THE EFFECT OF THE EUROPEAN CENTRAL BANK’S ASSET PURCHASE PROGRAMMES ON SPAIN’S PUBLIC FINANCES

Pablo A. Aguilar, Mario Alloza, James Costain, Samuel Hurtado and Jaime Martínez-Martín

Documento Ocasional
N.° 2409
THE EFFECT OF THE EUROPEAN CENTRAL BANK’S ASSET PURCHASE PROGRAMMES ON SPAIN’S PUBLIC FINANCES
THE EFFECT OF THE EUROPEAN CENTRAL BANK’S ASSET PURCHASE PROGRAMMES ON SPAIN’S PUBLIC FINANCES (*)

Pablo A. Aguilar
BANCO DE ESPAÑA

Mario Alloza
BANCO DE ESPAÑA

James Costain
BANCO DE ESPAÑA

Samuel Hurtado
BANCO DE ESPAÑA

Jaime Martínez-Martín
BANCO DE ESPAÑA

(*) The authors sincerely thank Ángel Gavilán, Pablo Hernández de Cos, Jorge Martínez-Pagés, Carlos Thomas and the participants in the seminars of the Banco de España and the Eurosystem’s Working Group on Public Finance for their stimulating and useful comments. The views expressed in this article are those of the authors and do not necessarily represent the views of the Banco de España or the Eurosystem. No part of our compensation was, is or will be directly or indirectly related to the specific views expressed in this paper. All errors are our sole responsibility.

Documentos Ocasionales. N.º 2409
March 2024

https://doi.org/10.53479/36254
The Occasional Paper Series seeks to disseminate work conducted at the Banco de España, in the performance of its functions, that may be of general interest.

The opinions and analyses in the Occasional Paper Series are the responsibility of the authors and, therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem.

The Banco de España disseminates its main reports and most of its publications via the Internet on its website at: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.

© BANCO DE ESPAÑA, Madrid, 2024

ISSN: 1696-2230 (on-line edition)
Abstract

This paper empirically quantifies the effect on Spain’s public finances of the asset purchase programmes implemented in the euro area between 2015 and 2022. Specifically, it evaluates the impact of the ECB’s Asset Purchase Programme (APP) and Pandemic Emergency Purchase Programme (PEPP) on Spanish public revenue, expenditure, deficit and debt. The results suggest that these programmes have had a significant cumulative downward effect on the level of public debt.

Keywords: quantitative easing, asset purchase programmes, unconventional monetary policy, term structure models, signaling and portfolio balance effects, expectations channel, fiscal effects, Spain.

Resumen

Este documento ofrece una cuantificación empírica del efecto sobre las cuentas públicas en España de los programas de compras de activos implementados en el área del euro entre 2015 y 2022. En particular, se evalúa el impacto sobre los ingresos, los gastos, el déficit y la deuda pública de España del Asset Purchase Programme (APP) y el Pandemic Emergency Purchase Programme (PEPP). Los resultados sugieren que ambos programas habrían tenido un significativo efecto acumulado a la baja sobre la ratio de deuda pública.

Palabras clave: expansión cuantitativa, programas de compras de activos, política monetaria no convencional, modelo estructural de curva de tipos, efectos señalización y reequilibrio del balance, canal de expectativas, efectos fiscales, España.

Content

Abstract 5

Resumen 6

1 Introduction 8

2 The effects of asset purchases on long-term interest rates 12

3 Macroeconomic impact of asset purchases and their effect on public finances 17
 3.1 Models used and the role of expectations 17
 3.2 Fiscal channels in the MTBE 18
 3.3 Results 20

4 Conclusions 26

References 27
1 Introduction

Following the 2008 financial crisis, central banks in the main advanced economies adopted unconventional monetary policy measures, in response to a situation where medium-term inflation prospects were below their target levels and short-term interest rates – the conventional monetary policy instrument – were approaching their lower bound. Of note among such unconventional measures was the implementation of large-scale asset purchase programmes, which aimed to reduce medium- and long-term interest rates and thereby stimulate economic activity and support the return of inflation to its target level.

The economic literature has studied in depth the effects of asset purchase programmes on both financial conditions\(^1\) (including long-term interest rates) and economic activity and inflation.\(^2\) However, it has paid relatively little attention to the implications of such programmes for the public finances.

This paper quantifies the effect of the asset purchase programmes implemented in the euro area between 2015 and 2022 on Spain's public finances. In particular, it quantifies the impact on public revenue and expenditure of the balance sheet expansions carried out by the Eurosystem (i.e. the European Central Bank (ECB) and the euro area national central banks (NCBs), including the Banco de España) under the Asset Purchase Programme (APP) and the Pandemic Emergency Purchase Programme (PEPP).

These programmes affect the public finances through various channels. First, unconventional monetary policy operations affect the Eurosystem’s profit and loss account and, consequently, the dividends transferred by the NCBs to the respective national treasuries. In the case of Spain, operations related to asset purchase programmes between 2015 and 2022 led to an increase in gross interest income of €25.7 billion (see Chart 1).\(^3\) This allowed the Banco de España to transfer dividends to the Spanish Treasury amounting to almost 0.2% of Spain’s annual GDP on average over this period (see Chart 2). Yet despite these dividend distributions, this interest income also allowed the Banco de España to expand its provisions against future balance sheet risks. By the end of 2022, these provisions had risen to €33.64 billion.

1 See, for example, Gagnon, Raskin, Remache and Sack (2011) – which summarises the financial effects of the first major asset purchase programme (LSAP1) conducted by the Federal Reserve – and Krishnamurthy and Vissing-Jorgensen (2011) or Christensen and Rudebusch (2012). For the case of the United Kingdom, see Joyce, Lasaosa, Stevens and Tong (2011) and Breedon, Chandra and Waters (2012). For the euro area, see Eser and Schwab (2016), Eser, Lemke, Nyholm, Radde and Viadu (2023), De Santis and Holm-Hadulla (2020) and Altavilla, Carboni and Motto (2021).

2 See, for example, Gambetti and Musso (2017) for the euro area, Weale and Wieladek (2016) for the United States, and Kapetanios, Murtaz, Stevens and Theodoridis (2012) for the United Kingdom. For the case of Spain, see Aguilar, Arce, Hurtado, Martinez-Martin, Nuñ and Thomas (2020) and Aguilar, Arencibia, Costain, Hurtado, Martinez-Martin, Nuño and Thomas (2022).

3 Gross income from monetary policy operations does not take into account interest expenses associated with these operations (mainly the remuneration of reserves issued to finance asset purchases). However, even considering the recent increase in the average cost of liabilities incurred through monetary policy operations (including both the remuneration of the reserves held by financial institutions at the Banco de España and the deposit facility and the remuneration of the intra-Eurosystem accounts), which rose from -0.2% to 0.3% between 2021 and 2022, net income from the two purchase programmes remains high (at around €5.9 billion and €4.6 billion, respectively, not including the redistribution of the Eurosystem’s monetary income). These figures are reduced by the recent provisioning for financial risks, which, in net terms, amounted to €3.2 billion and €1.6 billion in 2021 and 2022, respectively, meaning that net income continued to stand at around €3 billion on the dates considered.
Looking ahead, as a result of the ECB’s recent monetary policy tightening cycle, dividends from NCBs are expected to decline significantly. On one hand, this reflects a deterioration in their profit and loss accounts due to higher remuneration paid to banks holding short-term deposits with NCBs. On the other hand, it also reflects lower income from portfolio assets (especially public debt), which are generating less interest income since they were acquired in a period of low interest rates and often have long maturities.4

Second, the fall in interest rates on public debt prompted by central bank asset purchases reduces the interest burden of that debt, and thus the total public deficit. For example, Burriel, Martí and Pérez (2017) find that the euro area’s unconventional monetary policy in 2014-2016 appears to have generated cumulative savings for the Spanish public finances of almost 1 percentage point (pp) of GDP, in the form of lower interest on public debt.

4 See Gros and Shamstokhr (2022) for a quantification of potential losses in the PSPP (the APP’s government bond purchase sub-programme) and PEPP portfolios for the period 2023-2024 in different euro area countries. For a technical explanation, see Esteban and Romo (2024).
However, the potential impact of asset purchase programmes on the public finances goes beyond the effect on dividends paid to the Treasury and the reduction of public debt costs. The reduction in interest rates leads to additional equilibrium effects on the public finances through its macroeconomic impact. This paper seeks to evaluate these latter macroeconomic transmission channels, together with the interest burden reduction channel.

The reported results should be taken with caution. First, this is a retrospective exercise that quantifies the impact up to 2022 of the ECB’s asset purchase programmes on Spain’s public finances, and it must not be assumed that the results can be applied symmetrically in the current setting of Eurosystem balance sheet reduction. Second, it must be kept in mind that an analysis of asset purchase programmes provides only a partial picture of the overall effects of monetary policy. The ongoing reduction in Eurosystem asset holdings coincides with the broader normalisation of the ECB’s monetary policy that began in December 2021, affecting not only its main instrument (policy interest rates) but also its targeted refinancing operations (TLTROs).

Lastly, measuring the macroeconomic impact of asset purchases poses analytical difficulties, as it requires a conceptual framework to analyse their propagation through the real economy via multiple channels. In particular, quantifying the impact of asset purchases on the public finances requires a quantitative modelling framework. This paper uses two analytical tools that seek to assess, first, the impact of asset purchases on long-term interest rates and, second, the impact that these rates have on the main macroeconomic variables, and thereby on the public sector’s various income and expenditure items. Figure 1 outlines the analytical strategy employed in this paper. In a first stage, discussed in the following section, the impact of asset purchases on financial conditions is quantified, focusing in particular on long-term interest rates on public debt. A second stage, discussed in section 3, analyses the effect of financial conditions on macroeconomic variables and, through these, on public revenue and expenditure, deficit and debt.
SOURCE: Banco de España.

Figure 1

Transmission channels of asset purchases for monetary policy purposes

<table>
<thead>
<tr>
<th>Stage 1: Transmission of financial conditions</th>
<th>Modelling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectations</td>
<td>Term structure model based on arbitrage Costain, Nuño and Thomas (2022)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2: Transmission to real economy and to fiscal variables</td>
<td></td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td></td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td>↓ Public debt</td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td>↓ Public debt-to-GDP ratio</td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td>↓ Net interest paid by gen. govt.</td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td>↓ Δ Pensions, social security</td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td>↓ Unemployment benefits</td>
</tr>
<tr>
<td>↓ Long-term sovereign bond yield</td>
<td>↓ Δ Household income (net)</td>
</tr>
<tr>
<td>Δ GDP</td>
<td>↓ Δ C, Δ p, Δ indirect tax</td>
</tr>
<tr>
<td>Δ Inflation</td>
<td>↓ Δ P, Δ corporate tax revenues</td>
</tr>
<tr>
<td>Δ Inflation</td>
<td></td>
</tr>
</tbody>
</table>

Impact of unconventional monetary policy calibrated using JoSE model + QE (DSGE for Spain and euro area as a whole)

Update and new estimation based on most recent data

Broader fiscal module
2 The effects of asset purchases on long-term interest rates

The purpose of Eurosystem asset purchases – purchases of public debt issued by governments and other euro area public sector institutions, as well as bonds from the safest corporate issuers – is to stimulate the economy by reducing the longer-term interest rates faced by households, firms and other economic agents. These long-term rates are the sum of three components: expectations of future short-term rates, the term premium and the default premium. Asset purchases affect each of these components in different ways.

First, through the signalling channel, bond purchases signal to markets the central bank’s commitment to engage in expansionary monetary policy. This changes market expectations about the future course of short-term interest rates, which in turn passes through to long-term rates.

Second, through the duration risk extraction channel, the central bank absorbs a portion of the duration risk on the market. Duration risk stems from the variability of the market prices of medium and long-term bonds over their term to maturity. When the central bank buys bonds from investors, it expands their capacity to absorb new risks. This reduces the market price of risk and thus also the term premium component of bond yields (i.e. the remuneration required by investors to assume duration risk).

Third, there is the risk that a bond issuer will default on its future payment obligations. To compensate for this risk, investors demand a default premium. As in the case of the term premium, central bank purchases shift this risk from private investors to the central bank, which reduces the default premium component of yields – a channel called “default risk extraction”.

The expansion of the APP and the creation and implementation of the PEPP increased the extraction of these risks, in the context of a sharp increase in the volume of debt issuance, offsetting the severe rise in long-term interest rates that would otherwise have occurred and thereby stimulating the economy.

This paper uses a structural model of the yield curve, designed to encompass both stock and flow effects of purchases, to estimate how the announcements of net purchases under the APP and PEPP programmes affected long-term rates in the Spanish economy. The model, described in Costain, Nuño and Thomas (2022), is based on the one developed by Vayanos and Vila (2021) to analyse the impact of quantitative easing (QE) in the United States. Unlike the latter, the framework of Costain, Nuño and Thomas (2022) is a multi-country model, calibrated to explain the behaviour of sovereign yield curves in the euro area both before and during the pandemic. It also incorporates the

6 The PEPP, together with the new purchases under the APP, increased the portfolio of the Eurosystem’s securities purchase programmes to around €5 trillion.
This model is used to perform a simulation based on the target paths announced in eight APP and three PEPP (re)calibration policy statements (see Table 1), for the period of portfolio expansion from 2015 to the end of net purchases in 2022. The announced purchase paths are summarised in Chart 3.a, and the different paths associated with each announcement are shown in Chart 3.b.\(^7\)

\(^7\) The ECB statements from December 2021 onwards, announcing reductions in the pace of PEPP and, later, APP purchases have not been considered, given the difficulties in identifying their effects.
The long-term interest rate paths associated with the announced paths of securities purchases are calculated using the model. The total impact on long-term interest rates calculated from the model is illustrated in Chart 4, and the impact is broken down with respect to the successive announcements in Chart 5. For each announcement, two alternative calibrations (high and low elasticity) are considered, to illustrate the range of uncertainty associated with the model simulations.

The high-elasticity calibration is based on the fall in Spanish 10-year bond yields observed after the PEPP announcement in March 2020 (-51 basis points (bp) in the two-day
Chart 4
Change in long-term bond yields (Spain)

4.a High elasticity

[Graph showing change in long-term bond yields (Spain) for high elasticity]

4.b Low elasticity

[Graph showing change in long-term bond yields (Spain) for low elasticity]

SOURCE: Banco de España.

Chart 5
Marginal impact on bond yield of each new announcement (per €100 bn), by elasticity

[Graph showing marginal impact on bond yield for high and low elasticity]

SOURCE: Banco de España.
window after the announcement, i.e. an effect of 68.7 bp for every €100 billion of Spanish bonds purchased). Applying the high-elasticity calibration to all the announcements of Spanish sovereign bond purchases between January 2015 and December 2020, which totalled €481 billion, results in a cumulative impact of 381 bp (see Chart 6.a). The low-elasticity calibration is based instead on the initial APP announcement on 22 January 2015, which, according to Chart 1 in Altavilla, Carboni and Motto (2021), was associated with a fall of 26 bp in Spanish 10-year bond yields on that day. However, markets were already anticipating an asset purchase programme before that day’s announcement. Using the December 2014 Bloomberg survey to infer the part already anticipated, we conclude that Spanish sovereign bond purchases in the first round of the APP, amounting to €114 billion, had an impact of 40.6 bp, i.e. 35.6 bp per €100 billion. Applying the low-elasticity calibration to the series of all purchase announcements, it is estimated that the announced purchases of €481 billion had a cumulative impact of 216 bp (see Chart 6.b).\(^8\)

In both cases, the impact observed in the data – and hence the impact inferred from the calibrated model – is substantially greater for Spain and Italy than for countries such as Germany or France.

\(^8\) However, it should be noted that this low elasticity probably represents an underestimation of the impact of the purchases. Analysing rate movements associated with all APP-related news between September 2014 and March 2015, and controlling for macroeconomic news, Altavilla, Carboni and Motto (2021) conclude that the impact of the first round of the APP was considerably greater, with an elasticity similar to that of the PEPP, as shown in their Table 2.
3 Macroeconomic impact of asset purchases and their effect on public finances

3.1 Models used and the role of expectations

Based on the results obtained in the previous section, the Quarterly Model of the Banco de España (MTBE, by its Spanish abbreviation) is used to estimate the effect of the asset purchase programmes on the main macroeconomic variables, and, through these, on several major public revenue and expenditure items. The MTBE is a large-scale macroeconometric model used for medium-term macroeconomic forecasting of the Spanish economy and for simulating counterfactual scenarios (simulations of economic policy measures, risk scenarios, etc.). The model is specified as a large set of error correction equations and, particularly in the short run, is mostly demand-driven.

An update of this model has recently been completed, with estimates based on more recent data (up to 2021 Q4) and incorporating changes in the specification of the models, most notably in that expectations about growth, inflation and the unemployment rate now appear explicitly in agents’ main behavioural equations (for consumption, investment in housing and equipment, employment, wages, prices, etc.). This indirectly overcomes a shortcoming of semi-structural models such as the MTBE, which are typically less equipped than micro-founded models to assess the impact of economic policy changes that are largely transmitted through expectations channels, as in the case of unconventional monetary policy.

The standard version of the new MTBE uses adaptive expectations: the model includes equations estimated using observed data, whereby changes in macroeconomic variables feed through to agents’ expectations. A second, more advanced, option (hereafter, “MTBE+CE”) is to use the model within a consistent expectations framework: simulations are performed in an iterative manner, using the expectations calculated in each iteration to determine the path for expectations in the next iteration, until the process converges and a simulation is obtained whereby the expected path for GDP, inflation and the unemployment rate is identical to that actually observed in the simulation. This represents a conceptual improvement with respect to adaptive expectations, but it may not be sufficient to assess the effects of economic policies in which communication and anticipation effects play an important role, such as unconventional monetary policy. In such cases, a micro-founded model using rational expectations might be preferable.

Thus, a third version of the analysis incorporates agents’ rational and forward-looking behaviour into the simulation, adding elements to the MTBE model that can approximate these channels (hereafter, the “MTBE+RE model”). To do so, a dynamic stochastic general equilibrium (DSGE) model is used to estimate the effect of quantitative easing (QE) measures

9 For further details, see Arencibia, Hurtado, De Luis and Ortega. (2017).
10 For example, an episode of high inflation raises medium-term price expectations, and higher interest rates reduce them. The coefficients determining the net effect are estimated using data from the period 2000-2019, taking various projection exercises conducted by the Banco de España in those years as the observed value for expectations.
on inflation and real GDP, to thereby calibrate the response of MTBE expectations to the same shock. The specific model used in the simulation is JoSE (Joint Spain-Euro Area), a large DSGE model developed for Spain and the euro area, which is designed to adequately reflect the transmission of the purchase programmes to financing costs and to agents’ decisions.\footnote{11} The JoSE model is calibrated to replicate the elasticity estimated with the yield curve model described in the previous section for the response of the seven-year sovereign bond yield (in line with the average residual maturity of Spanish bonds) to each of the ECB’s asset purchase announcements. Using the results of these JoSE simulations (for the cases of high and low elasticity) as the basis for disciplining the response of growth and inflation expectations in the semi-structural framework, the response of the model with adaptive expectations (MTBE) is made identical to that of the rational expectations model (JoSE), resulting in a new version that we call MTBE+RE. This maintains the advantages of the semi-structural model in terms of generating more fiscal detail in the simulation.

The exercise is performed twice for each version of the model (MTBE, MTBE+CE, MTBE+RE), with one simulation replicating the results of the high-elasticity calibration and the other replicating the low-elasticity case. In total, the effects of the 11 asset purchase announcements, proxying those made by the ECB for the two purchase programmes, are simulated six times (see Table 1). In the JoSE model, the simulation takes account of the announcements sequentially: initially, only the first announcement is simulated, without agents being able to anticipate any subsequent announcements. As the quarters progress, subsequent announcements are incorporated into expectations at the times they occurred. This distinction is particularly important in rational expectations models, such as JoSE, in which agents anticipate the future effects of the measures at the time of their announcement.\footnote{12}

3.2 Fiscal channels in the MTBE

In the latest version of the MBTE model, the relationships between macroeconomic variables and major public revenue and expenditure items have been updated in line with recent evidence. Compared with previous versions of the MTBE, the elasticities in the current model for some social security contributions, direct taxes on households and firms, and unemployment benefits are somewhat higher, with respect to their corresponding bases. In addition, the definition of the tax base for direct taxes on households is refined, the rule for the revaluation of pensions is modified to index them to the year-on-year inflation rate in the last quarter of the preceding year, and the rule for net interest payments by general government is updated.

These updates reinforce the MTBE’s advantage in terms of providing very detailed results for the different public revenue and expenditure items. Some of the channels incorporated in the model are:

\footnote{11} The JoSE model is particularly well equipped to estimate the effects of the QE measures on variables such as GDP or inflation, but it lacks the necessary disaggregation to analyse all the relevant fiscal variables. This is why the MTBE is used to calculate the effects on the public finances, relegating JoSE to the role of disciplining the estimation of the effects on growth and inflation.

\footnote{12} The simulations with JoSE at this stage of the analysis are similar to those presented in Aguilar, Arce, Hurtado, Martínez-Martín, Nuño and Thomas (2020) and Aguilar, Arenobia, Costain, Hurtado, Martínez-Martín, Nuño and Thomas (2022).
— The reduction in long-term rates reduces the net interest paid by the public sector.

— Higher prices translate into higher pensions, and this raises pensioners’ social security contributions.

— Higher employment reduces unemployment benefits.

— The rise in employment and in wages translates into higher social security contributions.

— Household income increases in net terms as a result of higher employment and higher wages, offset by higher social security contributions and lower net interest received from the public sector. This net increase in income passes through to direct taxes paid by households.

— Higher real private consumption and higher prices raise indirect tax revenues.

— Higher corporate profits in nominal terms translate into higher corporate tax revenues.

In addition, for this specific simulation exercise, three channels that are not normally incorporated into the MTBE have been added:

— Public-sector employment is exogenous (it does not respond to the other variables in the simulation, as is typically the case in the MTBE), but the non-market wage does react, to the same extent as the market wage.

— Real public consumption is exogenous (it does not respond to the other variables in the simulation, as is typically the case in the MTBE), but its deflator does react, to the same extent as the private consumption deflator.

— Real public investment is exogenous (it does not respond to the other variables in the simulation, as is typically the case in the MTBE), but its deflator does react, to the same extent as the private productive investment deflator.

These rules, although imperfect, seem more appropriate for capturing trends in the pressures on the public finances than the alternative under which all these variables (both real variables and their deflators) would be exogenous and unresponsive to shocks.

13 Public-sector wage setting is typically based on a multi-annual process. In practice, this means that inflation and public-sector wages are not highly correlated in the short term. Thus, both historically and in the sample used in this paper, the contemporaneous correlation between public and private wage growth is far higher (over 60%) than the correlations of these variables with contemporaneous or lagged growth in prices. This observation suggests that modelling public-sector wage developments based on private sector compensation developments is a plausible approximation.
3.3 Results

This revised and adapted version of the MTBE, under each of the expectations scenarios considered, is used to simulate a downward shock to long-term interest rates, consistent with that obtained from the yield curve model discussed in the previous section, for both the high and low elasticity scenarios.

Chart 7 summarises the results of these simulations for major macroeconomic variables, in terms of differences in price and wage growth rates, differences in percentage points for real variables, and differences as a percentage of GDP for fiscal variables. In keeping with previously published results, a significant effect on GDP growth and inflation is observed. In particular, under the rational expectations option (MTBE+RE), by construction, given that the JoSE model has been used to discipline the response of expectations, the results should be the same as those of Aguilar, Arce, Hurtado, Martínez-Martín, Nuño and Thomas (2020) and Aguilar, Arencibia, Costain, Hurtado, Martínez-Martín, Nuño and Thomas (2022). The consistent expectations option (MTBE+CE), which abstracts from the communication and anticipation channels included in the DSGE, gives rise to more limited effects, especially on prices, but also on real variables. The simulation based on adaptive expectations (MTBE) produces more moderate effects in all cases. However, the differences between the three formulations of expectations are smaller for fiscal variables, our main concern in this document.

Chart 8 shows the results of these simulations in terms of their revenue or expenditure effects for each of the fiscal variables considered in the MTBE, in millions of euro per year. The chart presents results for the high-elasticity calibration only, but considers all three expectations formation options (adaptive, consistent and rational). The results for the low elasticity calibration are presented in Table 2, together with the high elasticity results and with all the different expectations formation specifications. The table shows the cumulative effect on the fiscal variables over the entire 2015-2022 period.

According to the estimates of the model disciplined to include rational expectations elements, which is the most appropriate for assessing policies with strong communication and anticipation channels, QE measures in recent years reduced the current Spanish public debt by an amount ranging from €77.7 billion, under the low-elasticity interest rate calibration, to €130.9 billion, under the high-elasticity calibration. This represents between 5.9% and 9.9% of GDP in 2022 (depending on the elasticity used), but the impact of the QE measures on the debt-to-GDP ratio is even greater, since they also affected the denominator. According to the rational expectations model, without the QE programmes implemented in the euro area in recent years, the public debt-to-GDP ratio in Spain at end-2022 would have been between 13.3 pp and 21.3 pp higher.

The main channels through which these effects are transmitted are: (i) the reduction in the interest paid on public debt; (ii) the increase in revenues from various government receipt items due to higher growth and nominal GDP growth; and (iii) an increase in expenditure, related to higher prices and wages, which only partially offsets the effect of (ii).
When rational expectations derived from the JoSE model are not used to discipline the simulations, and the simulations are instead based on either the adaptive or consistent expectations version of the MTBE, the estimated cumulative effect on the public debt-to-GDP ratio at the end of 2022 falls, to between 5 pp and 11.4 pp. The reduction in the estimated effects is smaller when expressed in net or GDP terms than it
is when considering individual revenue and expenditure items, in euro, which are subject to greater uncertainty. That is, the assumptions that amplify the estimated effects on revenue items also increase them on expenditure and for GDP, which appears in the denominator. Therefore, the effect on the main variables of interest (the deficit or debt

SOURCE: Simulations using the yield curve model and the MTBE.
relative to GDP) is determined with greater precision than the effects on the intermediate variables individually.

In any event, these estimates may, to some extent, be considered a lower bound, as they do not incorporate two factors that may have caused QE measures to have an even greater impact on the public finances. First, the estimates described above do not incorporate the effect of having potentially averted a crisis of confidence in the Spanish economy. In the absence of QE measures, the higher public debt-to-GDP ratio could have led to a non-linear increase in the risk premium, or an abrupt fall in confidence in the Spanish economy. Such issues are not considered in this analysis. Second, these estimates do not incorporate the effect of having allowed a more flexible fiscal policy response, particularly at the onset of the pandemic, in 2020, when significant fiscal measures were implemented to mitigate its economic impact on households and firms. This flexibility might not have been possible if monetary policy had not provided sufficient fiscal space for such a response.
Chart 8
Effect of the QE measures on major public revenue and expenditure items in Spain

8.a Estimation with high elasticity, using adaptive expectations model (MTBE)

8.b Estimation with high elasticity, using consistent expectations model (MTBE + CE)

8.c Estimation with high elasticity, using rational expectations model (MTBE + RE)

SOURCE: Estimations based on the yield curve model and the MTBE with expectations disciplined by the JoSE model.
Table 2

Effect of the quantitative easing measures on public finances, considering three MTBE options

Billion euro, in cumulative terms for 2015-2022

<table>
<thead>
<tr>
<th></th>
<th>MTBE</th>
<th>MTBE+CE</th>
<th>MTBE+RE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low elasticity</td>
<td>High elasticity</td>
<td>Low elasticity</td>
</tr>
<tr>
<td>Social security contributions</td>
<td>6.1</td>
<td>10.4</td>
<td>11.0</td>
</tr>
<tr>
<td>Direct taxes on households</td>
<td>6.3</td>
<td>10.9</td>
<td>12.0</td>
</tr>
<tr>
<td>Direct taxes on firms</td>
<td>1.7</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Indirect taxes</td>
<td>7.6</td>
<td>13.1</td>
<td>15.0</td>
</tr>
<tr>
<td>Gross operating surplus - public sector</td>
<td>0.5</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Total revenue</td>
<td>22.3</td>
<td>38.3</td>
<td>42.7</td>
</tr>
<tr>
<td>Government consumption</td>
<td>4.7</td>
<td>8.0</td>
<td>11.1</td>
</tr>
<tr>
<td>Government investment</td>
<td>0.6</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Unemployment benefits</td>
<td>-5.3</td>
<td>-9.2</td>
<td>-8.7</td>
</tr>
<tr>
<td>Pensions</td>
<td>2.9</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Interest</td>
<td>-35.5</td>
<td>-58.4</td>
<td>-36.3</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>-32.7</td>
<td>-53.6</td>
<td>-24.6</td>
</tr>
<tr>
<td>Budget balance</td>
<td>54.9</td>
<td>91.9</td>
<td>67.3</td>
</tr>
</tbody>
</table>

SOURCE: Devised by authors.
4 Conclusions

This paper presents estimates of the impact of the quantitative easing measures adopted in the Eurosystem between 2015 and 2022 on the Spanish economy, focusing particularly on public revenue and expenditure items, and on the budget deficit and the public debt. Overall, the asset purchase programmes are estimated to have reduced Spanish public debt by between €78 billion and €131 billion, with an effect on the public debt-to-GDP ratio in Spain of between 13 pp and 21 pp at the end of 2022. If rational expectations components linked to the anticipation and communication channels are not included in this estimate, the range is reduced to between €55 billion and €113 billion, amounting to a cumulative decline in the public debt-to-GDP ratio of between 5 pp and 11 pp. These effects occur through various channels, including the impact on dividends transferred by the Banco de España, the effect on net interest paid by the public sector, and general equilibrium effects that go through economic growth and inflation, with the consequent impact on the tax bases and on the various public revenue and expenditure items.

BANCO DE ESPAÑA PUBLICATIONS

OCCASIONAL PAPERS

2210 PABLO BUÑRIEL, IVÁN KATARYNIUK and JAVIER J. PÉREZ: Computing the EU’s SURE interest savings using an extended debt sustainability assessment tool.

2211 LAURA ÁLVAREZ, ALBERTO FUERTES, LUIS MOLINA and EMILIO MUÑOZ DE LA PEÑA: Fund raising in the international capital markets in 2021. (There is a Spanish version of this edition with the same number).

2212 CARLOS SANZ: El peso del sector público en la economía: resumen de la literatura y aplicación al caso español.

2213 LEONOR DORMIDO, ISABEL GARRIDO, PILAR L’HOTELLIERE-FALLOIS and JAVIER SANTILLÁN: Climate change and sustainable growth: International initiatives and European policies. (There is a Spanish version of this edition with the same number).

2214 CARMEN SÁNCHEZ and JARA QUINTANERO: Las empresas fintech: panorama, retos e iniciativas.

2215 MARÍA ALONSO, EDUARDO GUTIÉRREZ, ENRIQUE MORAL-BENITO, DIANA POSADA, PATROCINIO TELLO-CASAS and CARLOS TRUCHARTE: In-person access to banking services in Spain: a comparison with other countries and other types of services. (There is a Spanish version of this edition with the same number).

2217 MARIO ALCOZA, JÚLIA BRUNET, VICTOR FORTE-CAMPOS, ENRIQUE MORAL-BENITO and JAVIER J. PÉREZ: Government spending in Spain from a European perspective. (There is a Spanish version of this edition with the same number).

2218 PABLO AGUILAR, BEATRIZ GONZÁLEZ and SAMUEL HURTADO: Carbon tax sectoral (CATS) model: a sectoral model for energy transition stress test scenarios.

2219 ALEJANDRO MUÑOZ-JULVE and ROBERTO RAMOS: Estimation of the impact of changes in the period used to calculate the regulatory base on new retirement pension amounts. (There is a Spanish version of this edition with the same number).

2220 LUIS ÁNGEL MAZA: An estimation of the carbon footprint in Spanish credit institutions’ business lending portfolio. (There is a Spanish version of this edition with the same number).

2221 SUSANA MORENO SÁNCHEZ: The EU-UK relationship: regulatory divergence and the level playing field.

2222 ANDRÉS ALONSO-ROBISCO and JOSÉ MANUEL CARBÓ: Inteligencia artificial y finanzas: una alianza estratégica.

2223 LUIS FERNÁNDEZ LAFUERZA, MATÍAS LAMAS, JAVIER MENCIÁ, IRENE PABLOS and RAQUEL VEGAS: Analysis of the usability of capital buffers during the crisis precipitated by COVID-19. (There is a Spanish version of this edition with the same number).

2224 SIONSOLES GALLEGO, ISABEL GARRIDO and IGNACIO HERNANDO: IMF precautionary facilities and their use in Latin America. (There is a Spanish version of this edition with the same number).

2301 LAURA HOSPIDO, CARLOS SANZ and ERNESTO VILLANUEVA: Air pollution: a review of its economic effects and policies to mitigate them.

2302 IRENE MONASTERIOLO, MARÍA J. NIETO and EDO SCHETS: The good, the bad and the hot house world: conceptual underpinnings of the NIGFS scenarios and suggestions for improvement.

2303 ADRIÁN LÓPEZ GONZÁLEZ: Inteligencia artificial aplicada al control de calidad en la producción de billetes.

2304 LAURA CRESPO, NAJIBA EL AMRANI, CARLOS GENTO and PATROCINIO TELLO-CASAS: Un repaso de las diversas iniciativas desplegadas a nivel nacional e internacional para hacer frente a los riesgos de exclusión financiera.

2305 JOSÉ LUIS ROMERO UGARTE, ABEL SÁNCHEZ MARTÍN and CARLOS MARTÍN RODRÍGUEZ: Alternatives to the evolution of wholesale banking operations in the Eurosystem. (There is a Spanish version of this edition with the same number).

2306 HENRIQUE S. BASSO, OURANIA DIMAKOU and MYROSLAV PIDKUIKO: How inflation varies across Spanish households.

2307 LAURA CRESPÓ, NAJIBA EL AMRANI, CARLOS GENTO and ERNESTO VILLANUEVA: Heterogeneity in the use of the mediums of pago and the banca online: an analysis at a partir of the Encuesta Financiera de las Familias (2002-2020).

2308 HENRIQUE S. BASSO, OURANIA DIMAKOU and MYROSLAV PIDKUIKO: How consumption carbon emission intensity varies across Spanish households.

2309 IVÁN AUCIELLO-ESTÉVEZ, JOSEP PUJOAN-MAS, PAU ROLDAN-BLANCO and FEDERICO TAGLIATTI: Dual labor markets in Spain: a firm-side perspective.

2310 CARLOS GONZÁLEZ, SAMUEL HURTADO, NADIA LAVÍN, EDUARDO PÉREZ ASENJO and IRENE ROIBÁS: Systemic analysis framework for the impact of economic and financial risks (There is a Spanish version of this edition with the same number).