to vector-valued

µit and matrix-valued σ2
it. See Arcidiacono, Aucejo, Maurel, and Ransom (2016) for a recent example.
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We then define beliefs as πit � �πit�0�, πit�1��, where πit�k� is the normal density with mean µit

and variance σ2
it � σ2

εi�k�
. It follows from (A6)-(A7) that Assumption 2, for these beliefs πit, is

satisfied.

B.2 Beliefs over longer horizons

A key feature of the framework is that, while beliefs about next period’s state variables change

in the data and counterfactual, the belief updating rule ρi is constant in sample and invariant to

the counterfactual change. This assumption can be relaxed by introducing beliefs over multiple

horizons.

To describe such an approach, let us replace Assumption 1 by the following, for some S � 1:

�xi,t�S, ..., xi,t�1 
 yit,Ωit� � �xi,t�S, ..., xi,t�1 
Ωit� , (A8)

and denote the corresponding conditional density as πit�xi,t�S, ..., xi,t�1�.

In this case, (8) becomes

Vi�xt, πt, zt, νt� � max
yt

�

ui�yt, xt, zt, νt�

� βi

�

Vi�xt�1, πt�1, γi�zt, xt, yt�, νt�1�π
�1�
t �xt�1�ρi�πt�1; xt�1, yt, πt, xt, νt�τ i�νt�1�dxt�1dπt�1dνt�1

�

,

where π
�1�
t denotes the marginal of πt corresponding to period-t� 1 outcomes. Hence, equation

(9) is satisfied for the πit corresponding to (A8).

B.3 Partial identification

Lastly, we outline an approach to partially identify the function ϕi in cases where we do not

impose a parametric specification on the belief density (i.e., when we do not impose (15)).

To proceed, let us omit the reference to x and z for conciseness. In this case, the conditional

mean ϕi�πit� � E�yit 
 πit� is bounded as follows:

inf
π�Π�mit�

ϕi�π�
���������������

�BL
i �mit;ϕi�

� E�yit 
 πit� � sup
π�Π�mit�

ϕi�π�
���������������

�BU
i �mit;ϕi�

,

where Π�mit� � �π : m�π� � mit�.

These bounds imply the following moment inequalities on ϕi:

E
�

yit �BL
i �mit;ϕi� 
mit

�

� 0, E
�

yit �BU
i �mit;ϕi� 
mit

�

� 0.
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εi�k�
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it�, where µit and σ2
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σ2
it
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1This is equivalent to assuming the individual only observes xit�k� 	 αi � εit�k� when yi,t�1 	 k. As an

extension, αi may also depend on k (for example, αi may represent a vector of occupation-specific abilities),

and xit�k� 	 αi�k�� εit�k�. In that case, the updating formulas (A6)-(A7) need to be adjusted to vector-valued

µit and matrix-valued σ2
it. See Arcidiacono, Aucejo, Maurel, and Ransom (2016) for a recent example.
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We then define beliefs as πit � �πit�0�, πit�1��, where πit�k� is the normal density with mean µit

and variance σ2
it � σ2

εi�k�
. It follows from (A6)-(A7) that Assumption 2, for these beliefs πit, is

satisfied.

B.2 Beliefs over longer horizons

A key feature of the framework is that, while beliefs about next period’s state variables change

in the data and counterfactual, the belief updating rule ρi is constant in sample and invariant to

the counterfactual change. This assumption can be relaxed by introducing beliefs over multiple

horizons.

To describe such an approach, let us replace Assumption 1 by the following, for some S � 1:

�xi,t�S, ..., xi,t�1 
 yit,Ωit� � �xi,t�S, ..., xi,t�1 
Ωit� , (A8)

and denote the corresponding conditional density as πit�xi,t�S, ..., xi,t�1�.

In this case, (8) becomes

Vi�xt, πt, zt, νt� � max
yt

�

ui�yt, xt, zt, νt�

� βi

�

Vi�xt�1, πt�1, γi�zt, xt, yt�, νt�1�π
�1�
t �xt�1�ρi�πt�1; xt�1, yt, πt, xt, νt�τ i�νt�1�dxt�1dπt�1dνt�1

�

,

where π
�1�
t denotes the marginal of πt corresponding to period-t� 1 outcomes. Hence, equation

(9) is satisfied for the πit corresponding to (A8).

B.3 Partial identification

Lastly, we outline an approach to partially identify the function ϕi in cases where we do not

impose a parametric specification on the belief density (i.e., when we do not impose (15)).

To proceed, let us omit the reference to x and z for conciseness. In this case, the conditional

mean ϕi�πit� � E�yit 
 πit� is bounded as follows:

inf
π�Π�mit�

ϕi�π�
���������������

�BL
i �mit;ϕi�

� E�yit 
 πit� � sup
π�Π�mit�

ϕi�π�
���������������

�BU
i �mit;ϕi�

,

where Π�mit� � �π : m�π� � mit�.

These bounds imply the following moment inequalities on ϕi:

E
�

yit �BL
i �mit;ϕi� 
mit

�

� 0, E
�

yit �BU
i �mit;ϕi� 
mit

�

� 0.
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C Structural and semi-structural counterfactuals

In this section of the appendix we present the details of the calibration that we used to produce

Table 1, and report additional output from the simulation.

C.1 Model

The model closely follows Kaplan and Violante (2010), with some differences. Agents live for

T periods, and work until age Tret, where both T and Tret are exogenous and fixed. Ex ante

identical households maximize expected life-time utility

E0

�

T
�

t�1

βt�1u�cit�

�

.

During working years 1 � t � Tret, agents receive after-tax labor income wit � exp�xit�, the

log of which is the sum of a deterministic experience profile κt, a permanent component ηit,

and a transitory component εit,

xit � κt � ηit � εit,

ηit � ηit�1 � vit,

where ηi1 is drawn from an initial normal distribution with mean zero and variance σ2
η1
. The

shocks εit and vit have zero mean, are independent at all leads and lags, and are normally

distributed with variances σ2
ε and σ2

v, respectively.

We define gross labor income as 
wit � G�wit�, where G is the inverse of the tax function

τ� 
wit� � 
wit � λ̃ 
w1�τ
it .

After retirement, agents receive after-tax social security transfers wss
it , which are a function of

average individual gross income over the last few years of their working life,

wss
it � P

�

1

Tret � Tcont

Tret�1
�

t�Tcont


wit

�

.

Lastly, throughout their lifetime households can save (but not borrow) through a single

risk-free, one-period bond whose constant return is 1 � r, and they face a period-to-period
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budget constraint

zi,t�1 � �1� r�zit � wit � cit if t � Tret

zi,t�1 � �1� r�zit � wss
it � cit if t � Tret.

We consider two cases:

� A case with rational expectations, where individuals observe ηit each period, and beliefs

about after-tax log income next period are normally distributed with

Et�xi,t�1� � κt�1 � ηit,

Vart�xi,t�1� � σ2
v � σ2

ε.

� A case with adaptive expectations, where beliefs about after-tax log income next period

are normally distributed with

Et�xi,t�1� � κt�1 � �Et�1�xit� � κt� � Γ � �xit � Et�1�xit�� � uit, uit � N �0, Vu�,

Vart�xi,t�1� � σ2
v � σ2

ε,

where Γ is a constant, uit are independent of all other shocks in the model, and initial

mean beliefs are given by E1�xi2� � κ2 � ηi1.

C.2 Calibration

We closely follow the calibration strategy in Kaplan and Violante (2010).

Demographics. The model period is one year. Agents enter the labor market at age 25, retire

at age 60, and die with certainty at age 95. So we set Tret � 35, and T � 70.

Preferences. The utility function is CRRA, u�c� � c1�γ
	�1 � γ�, where the risk aversion

parameter is set to γ � 2.

Discount factor and interest rate. The interest rate is r � 0.03, and β � 1	�1� r�.

Income process. We use the deterministic age profile κt from Kaplan and Violante (2010). For

the stochastic components of the income process, we set σ2
η1
� 0.15, σ2

v � 0.01, and σ2
ε � 0.05.
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Initial wealth and borrowing limit. Households’ initial assets are set to 0 and there is

no borrowing possible.

Tax system. We use parameters derived from Holter, Krueger, and Stepanchuk (2019),


λ � 3.826, τ � 0.137.

Social security benefits. Social security benefits are a function of average individual gross

earnings between the ages of 50 and 60, wss
it � P

�

1
Tret�Tcont

Tret�1
t�Tcont


wit

�

, where Tcont � 25.

Pre-tax benefits are equal to 90% of average past earnings up to a given bend point, 32% from

this first bend point to a second bend point, and 15% beyond that. The two bend points are set

at, respectively, 0.18 and 1.10 times cross-sectional average gross earnings. Benefits are then

scaled proportionately so that a worker earning average labor between ages 50 and 60 is entitled

to a pre-tax replacement rate of 45%. There is also a cap on pre-tax earnings contributing to

pensions (cap of 2.2) and only 85% of pre-tax pensions are taxed.

Adaptive beliefs. We take Γ � 0.5 and Vu � 0.2.

There are two main differences between our calibration and the one from Kaplan and Vi-

olante (2010), besides including the adaptive expectations case and using a different tax func-

tion. First, pensions depend on contributions made between ages 50 and 60, so the history of

past income is not a relevant state variable before age 50. Second, we do not consider random

mortality during retirement years.

C.3 Additional simulation results

In this subsection we report results based on the calibrated structural model that we introduced

in Subsection 4.1.

In Table H1 we report structural and semi-structural counterfactual effects of a permanent

10% income tax, as in Table 1, for three different ages: 26, 35, and 45. We see that, under

rational expectations (left panel), the contemporanous effect of the tax is higher for the young

than for older households, while the dynamic impact is lower. This reflects the fact that

households start their working life without assets, and that they cannot borrow. The semi-

structural average partial effects reproduce the structural policy effects well. In the case of

adaptive expectations (right panel) there is less variation by age, and while a linear specification
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tends to produce too high a contemporaneous effect for the old, the quadratic and spline

specifications agree well with the structural predictions. For completeness, in Figures H1 and

H2 we plot the policy rules and the mean and variance profiles of consumption, assets and

income under the model.

D Beliefs data

In this section of the appendix we describe the income belief questions in the SHIW, and explain

how we estimate the parameters of the belief densities.

D.1 Expectations questions in the SHIW

The SHIW includes questions about income expectations in waves 1989–1991 and 1995–1998;

however the expectations questions differ in the two sets of waves.

The 1989–1991 waves include a question about expected income growth:

Thinking now of your total income from work or retirement and its evolution [for the next

12 months]. . .Which categories would you exclude? Suppose you have 100 points to distribute

among the remaining categories, how many would you give to each?

The possible categories are more than 25%, between 20% and 25%, between 15% and 20%,

between 13% and 15%, between 10% and 13%, between 8% and 10%, between 7% and 8%,

between 6% and 7%, between 5% and 6%, between 3% and 5%, between 0% and 3%, or

less than 0%, and in that case, by how much. In Table H2 we report descriptive statistics

corresponding to this question.

The 1995–1998 waves include three questions about expected income level:

Minimum amount expected to earn: Assuming that you remain in or find employment in the

next 12 months, can you say what is the minimum overall annual amount you expect to earn,

net of taxes, including overtime, bonuses, fringe benefits, etc?

Maximum amount expected to earn: Assuming again that you remain in or find employment

in the next 12 months, can you say what is the maximum overall annual amount you expect to

earn, net of taxes, including overtime, bonuses, fringe benefits, etc?

Probability of earning less than half: What is the probability that you will earn less than X (the

amount obtained for (maximum + minimum)/2 ? If you had to give a score of between 0 and

100 to the chances of earning less than X, what would it be? (“0” if certain of earning more

than X, “100” if certain of earning less than X).
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In Table H3 we report descriptive statistics corresponding to these questions. In these two

waves, the survey also includes a question about the probability of being employed next year

that we use in a robustness check specific to those waves.

D.2 Estimation of income beliefs

We assume log income beliefs are normally distributed, with mean µit and variance σ2
it, and use

the expectations questions to estimate these two parameters for each individual and wave. In

this subsection, we omit the reference to i and t for ease of notation.

First two waves. For the 1989–1991 waves, we use the survey expectations questions to esti-

mate the mean and variance of the beliefs of log income growth, which are normally distributed

under our assumptions, with mean µg � µ�x (where x is the current log income), and variance

σ2
g � σ2. Given estimates of µg and σ2

g, we then recover estimates of µ and σ2.

Let 	pj denote the fraction of points the respondent assigns to bin j (out of 100 points), for j �

1, ..., J , where J � 12. For each bin, one could interpret 	pj as the probability that a N �µg, σ
2
g�

draw takes values within the interval corresponding to that bin. Under this interpretation, one

could estimate µg and σg using maximum likelihood or minimum distance given the fractions

	pj. However, this approach does not work well in practice since many of the 	pj’s are exactly 0

or 1.

Instead of assuming that respondents report exact, normality-based probabilities, we follow

Arellano, Bonhomme, De Vera, Hospido, and Wei (2022) and assume that, when answering the

survey expectations questions, individuals sample M draws from their underlying N �µg, σ
2
g�

distribution, and use those draws to provide their answers 	pj. Given that, in the survey, indi-

viduals are asked to distribute 100 points among the 12 bins, we take M � 100 as our baseline.
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other regularization devices, including different M values, and found only minor impacts on

the results (see Section E of this appendix).

Given the regularized responses 
pj in (A9), we then construct the cumulative probabilities,


cj �
j

k�1 
pk, and estimate µg and σg based on the following system of linear equations:

Φ�1
�
cj� � σg � µg � vj, j � 1, ..., J � 1, (A10)

where vj correspond to the right endpoint of the j-th bin, and Φ denotes the standard normal

cdf. Since the first and last bins in the survey question are unbounded, we add bounds to those

(-10% for the bin below 0%, and 35% for the bin above 25%).2 This amounts to working with

14 bins in total. We then estimate µg and σg using OLS based on a subset of the equalities in

(A10). Specifically, we use all the bins j for which 	pj  0, and use in addition one unbounded

bin to the left and one unbounded bin to the right of those. The reason for only using a subset

of the restrictions in (A10) is to reduce the influence of the regularization for bins with 	pj � 0.3

As an example, consider an individual who assigns 60 points to the 5–6% bin, and 40 points

to the 6–7% bin. In this case we use the intervals (0.05,0.06) and (0.06,0.07), both of which

have positive 	pj, and we add the intervals (��,0.05) and (0.07,��), to the left and to the

right, respectively. We then compute the sums of the 
pj in (A9), in each of these four intervals.

Lastly, we use these cumulative probabilities to estimate µg and σg by OLS. Since, in the

fourth interval, the cumulative probability is equal to 1, in this example we only rely on three

independent linear restrictions to estimate µg and σg.

Last two waves. For the 1995–1998 waves, we use the survey expectations questions to

estimate the mean µ and variance σ2 of log income beliefs directly (since in these waves the

questions are about income, not income growth). We interpret the answers as probabilities

assigned to two bins (between the minimum and the mid-point, and between the mid-point and

the maximum). As in the 1989–1991 waves, we add two additional bins, one below the reported

minimum and another one above the reported maximum, which amounts to be working with 4

bins in total. These additional bins have a positive but low probability 
pj �
1

2M�4
, which might

reflect that respondents interpret the minimum and maximum questions as asking them to

report quantiles of their distributions (see Delavande, Giné, and McKenzie, 2011). In the 1995–

1998 waves, the locations and widths of the bins come from individuals’ responses, providing

2We verified that our estimates of the log consumption function remain similar when using different bounds,

and when excluding observations that assign all points to the first or last bin.
3We found that using all bins with �pj 	 0 tended to artificially increase the variance of estimated beliefs.
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more information to capture beliefs, in particular beliefs with very small variance. For example,

when the reported minimum and maximum coincide, the implied estimate of σ is equal to zero.

Descriptives and predictive power. In Table H4 we provide descriptive statistics about

the beliefs that we estimate and the main variables in the consumption equation.

In Table H5 we assess the predictive power of these beliefs: we regress log�wi,t�1� in columns

(1) to (4), and log�wi,t�1� � log�wit� in columns (5) to (8), as functions of the estimated mean

beliefs µit and other controls. In this table, we use log individual income as our dependent

variable. The estimates suggest that individual beliefs predict future income, even conditional

on current income.

E Robustness checks

In this section of the appendix we provide several robustness checks for the estimation of the

consumption function.

In columns (1) and (2) in Table H6 we show the estimates are robust to relying on dif-

ferent distributional assumptions for beliefs: a discrete distribution for waves 1989–1991 (as

in Pistaferri, 2001), and a triangular distribution for waves 1995-1998 (as in Kaufmann and

Pistaferri, 2009). In columns (3) to (6) we show that estimates are robust to the value of M

used for estimation (see (A9), where the baseline corresponds to M � 100). In columns (7) and

(8) we also control for the spouse’s beliefs about their own income, when available.4 Results

remain virtually unchanged, and spousal beliefs don’t appear to play a major role in household

consumption for this sample.

In Table H7 we estimate the consumption function, focusing on the specification with mean

beliefs interacted with log current income, separately for waves 1989–1991 and 1995–1998.5 The

point estimates are different in the two samples, with a larger effect of beliefs in the 1995-1998

waves. However, in both cases beliefs play a significant role in household consumption.6

4When spousal beliefs are not available, we set the variable to zero and add binary indicators for missingness,

distinguishing between spouses that are homemakers, employed, or other labor status. Note that only 32% and

17% of the 768 households in columns (7) and (8), respectively, are households where data on spousal beliefs

are available in at least one or in both waves.
5In each pair of waves, we also control for other expectations questions available: inflation expectations in

1989–1991, and expectations about future employment in 1995–1998.
6Using the 1995–1998 waves, we also estimated the consumption function including unemployed household

heads in the sample and controlling for beliefs about future employment, and found similar results. In the

1989–1991 waves expectations questions were not asked to the unemployed.
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Lastly, in Table H8 we present estimates obtained under different approaches for dealing

with assets. As mentioned in the main text, the estimates of current income and income beliefs

are quite similar across specifications, although we see some quantitative differences, especially

in the case of the IV specification in columns (3) and (4).

F Measurement error

In this section of the appendix we describe how we correct for measurement error in the beliefs

responses, by relying on the 1989–1991 waves. In our baseline specification, we estimate the

mean and variance of beliefs by relying on a model that assumes individuals draw M � 100

different scenarios from their underlying beliefs to answer the expectations questions (see Sub-

section D.2 of this appendix). This choice is motivated by the format of the questions, where

respondents are asked to distribute 100 points among the bins.

However, this model may not provide a good approximation to the response process of indi-

viduals when answering the questions in the SHIW. In fact, it is possible that respondents are

only able to imagine a smaller number M � 100 of “income growth scenarios”, corresponding

to events that they expect might happen in the next year, such as a promotion or a demo-

tion, a job change, etc. To provide empirical support for this possibility, we predict, for each

respondent, the number of non-empty bins reported by the respondent under the model, for

various values of M . The estimates in Table H9 show that taking M � 100 implies that, on

average, respondents should report 3.6 non-empty bins, while in the data this number is only

1.7. Besides, the table shows that taking smaller values of M provides a better approximation

to the distribution of the number of non-empty bins across individuals.

With this motivation, here we entertain an alternative parametric model for the responses,

where individuals draw M � 100 values from a N �µg, σ
2
g�, and distribute those among the

bins.7 Given this model, we propose a correction for measurement error and apply it to revisit

our baseline estimates of the consumption function (see Table 2). Our approach is based on

a “small-σ” approximation (e.g., Evdokimov and Zeleneev, 2022). Given that, for a given M

value, the model of measurement error is parametric, the correction can be implemented using

a simple parametric bootstrap method, which we now describe.8

7In the model of measurement error that we propose, M is constant across individuals. An alternative model

would let Mi vary across individuals. Manski and Molinari (2010) exploit repeated responses by the same

individual to infer individual types of measurement error in responses.
8Since the measurement error model is parametric, one could alternatively rely on an exact approach for

deconvolving the measurement error, without the need for an approximation. An advantage of the specific
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mean and variance of beliefs by relying on a model that assumes individuals draw M � 100

different scenarios from their underlying beliefs to answer the expectations questions (see Sub-

section D.2 of this appendix). This choice is motivated by the format of the questions, where

respondents are asked to distribute 100 points among the bins.

However, this model may not provide a good approximation to the response process of indi-

viduals when answering the questions in the SHIW. In fact, it is possible that respondents are

only able to imagine a smaller number M � 100 of “income growth scenarios”, corresponding

to events that they expect might happen in the next year, such as a promotion or a demo-

tion, a job change, etc. To provide empirical support for this possibility, we predict, for each

respondent, the number of non-empty bins reported by the respondent under the model, for

various values of M . The estimates in Table H9 show that taking M � 100 implies that, on

average, respondents should report 3.6 non-empty bins, while in the data this number is only

1.7. Besides, the table shows that taking smaller values of M provides a better approximation

to the distribution of the number of non-empty bins across individuals.

With this motivation, here we entertain an alternative parametric model for the responses,

where individuals draw M � 100 values from a N �µg, σ
2
g�, and distribute those among the

bins.7 Given this model, we propose a correction for measurement error and apply it to revisit

our baseline estimates of the consumption function (see Table 2). Our approach is based on

a “small-σ” approximation (e.g., Evdokimov and Zeleneev, 2022). Given that, for a given M

value, the model of measurement error is parametric, the correction can be implemented using

a simple parametric bootstrap method, which we now describe.8

7In the model of measurement error that we propose, M is constant across individuals. An alternative model

would let Mi vary across individuals. Manski and Molinari (2010) exploit repeated responses by the same

individual to infer individual types of measurement error in responses.
8Since the measurement error model is parametric, one could alternatively rely on an exact approach for

deconvolving the measurement error, without the need for an approximation. An advantage of the specific
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We consider the specification of the consumption function in column (3) of Table H7, which

only accounts for mean beliefs. We draw S � 1, 000 samples where, for each respondent, we

draw M observations from a N �	µg, 	σ
2
g�, for 	µg and 	σ2

g our original estimates of µg and σ2
g,

respectively. This gives us simulated responses 	p
�s�
j , for each sample s, from which we estimate

µg and σg and, based on those, the coefficients of the consumption function, exactly in the same

way as we did to obtain the estimates in Table H7.9 Let 	β
�s�

denote the estimated coefficients

in this last regression. We then construct the bootstrapped bias-corrected counterpart to the

original coefficients 	β
OLS

as

	β
BC

� 2	β
OLS

�

1

S

S
�

s�1

	β
�s�
.

We repeat this exercise for values of M between 1 and 100.

In Figure H3 we report the bias-corrected estimator 	β
BC

for two of the regression parameters:

the coefficient of the mean income beliefs, and the coefficient of current log income. We report

the results for different values of M . The figure shows that the results are fairly robust to this

form of measurement error, with 	β
BC

and 	β
OLS

being close to each other irrespective of M . In

addition, the variability induced by this form of measurement error, as captured by the dashed

lines in the figure, appears moderate.

G Tax counterfactuals: details about estimation

In this section of the appendix we detail the calculations of tax counterfactuals and present

additional empirical estimates.

G.1 Tax schedule

We assume the tax schedule takes the parametric form T � 
wr� � 
wr � λ 
w1�τ
r , where 
wr denotes

gross income in multiples of its population average, as in Benabou (2002). This parametric

form can be re-written as a similar function that depends on gross income 
w, with the same

parameter τ but a different parameter 
λ.10 For the baseline level of the tax, we rely on the

estimates obtained by Holter, Krueger, and Stepanchuk (2019) for Italy, averaged over family

composition characteristics in our sample: λ0 � 0.94 and τ 0 � 0.196.

approach that we implement here is its simplicity.
9In particular, we still consider a likelihood model with 100 trials and an uninformative prior.

10Specifically, �λ 	 λKτ , for K the average gross income in the population.
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Let λ1 and τ 1 denote the parameters defining the tax schedule under a counterfactual

scenario. We assume the tax schedule applies to gross family income, and that each individual

pays taxes proportionally to their contribution in the family, rit, a proportion we assume does

not change in counterfactual scenarios. Let x1it denote log family income and (µ1it,σ
2
1it) denote

the parameters of income beliefs under a counterfactual scenario. Let (x0it, µ0it, σ
2
0it) denote

their baseline values, observed in sample. In this case,

µ1it � µ0it �

�

log�
λ1� �
�1� τ 1�

�1� τ 0�
log�
λ0�

�

�

�τ 0 � τ 1�

�1� τ 0�
µ0it � log�rit�

τ 1 � τ 0
1� τ 0

,

σ2
1it � σ2

0it � σ2
0it

�

�1� τ 1�
2

�1� τ 0�2
� 1

�

,

x1it � x0it � log�
λ1� � log�
λ0� �

�

x0it � log�
λ0�

1� τ 0

�

�τ 0 � τ 1�.

Given a counterfactual tax schedule (λ1, τ 1), we can use these values to compute average partial

effects.

We consider three counterfactual scenarios. In the transitory tax increase and permanent tax

increase counterfactuals, we set λ1 � λ0 � 0.1 and τ 1 � τ 0. In the regressivity counterfactual,

we set τ 1 � 0.142, the progressivity parameter of the tax system in France according to Holter,

Krueger, and Stepanchuk (2019), and set λ1 such that the tax change is revenue neutral.11

G.2 Double Lasso estimation

In this subsection we describe how we estimate the consumption function using the double Lasso

method introduced by Belloni, Chernozhukov, and Hansen (2014). Consider the equation,

yit � a�Ψ�sit� � βkkit � αi � εit, (A11)

where Ψ�sit� includes polynomial functions of the main covariates (age, log income, log assets,

and the income beliefs’ means and variances), and kit includes the other demographic controls.

Under this specification, an average partial effect corresponding to a counterfactual of interest

11Assuming that family gross income is log-normally distributed with parameters µ
�w and σ2

�w, a change in the

parameters of the tax system is revenue neutral if

log��λ1� � log��λ0� 	
1

2
σ2
�w

�

�1� τ0�
2
� �1� τ1�

2

�

� µ
�w�τ1 � τ0�.

Furthermore, µ
�w 	 �µx � log�λ̃0����1� τ0� and σ

�w 	 σx��1� τ0�, where µx and σ2
x are the mean and variance

of the log of disposable family income, which we estimate from the SHIW.

48

Let λ1 and τ 1 denote the parameters defining the tax schedule under a counterfactual

scenario. We assume the tax schedule applies to gross family income, and that each individual

pays taxes proportionally to their contribution in the family, rit, a proportion we assume does

not change in counterfactual scenarios. Let x1it denote log family income and (µ1it,σ
2
1it) denote

the parameters of income beliefs under a counterfactual scenario. Let (x0it, µ0it, σ
2
0it) denote

their baseline values, observed in sample. In this case,

µ1it � µ0it �

�

log�
λ1� �
�1� τ 1�

�1� τ 0�
log�
λ0�

�

�

�τ 0 � τ 1�

�1� τ 0�
µ0it � log�rit�

τ 1 � τ 0
1� τ 0

,

σ2
1it � σ2

0it � σ2
0it

�

�1� τ 1�
2

�1� τ 0�2
� 1

�

,

x1it � x0it � log�
λ1� � log�
λ0� �

�

x0it � log�
λ0�

1� τ 0

�

�τ 0 � τ 1�.

Given a counterfactual tax schedule (λ1, τ 1), we can use these values to compute average partial

effects.

We consider three counterfactual scenarios. In the transitory tax increase and permanent tax

increase counterfactuals, we set λ1 � λ0 � 0.1 and τ 1 � τ 0. In the regressivity counterfactual,

we set τ 1 � 0.142, the progressivity parameter of the tax system in France according to Holter,

Krueger, and Stepanchuk (2019), and set λ1 such that the tax change is revenue neutral.11

G.2 Double Lasso estimation

In this subsection we describe how we estimate the consumption function using the double Lasso

method introduced by Belloni, Chernozhukov, and Hansen (2014). Consider the equation,

yit � a�Ψ�sit� � βkkit � αi � εit, (A11)

where Ψ�sit� includes polynomial functions of the main covariates (age, log income, log assets,

and the income beliefs’ means and variances), and kit includes the other demographic controls.

Under this specification, an average partial effect corresponding to a counterfactual of interest

11Assuming that family gross income is log-normally distributed with parameters µ
�w and σ2

�w, a change in the

parameters of the tax system is revenue neutral if

log��λ1� � log��λ0� 	
1

2
σ2
�w

�

�1� τ0�
2
� �1� τ1�

2

�

� µ
�w�τ1 � τ0�.

Furthermore, µ
�w 	 �µx � log�λ̃0����1� τ0� and σ

�w 	 σx��1� τ0�, where µx and σ2
x are the mean and variance

of the log of disposable family income, which we estimate from the SHIW.

48



BANCO DE ESPAÑA 50 DOCUMENTO DE TRABAJO N.º 2405

is given by

a�
�

1

nT

�

i,t

�Ψ�
sit� �Ψ�sit��

�

where sit are the main covariates under the baseline, and 
sit are the main covariates under the

counterfactual.

Letting

v �
1

nT

�

i,t

�Ψ�
sit� �Ψ�sit��,

we first reparameterize the polynomials so that the average partial effect of interest coincides

with the coefficient of the first regressor. To that end, we construct an invertible matrix A whose

first column is equal to v.12 Then, we rewrite (A11) using the reparameterized polynomials


Ψ�sit� � A�1Ψ�sit�, and obtain

yit � �A�a�
�


Ψ�sit� � βkkit � αi � εit. (A12)

Note that the coefficient of the first covariate in (A12) is equal to a�v, which is the average

partial effect of interest.

To estimate a�v, we apply the double Lasso estimator to (A12). To account for household

fixed effects, we take first differences. We always include (i.e., we do not penalize) the following

regressors: the first order polynomials (age, log income, log assets, and the beliefs’ means and

variances), as well as the variables in kit (existence of a spouse, marital status, family size,

number of children 0-5, 6-13, 14-17 years old in the household, number of children outside the

household, number of income earners in the household, and a wave indicator).

The double Lasso method is implemented in two steps. In a first step, we apply the Lasso

to regress the first element in 
Ψ�sit� on its second to last elements and kit, in first differences.

In the second step, we again apply the Lasso to regress yit on the second to last elements

of 
Ψ�sit� and kit, in first differences. In both steps, we choose the penalty parameters by

10-fold cross-validation (Chetverikov, Liao, and Chernozhukov, 2021). Lastly, we regress yit

on the first element in 
Ψ�sit� and all the controls selected in the two Lasso steps, again in

first differences. We account for estimation uncertainty (in particular, for the fact that v is

estimated) by computing bootstrapped standard errors.

12For example, we set A 	 �v ι2.. ιL�, where ιℓ are the canonical vectors in RL and L 	 dimΨ, provided

such a matrix A is invertible.
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G.3 Empirical estimates

In Table H10 we report average partial effects based on OLS estimates of the consumption

function, and average partial effects based on the double Lasso. We show these in graphical form

in Figures H4 and H5, respectively. Overall, the results are quite consistent across specifications.

H Appendix tables and figures

Table H1: Simulated tax counterfactuals under rational and adaptive expectations by age

Age 26

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0663 -0.0599 -0.0599 -0.0599 -0.0331 -0.0318 -0.0313 -0.0315

DAPE -0.0471 -0.0550 -0.0543 -0.0540 -0.0509 -0.0536 -0.0536 -0.0535

TAPE -0.1134 -0.1149 -0.1142 -0.1139 -0.0840 -0.0854 -0.0849 -0.0850

Age 35

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0110 -0.0097 -0.0097 -0.0097 -0.0111 -0.0284 -0.0149 -0.0123

DAPE -0.0921 -0.0982 -0.0948 -0.0945 -0.0507 -0.0521 -0.0519 -0.0519

TAPE -0.1031 -0.1079 -0.1044 -0.1041 -0.0618 -0.0805 -0.0668 -0.0643

Age 45

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0058 -0.0062 -0.0062 -0.0061 -0.0078 -0.0337 -0.0139 -0.0084

DAPE -0.0794 -0.0877 -0.0821 -0.0805 -0.0479 -0.0508 -0.0490 -0.0491

TAPE -0.0852 -0.0939 -0.0883 -0.0866 -0.0557 -0.0846 -0.0629 -0.0575

Notes: See the notes to Table 1. Results by age.
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G.3 Empirical estimates

In Table H10 we report average partial effects based on OLS estimates of the consumption

function, and average partial effects based on the double Lasso. We show these in graphical form

in Figures H4 and H5, respectively. Overall, the results are quite consistent across specifications.

H Appendix tables and figures

Table H1: Simulated tax counterfactuals under rational and adaptive expectations by age

Age 26

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0663 -0.0599 -0.0599 -0.0599 -0.0331 -0.0318 -0.0313 -0.0315

DAPE -0.0471 -0.0550 -0.0543 -0.0540 -0.0509 -0.0536 -0.0536 -0.0535

TAPE -0.1134 -0.1149 -0.1142 -0.1139 -0.0840 -0.0854 -0.0849 -0.0850

Age 35

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0110 -0.0097 -0.0097 -0.0097 -0.0111 -0.0284 -0.0149 -0.0123

DAPE -0.0921 -0.0982 -0.0948 -0.0945 -0.0507 -0.0521 -0.0519 -0.0519

TAPE -0.1031 -0.1079 -0.1044 -0.1041 -0.0618 -0.0805 -0.0668 -0.0643

Age 45

Rational expectations Adaptive expectations

Structural
Semi-structural

Structural
Semi-structural

Linear Quadratic Spline Linear Quadratic Spline

CAPE -0.0058 -0.0062 -0.0062 -0.0061 -0.0078 -0.0337 -0.0139 -0.0084

DAPE -0.0794 -0.0877 -0.0821 -0.0805 -0.0479 -0.0508 -0.0490 -0.0491

TAPE -0.0852 -0.0939 -0.0883 -0.0866 -0.0557 -0.0846 -0.0629 -0.0575

Notes: See the notes to Table 1. Results by age.
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Table H2: Descriptive statistics on income expectations questions 1989–1991

Cross-sectional sample Panel sample

Obs P25 Mean P75 Obs P25 Mean P75

Income growth  25% 5,486 0 0.79 0 1,096 0 0.63 0

Income growth 20� 25% 5,486 0 0.85 0 1,096 0 1.18 0

Income growth 15� 20% 5,486 0 1.80 0 1,096 0 1.09 0

Income growth 13� 15% 5,486 0 2.72 0 1,096 0 2.92 0

Income growth 10� 13% 5,486 0 5.50 0 1,096 0 4.85 0

Income growth 8� 10% 5,486 0 8.22 0 1,096 0 8.50 0

Income growth 7� 8% 5,486 0 6.78 0 1,096 0 7.99 0

Income growth 6� 7% 5,486 0 7.70 0 1,096 0 9.01 0

Income growth 5� 6% 5,486 0 12.18 0 1,096 0 13.15 5

Income growth 3� 5% 5,486 0 20.49 30 1,096 0 20.16 30

Income growth 0� 3% 5,486 0 29.24 80 1,096 0 28.13 70

Income growth � 0% 5,486 0 3.72 0 1,096 0 2.39 0

Income growth - by how much if � 0% 163 3 10.05 10 15 1 12.18 12

Notes: Descriptive statistics are weighted using the survey’s weights.

Table H3: Descriptive statistics on income expectations questions 1995–1998

Cross-sectional sample Panel sample

Obs P25 Mean P75 Obs P25 Mean P75

Minimum amount expected to earn 2,310 13,515.1 18,401.7 20,503.5 550 14,645.4 18,866.1 21,968.1

Maximum amount expected to earn 2,310 16,109.9 21,363.3 23,798.7 550 16,893.8 21,551.2 24,897.1

Prob. of earning less than half 2,302 40.00 50.73 70.00 548 30.00 50.75 70.00

Notes: Amounts are in 2010 euros. Descriptive statistics are weighted using the survey’s weights.
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Table H4: Descriptive statistics

Cross-sectional sample Panel sample

Obs P25 Mean P75 Obs P25 Mean P75

Log family consumption 7,796 9.78 10.05 10.31 1,646 9.78 10.07 10.33

Log family assets 7,496 10.03 11.04 12.18 1,587 10.33 11.21 12.28

Log family income 7,795 10.03 10.39 10.74 1,645 10.07 10.43 10.79

Log individual income 7,791 9.69 9.87 10.07 1,644 9.73 9.91 10.11

Mean expected log income 7,796 9.72 9.92 10.13 1,646 9.75 9.96 10.16

SD expected log income 7,796 0.005 0.015 0.017 1,646 0.005 0.015 0.017

Notes: Amounts are in 2010 euros. Descriptive statistics are weighted using the survey’s weights. Individual

income excludes property income and income from transfers. Individual-level variables (i.e., income and income

expectations) corresponds to the household head.

Table H5: Predictive power of income beliefs

log�wi,t�1� log�wi,t�1� � log�wit�

(1) (2) (3) (4) (5) (6) (7) (8)

Mean expected log income 0.596 0.367

(0.036) (0.082)

Mean expected change in log income 0.659 0.367

(0.116) (0.082)

Log individual income 0.566 0.239 -0.434 -0.394

(0.041) (0.083) (0.041) (0.038)

Sample 1989-1998 1989-1998 1989-1998 1989-1998 1989-1998 1989-1998 1989-1998 1989-1998

Controls Yes Yes Yes Yes Yes Yes Yes Yes

N observations 2,994 2,994 2,994 2,994 2,994 2,994 2,994 2,994

R-squared 0.290 0.466 0.460 0.470 0.047 0.098 0.196 0.211

Notes: SHIW, 1989–1991 and 1995–1998. Regression for household heads. Controls include age and age squared,

gender, education, indicator of spouse, marital status, family size, number of children 0-5, 6-13, 14-17 years old

in the household, number of children outside the household, area, number of income earners in the household,

and a wave indicator. Regression estimates are weighted using survey weights. Standard errors (shown in

parenthesis) are clustered at the household level.
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Table H6: Estimates of the log consumption function: robustness checks

(1) (2) (3) (4) (5) (6) (7) (8)

Mean expected log income head 0.235 0.229 0.237 0.230 0.235 0.229 0.245 0.242

(0.095) (0.093) (0.095) (0.094) (0.095) (0.093) (0.095) (0.093)

(Mean expect. log income head)�(Log family income) 0.106 0.105 0.104 0.103

(0.061) (0.061) (0.061) (0.062)

Mean expected log income spouse 0.018 -0.022

(0.054) (0.064)

(Mean expect. log income spouse)�(Log family income) 0.011

(0.009)

Log family income 0.438 0.438 0.438 0.438 0.439 0.439 0.428 0.439

(0.091) (0.090) (0.090) (0.089) (0.089) (0.089) (0.091) (0.091)

Log family assets 0.016 0.017 0.018 0.019 0.018 0.019 0.018 0.020

(0.024) (0.024) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)

Household fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Distribution assumption Disc - Triang Disc - Triang Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal

M draws 10 10 50 50 100 100

N observations 1,514 1,514 1,536 1,536 1,536 1,536 1,536 1,536

N households 757 757 768 768 768 768 768 768

R-squared 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

Pvalue F beliefs head 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01

Pvalue F beliefs spouse 0.74 0.45

Pvalue F beliefs head and spouse 0.04 0.04

Notes: SHIW, regression for household heads. In columns (1) and (2) we assume a different distribution of

beliefs (discrete distribution in waves 1989–1991 and triangular distribution in waves 1995–1998). In columns

(3) to (6) we vary the number M of draws used in estimation. In columns (7) and (8), we add spouse’s beliefs (for

spouses that are employees and have beliefs questions, and 0 for everyone else). The expectations variables and

log family income are centered around the weighted average in the sample. Controls include age and age squared,

existence of a spouse, marital status, family size, number of children 0-5, 6-13, 14-17 years old in the household,

number of children outside the household, number of income earners in the household, and a wave indicator. In

columns (7) and (8), we also control for a categorical variable indicating spousal situation (no spouse, spouse

is homemaker, spouse is employee with beliefs questions, spouse is employee without beliefs questions, other).

Regression estimates are weighted using survey weights. Standard errors (shown in parenthesis) are clustered at

the household level.
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Table H7: Estimates of the log consumption function by wave

(1) (2) (3) (4) (5) (6)

Mean expected log income 0.235 0.229 0.212 0.242 0.323 0.342

(0.094) (0.093) (0.110) (0.108) (0.171) (0.172)

(Mean expect. log income)�(Log family income) 0.104 0.113 -0.125

(0.061) (0.060) (0.177)

Log family income 0.439 0.439 0.461 0.442 0.277 0.264

(0.089) (0.089) (0.101) (0.100) (0.169) (0.168)

Log family assets 0.018 0.019 0.046 0.048 -0.063 -0.060

(0.023) (0.023) (0.027) (0.026) (0.039) (0.039)

Sample 1989-1998 1989-1998 1989-1991 1989-1991 1995-1998 1995-1998

Household fixed effect Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

N observations 1,536 1,536 962 962 512 512

N households 768 768 481 481 256 256

R-squared 0.26 0.26 0.35 0.37 0.16 0.17

Pvalue F beliefs 0.01 0.02 0.05 0.03 0.06 0.14

Notes: SHIW, regression for household heads. The expectations variables and log family income are centered

around the weighted average in the sample. Controls include age and age squared, existence of a spouse, marital

status, family size, number of children 0-5, 6-13, 14-17 years old in the household, number of children outside the

household, number of income earners in the household, and a wave indicator. When available, we also control

for other expectations variables: columns (3) and (4) also control for mean expected inflation, and columns (5)

and (6) also control for the beliefs about the probability of being employed next year. Regression estimates are

weighted using survey weights. Standard errors (shown in parenthesis) are clustered at the household level.
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Table H8: Estimates of the log consumption function: robustness to assets

(1) (2) (3) (4) (5) (6) (7) (8)

Mean expected log income 0.245 0.238 0.167 0.159 0.191 0.186 0.223 0.216

(0.097) (0.095) (0.107) (0.106) (0.091) (0.089) (0.096) (0.095)

(Mean expect. log income)�(Log family income) 0.095 0.093 0.038 0.102

(0.061) (0.062) (0.068) (0.060)

Log family income 0.410 0.413 0.642 0.648 0.494 0.499 0.475 0.476

(0.097) (0.097) (0.144) (0.144) (0.096) (0.095) (0.097) (0.096)

Log family assets 0.033 0.032 -0.084 -0.087

(0.032) (0.032) (0.055) (0.054)

(Log family assets)2 0.007 0.006

(0.006) (0.006)

Log (family assets - savings) 0.051 0.050

(0.022) (0.022)

Household fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes Yes Yes

IV No No Yes Yes No No No No

N observations 1,536 1,536 1,536 1,536 1,404 1,404 1,536 1,536

N households 768 768 768 768 702 702 768 768

R-squared 0.26 0.26 . . 0.33 0.33 0.26 0.26

Pvalue F beliefs 0.01 0.02 0.12 0.13 0.04 0.11 0.02 0.02

Pvalue first stage 0.00 0.00

Notes: SHIW, regression for household heads. In columns (1) and (2) we control for log assets squared. In

columns (3) and (4) we instrument the difference of log family assets by first-period assets and income. In

columns (5) and (6) we replace end-of-year family assets by end-of-year family assets minus savings during the

year. Lastly, in columns (7) and (8) we do not include any controls for assets. The expectations variables and

log family income are centered around the weighted average in the sample. Controls include age and age squared,

existence of a spouse, marital status, family size, number of children 0-5, 6-13, 14-17 years old in the household,

number of children outside the household, number of income earners in the household, and a wave indicator.

Regression estimates are weighted using survey weights. Standard errors (shown in parenthesis) are clustered at

the household level.
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Table H9: Predicted distribution of number of bins by number of draws M

Number of bins with non-zero frequencies

1 2 3 4 5 6 7 8 9 10 11 12 Mean

Data 0.59 0.24 0.09 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.75

M � 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

M � 2 0.68 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32

M � 3 0.57 0.35 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.51

M � 4 0.50 0.36 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.66

M � 5 0.45 0.37 0.14 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.78

M � 6 0.42 0.37 0.15 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.88

M � 7 0.39 0.37 0.16 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96

M � 8 0.36 0.38 0.16 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 2.03

M � 9 0.34 0.38 0.17 0.07 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 2.10

M � 10 0.32 0.39 0.18 0.07 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 2.16

M � 20 0.17 0.41 0.24 0.09 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 2.59

M � 30 0.09 0.39 0.30 0.11 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.00 2.87

M � 40 0.05 0.36 0.34 0.13 0.06 0.03 0.02 0.01 0.00 0.00 0.00 0.00 3.07

M � 50 0.03 0.31 0.38 0.14 0.07 0.04 0.02 0.01 0.00 0.00 0.00 0.00 3.22

M � 60 0.01 0.28 0.41 0.15 0.07 0.04 0.02 0.01 0.00 0.00 0.00 0.00 3.33

M � 70 0.01 0.24 0.43 0.16 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 3.42

M � 80 0.00 0.21 0.45 0.16 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 3.49

M � 90 0.00 0.19 0.46 0.16 0.09 0.04 0.03 0.01 0.01 0.00 0.00 0.00 3.55

M � 100 0.00 0.16 0.48 0.17 0.09 0.05 0.03 0.01 0.01 0.00 0.00 0.00 3.61

Notes: SHIW, 1989–1991, sample from column (3) in Table H7. Each row reports the simulated distribution

of the number of non-empty bins in data simulated from a measurement error model with M draws, averaged

across observations and S 	 1, 000 simulations.
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Table H10: Average partial effects estimates

Quintile
Transitory tax counterfactual Permanent tax counterfactual Regressivity counterfactual

CAPE DAPE TAPE CAPE DAPE TAPE CAPE DAPE TAPE

A. OLS estimates

1 -0.0449 0.0000 -0.0449 -0.0449 -0.0160 -0.0608 -0.0257 -0.0097 -0.0355

(0.0105) (0.0000) (0.0105) (0.0105) (0.0119) (0.0118) (0.0063) (0.0077) (0.0079)

2 -0.0482 0.0000 -0.0482 -0.0482 -0.0209 -0.0691 -0.0158 -0.0088 -0.0246

(0.0102) (0.0000) (0.0102) (0.0102) (0.0108) (0.0091) (0.0034) (0.0043) (0.0035)

3 -0.0489 0.0000 -0.0489 -0.0489 -0.0242 -0.0731 -0.0075 -0.0057 -0.0132

(0.0102) (0.0000) (0.0102) (0.0102) (0.0105) (0.0086) (0.0016) (0.0024) (0.0019)

4 -0.0498 0.0000 -0.0498 -0.0498 -0.0274 -0.0771 0.0005 -0.0023 -0.0018

(0.0103) (0.0000) (0.0103) (0.0103) (0.0106) (0.0088) (0.0004) (0.0009) (0.0011)

5 -0.0528 0.0000 -0.0528 -0.0528 -0.0321 -0.0849 0.0138 0.0047 0.0185

(0.0105) (0.0000) (0.0105) (0.0105) (0.0114) (0.0108) (0.0028) (0.0018) (0.0027)

Total -0.0489 0.0000 -0.0489 -0.0489 -0.0241 -0.0730 -0.0070 -0.0044 -0.0113

(0.0102) (0.0000) (0.0102) (0.0102) (0.0105) (0.0086) (0.0018) (0.0027) (0.0026)

B. Double Lasso estimates

1 -0.0371 0.0000 -0.0371 -0.0371 -0.0102 -0.0473 -0.0207 -0.0091 -0.0298

(0.0264) (0.0000) (0.0264) (0.0264) (0.0205) (0.0259) (0.0174) (0.0308) (0.0333)

2 -0.0438 0.0000 -0.0438 -0.0438 -0.0250 -0.0688 -0.0138 -0.0111 -0.0249

(0.0153) (0.0000) (0.0153) (0.0153) (0.0159) (0.0162) (0.0052) (0.0221) (0.0225)

3 -0.0455 0.0000 -0.0455 -0.0455 -0.0277 -0.0733 -0.0064 -0.0063 -0.0127

(0.0127) (0.0000) (0.0127) (0.0127) (0.0116) (0.0105) (0.0018) (0.0097) (0.0096)

4 -0.0452 0.0000 -0.0452 -0.0452 -0.0276 -0.0728 0.0008 -0.0022 -0.0013

(0.0146) (0.0000) (0.0146) (0.0146) (0.0113) (0.0125) (0.0004) (0.0165) (0.0165)

5 -0.0494 0.0000 -0.0494 -0.0494 -0.0262 -0.0756 0.0135 0.0035 0.0170

(0.0179) (0.0000) (0.0179) (0.0179) (0.0126) (0.0165) (0.0061) (0.0759) (0.0760)

Total -0.0452 0.0000 -0.0452 -0.0452 -0.0276 -0.0729 -0.0052 -0.0056 -0.0108

(0.0129) (0.0000) (0.0129) (0.0129) (0.0126) (0.0113) (0.0041) (0.0186) (0.0189)

Notes: SHIW, 1989–1991 and 1995–1998, cross-sectional sample. In the top panel we report results based on

OLS estimates, see column (5) in Table 2. In the bottom panel we report estimates based on the double/debiased

Lasso, for a dictionary including interactions and power of the covariates up to the third order. Standard errors

are based on 1,000 bootstrap replications.
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Figure H1: Policy rules by type of expectations and age

A. Rational expectations

(a) 26 years old (b) 35 years old (c) 45 years old
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B. Adaptive expectations

(a) 26 years old (b) 35 years old (c) 45 years old
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Notes: The top panel plots policy rules under rational expectations and the bottom panel plots policy rules under

adaptive expectations. The horizontal axes show log income and mean beliefs, and the vertical axis shows log

consumption. In each figure, assets are fixed at the median value among simulated cases with positive assets.

The colors represent the number of observations in the corresponding simulated data set.
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Figure H2: Simulation results, rational versus adaptive expectations

A. Consumption

(a) Mean (b) Variance
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Notes: Simulations results based on the structural model. Black lines are results under rational expectations,

blue lines are results under adaptive expectations.

59



BANCO DE ESPAÑA 61 DOCUMENTO DE TRABAJO N.º 2405

Figure H3: Bias-corrected coefficients of mean beliefs and log income

(a) β for mean income beliefs (b) β for current log income
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Notes: SHIW, 1989–1991, sample from column (3) in Table H7. The horizontal dotted lines show the corre-

sponding elements of �β
OLS

from column (3) in Table H7. The solid lines show �β
BC

, and the dashed lines add a

band of plus or minus twice the standard deviation of �β
�s�

across simulations. 1, 000 simulations.

60



BANCO DE ESPAÑA 62 DOCUMENTO DE TRABAJO N.º 2405

Figure H4: Average partial effects estimates (OLS)

A. Mean beliefs only

(a) Transitory tax (b) Permanent tax (c) Regressivity
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B. Mean beliefs interacted with current log income

(d) Transitory tax (e) Permanent tax (f) Regressivity
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C. Mean and variance of beliefs interacted with current log income

(g) Transitory tax (h) Permanent tax (i) Regressivity
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Notes: SHIW, 1989–1991 and 1995–1998, cross-sectional sample. Black bars correspond to contemporaneous

APE and grey bars correspond to dynamic APE. Total APE are the sums of CAPE and DAPE. The top panel

is based on column (2) in Table 2, the middle panel on column (4), and the bottom panel on column (5).
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Figure H5: Average partial effects estimates (Lasso)

A. Double Lasso estimates, degree 2

(a) Transitory tax (b) Permanent tax (c) Regressivity
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B. Double Lasso estimates, degree 3

(d) Transitory tax (e) Permanent tax (f) Regressivity
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C. Double Lasso estimates, degree 4

(g) Transitory tax (h) Permanent tax (i) Regressivity
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Notes: SHIW, 1989–1991 and 1995–1998, cross-sectional sample. Black bars correspond to contemporaneous

APE and grey bars correspond to dynamic APE. Total APE are the sums of CAPE and DAPE. Double Lasso

estimates. The top panel is based on polynomials of degree 2, the middle panel on polynomials of degree 3, and

the bottom panel on polynomials of degree 4.
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