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Abstract

The transmission channel of monetary policy in the benchmark New Keynesian (NK) 

framework relies on the counterfactual Full Information Rational Expectations (FIRE) 

assumption, particularly at the general equilibrium (GE) dimension. I relax the Full 

Information assumption and build a Heterogeneous-Agents NK model under financial 

frictions and dispersed information. I find that the amplification multiplier of monetary 

policy is dampened by the lessened role of GE effects. I then conduct the standard full-

fledged NK analysis: the determinacy region is widened as a result of as if aggregate 

myopia, and the framework beyond FIRE does not suffer from the forward guidance 

puzzle. Finally, I find that transitory “animal spirits” shocks generate persistent effects.

Keywords: imperfect information, New Keynesian, heterogeneous agents, monetary 

policy.

JEL classification: E31, E43, E52, E71.



Resumen

El canal de transmisión de la política monetaria en el modelo neo keynesiano (NK) se 

basa en la suposición contrafactual de expectativas racionales e información completa 

(FIRE, por sus siglas en inglés), especialmente en la dimensión de equilibrio general (EG). 

El presente documento flexibiliza la suposición de información completa y construye un 

modelo NK de agentes heterogéneos bajo fricciones financieras e información dispersa. 

Encontramos que el multiplicador de amplificación de la política monetaria se atenúa 

debido al menor alcance de los efectos de EG. Adicionalmente, mostramos cómo la 

región de determinación se amplía como resultado de la miopía agregada, y cómo el 

marco FIRE no se ve afectado por el rompecabezas de la forward guidance. Por último, 

mostramos cómo shocks transitorios de animal spirits generan efectos persistentes en 

la economía.

Palabras clave: información imperfecta, neokeynesiano, agentes heterogéneos, política 

monetaria.

Códigos JEL: E31, E43, E52, E71.
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1. Introduction

Evidence suggests that inequality and information frictions play significant roles in
shaping the transmission of aggregate shocks. The proportion of households that are
financially restricted is 34% in the U.S., in an upward trend since 2001, and around
31% in Europe with some countries exhibiting values greater than 40% (Kaplan et
al. 2014; Almgren et al. 2022).1 Recent theoretical and empirical studies suggest that
economieswith higher levels of inequality respondmore to fiscal andmonetary shocks.2

Coibion and Gorodnichenko (2015) provide evidence of forecast underreaction to news
in surveys of expectations to consumers, firms, professional forecasters, and central
bankers. Empirical evidence suggests that households’ and firms’ underreaction to
shocks reduces their effect, increases their persistence, and that the role of general
equilibrium (GE) effects after a monetary policy shock is initially dampened (Angeletos
et al. 2021; Holm et al. 2021; Gallegos 2023).

To understand transparently the mechanism of the interaction of these two forces,
financial and belief frictions, I build a tractable Heterogeneous-Agents New Keynesian
(HANK) model, based on Bilbiie (2021), extended with noisy information à la Angele-
tos and Huo (2021).3 This framework incorporates key micro-heterogeneity inputs of
the quantitative literature: cyclical inequality, idiosyncratic risk, and precautionary
savings, which together generate heterogeneous marginal propensities to consume
(MPCs). In the benchmark Full Information Rational Expectations (FIRE) setup, more
unequal economies react more to exogenous shocks under plausible assumptions. This
amplification result arises from the higher MPCs of financially constrained households,
and depends on the FIRE assumption at the GE dimension. In the FIRE setting, agents
face no uncertainty on the exogenous fundamental and, since information sets are
homogenous across individuals, on others’ actions. In this paper, I accommodate such
doubts. I explore the amplification result under an empirically-consistent deviation
from the FIRE assumption in which agents have imperfect and dispersed information
about the state of nature, following Lucas (1972). At the individual level, agents need
to forecast both the exogenous fundamental (the monetary policy shock) and aggre-
gate variables that are endogenous to individual actions (output and inflation). As a

1A household is financially restricted if it has no liquid savings to self-insure against adverse shocks.
2See Galí et al. (2007); Brinca et al. (2016) for the fiscal policy case, and Bilbiie (2008, 2021); Almgren et

al. (2022) for the monetary policy case.
3Auclert et al. (2020); Pfäuti and Seyrich (2022) also study the interaction between these two frictions

under sticky information and bounded rationality, respectively.
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result, an agent needs to predict other agents’ actions. I study how the PE vs. the GE
dynamics are affected by higher-order beliefs in the beyond FIRE framework, muting
the amplification effect.

I use this setting to study determinacy with interest rate rules, where imperfect
information relaxes the lower bound on the monetary authority dovishness. I also solve
the forward-guidance puzzle (FGP) and study the different effects of a pure monetary
policy shock vs. an “animal spirits” shock.

Amplification. As laid out by Bilbiie (2021, 2008); Galí et al. (2007), as well as richer
models by Gornemann et al. (2016), Werning (2015), Auclert (2019) and Hagedorn et
al. (2019), whether aggregate shocks have bigger or smaller effects on aggregate con-
sumption, compared to the representative agent framework, is ambiguous. In a model
that combines the tractability of TANK models with the most important elements of
heterogeneous agent models, Bilbiie (2021) shows that the output response to shocks is
amplified if the income elasticity of constrained agents with respect to aggregate income
is larger than one. He refers to this case as cyclical income inequality; a channel which is
strengthened if a larger fraction of agents is constrained.4 Using Norwegian adminis-
trative data, Holm et al. (2021) decompose the households’ consumption responses to
monetary shocks into PE and GE effects by controlling for households’ income changes
throughout the impulse response, and find that the IRF is initially driven by the PE
effects. Angeletos and Huo (2021) show that dispersed information attenuates the GE ef-
fects associated with the Keynesian multiplier and the inflation-spending feedback in a
RANK economy. I extend their setup by including financial constraints and HtM agents,
and study the implications of dispersed information for the amplification multiplier.

The magnitude of the amplification multiplier is dampened in the dispersed infor-
mation framework, in which PE effects dominate GE effects in the first year after the
shock, compared to the FIRE case in which the PE vs. GE share is constant over time. In
this private and dispersed information economy, agents need to forecast the exogenous
fundamental and aggregate inflation and output. The forecast of the fundamental does
not give rise to higher-order beliefs, since the realization does not depend on others’ ac-
tions and agents do not need to predict others’ beliefs about the fundamental. However,
forecasting aggregate output and inflation has the additional complication of dealing

4Almgren et al. (2022); Patterson (2022) find empirical evidence for this assumption. In models that
focus on the cyclicality of income risk, e.g., Werning (2015), the amplification of aggregate shocks is
caused by an increase in the probability of becoming constrained for the unconstrained, which leads the
latter to save more and consume less.

2
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with higher-order beliefs. In the standard framework, first-order and higher-order
beliefs coincide, whereas in this case higher-order beliefs are more sticky than lower-
order beliefs (more anchored to priors). As a result, the expectations of endogenous
aggregate variables adjust less to news, and are more anchored to priors, attenuating
the GE effect. Aggregate dynamics are initially driven by PE effects, consistent with the
empirical findings in Holm et al. (2021). Over time, the aggregate dynamics rely more
on GE effects, until the PE share converges to the full information benchmark. Formally,
imperfect information reduces the degree of complementarity of actions across agents
and partially mutes the amplification mechanism that critically relies on them. I find
that (i) the peak response of output is about 1/3 of that in the FIRE case, consistent with
empirical evidence (Ramey 2016); (ii) impulse responses are hump-shaped, which the
standard FIRE framework can only produce if there is habit formation, price indexation,
and lumpy investment;5 and (iii) when income inequality is countercyclical (the case
studied in Bilbiie 2021), the response of output after amonetary policy shock is amplified
by 7.72%, compared to 10.28% in the FIREmodel. That is, dispersed information reduces
the amplification multiplier and the overall effect of monetary policy.

Forward Guidance. In the NK framework, the determinacy region is ultimately linked
to the forward-looking behavior of the model equations. The Taylor rule provides an es-
sential stabilization role, and an excessively dovishmonetary authority ends up creating
explosive dynamics in the model equations. Del Negro et al. (2012); McKay et al. (2016);
Andrade et al. (2019); Hagedorn et al. (2019); Angeletos and Lian (2018) have contributed
to a growing literature that tries to find an explanation for the FGP from different angles,
my approach combining those of Hagedorn et al. (2019) and Angeletos and Lian (2018).
I find that, although there is compounding at the aggregate DIS curve arising from
countercyclical income inequality, higher-order uncertainty induces enough anchoring
to cure the FGP, a failure of the standard NK framework. Because expectations play a key
role in the determination of aggregate variables, anchoring in expectations translates
into intrinsic persistence in endogenous aggregate variables and myopia towards the

5Havranek et al. (2017) present a meta-analysis of the different estimates of habits in the macro
literature and the available micro-estimates. In general, macro models take values around 0.75, whereas
micro-estimates suggest a value around 0.4. Groth and Khan (2010) conduct a similar analysis for the
investment adjustment frictions case, finding that the microeconomic estimates an order of magnitude
below the ones used in the empirical macro literature, in which they are estimated to minimize the
distance between model dynamics and empirical IRFs. Finally, the price-indexation model suggests that
every price is changed every period, which is inconsistent with the micro-data estimates provided by
Nakamura and Steinsson (2008).

3

result, an agent needs to predict other agents’ actions. I study how the PE vs. the GE
dynamics are affected by higher-order beliefs in the beyond FIRE framework, muting
the amplification effect.

I use this setting to study determinacy with interest rate rules, where imperfect
information relaxes the lower bound on the monetary authority dovishness. I also solve
the forward-guidance puzzle (FGP) and study the different effects of a pure monetary
policy shock vs. an “animal spirits” shock.

Amplification. As laid out by Bilbiie (2021, 2008); Galí et al. (2007), as well as richer
models by Gornemann et al. (2016), Werning (2015), Auclert (2019) and Hagedorn et
al. (2019), whether aggregate shocks have bigger or smaller effects on aggregate con-
sumption, compared to the representative agent framework, is ambiguous. In a model
that combines the tractability of TANK models with the most important elements of
heterogeneous agent models, Bilbiie (2021) shows that the output response to shocks is
amplified if the income elasticity of constrained agents with respect to aggregate income
is larger than one. He refers to this case as cyclical income inequality; a channel which is
strengthened if a larger fraction of agents is constrained.4 Using Norwegian adminis-
trative data, Holm et al. (2021) decompose the households’ consumption responses to
monetary shocks into PE and GE effects by controlling for households’ income changes
throughout the impulse response, and find that the IRF is initially driven by the PE
effects. Angeletos and Huo (2021) show that dispersed information attenuates the GE ef-
fects associated with the Keynesian multiplier and the inflation-spending feedback in a
RANK economy. I extend their setup by including financial constraints and HtM agents,
and study the implications of dispersed information for the amplification multiplier.

The magnitude of the amplification multiplier is dampened in the dispersed infor-
mation framework, in which PE effects dominate GE effects in the first year after the
shock, compared to the FIRE case in which the PE vs. GE share is constant over time. In
this private and dispersed information economy, agents need to forecast the exogenous
fundamental and aggregate inflation and output. The forecast of the fundamental does
not give rise to higher-order beliefs, since the realization does not depend on others’ ac-
tions and agents do not need to predict others’ beliefs about the fundamental. However,
forecasting aggregate output and inflation has the additional complication of dealing

4Almgren et al. (2022); Patterson (2022) find empirical evidence for this assumption. In models that
focus on the cyclicality of income risk, e.g., Werning (2015), the amplification of aggregate shocks is
caused by an increase in the probability of becoming constrained for the unconstrained, which leads the
latter to save more and consume less.

2



BANCO DE ESPAÑA 9 DOCUMENTO DE TRABAJO N.º 2418

with higher-order beliefs. In the standard framework, first-order and higher-order
beliefs coincide, whereas in this case higher-order beliefs are more sticky than lower-
order beliefs (more anchored to priors). As a result, the expectations of endogenous
aggregate variables adjust less to news, and are more anchored to priors, attenuating
the GE effect. Aggregate dynamics are initially driven by PE effects, consistent with the
empirical findings in Holm et al. (2021). Over time, the aggregate dynamics rely more
on GE effects, until the PE share converges to the full information benchmark. Formally,
imperfect information reduces the degree of complementarity of actions across agents
and partially mutes the amplification mechanism that critically relies on them. I find
that (i) the peak response of output is about 1/3 of that in the FIRE case, consistent with
empirical evidence (Ramey 2016); (ii) impulse responses are hump-shaped, which the
standard FIRE framework can only produce if there is habit formation, price indexation,
and lumpy investment;5 and (iii) when income inequality is countercyclical (the case
studied in Bilbiie 2021), the response of output after amonetary policy shock is amplified
by 7.72%, compared to 10.28% in the FIREmodel. That is, dispersed information reduces
the amplification multiplier and the overall effect of monetary policy.

Forward Guidance. In the NK framework, the determinacy region is ultimately linked
to the forward-looking behavior of the model equations. The Taylor rule provides an es-
sential stabilization role, and an excessively dovishmonetary authority ends up creating
explosive dynamics in the model equations. Del Negro et al. (2012); McKay et al. (2016);
Andrade et al. (2019); Hagedorn et al. (2019); Angeletos and Lian (2018) have contributed
to a growing literature that tries to find an explanation for the FGP from different angles,
my approach combining those of Hagedorn et al. (2019) and Angeletos and Lian (2018).
I find that, although there is compounding at the aggregate DIS curve arising from
countercyclical income inequality, higher-order uncertainty induces enough anchoring
to cure the FGP, a failure of the standard NK framework. Because expectations play a key
role in the determination of aggregate variables, anchoring in expectations translates
into intrinsic persistence in endogenous aggregate variables and myopia towards the

5Havranek et al. (2017) present a meta-analysis of the different estimates of habits in the macro
literature and the available micro-estimates. In general, macro models take values around 0.75, whereas
micro-estimates suggest a value around 0.4. Groth and Khan (2010) conduct a similar analysis for the
investment adjustment frictions case, finding that the microeconomic estimates an order of magnitude
below the ones used in the empirical macro literature, in which they are estimated to minimize the
distance between model dynamics and empirical IRFs. Finally, the price-indexation model suggests that
every price is changed every period, which is inconsistent with the micro-data estimates provided by
Nakamura and Steinsson (2008).

3

with higher-order beliefs. In the standard framework, first-order and higher-order
beliefs coincide, whereas in this case higher-order beliefs are more sticky than lower-
order beliefs (more anchored to priors). As a result, the expectations of endogenous
aggregate variables adjust less to news, and are more anchored to priors, attenuating
the GE effect. Aggregate dynamics are initially driven by PE effects, consistent with the
empirical findings in Holm et al. (2021). Over time, the aggregate dynamics rely more
on GE effects, until the PE share converges to the full information benchmark. Formally,
imperfect information reduces the degree of complementarity of actions across agents
and partially mutes the amplification mechanism that critically relies on them. I find
that (i) the peak response of output is about 1/3 of that in the FIRE case, consistent with
empirical evidence (Ramey 2016); (ii) impulse responses are hump-shaped, which the
standard FIRE framework can only produce if there is habit formation, price indexation,
and lumpy investment;5 and (iii) when income inequality is countercyclical (the case
studied in Bilbiie 2021), the response of output after amonetary policy shock is amplified
by 7.72%, compared to 10.28% in the FIREmodel. That is, dispersed information reduces
the amplification multiplier and the overall effect of monetary policy.

Forward Guidance. In the NK framework, the determinacy region is ultimately linked
to the forward-looking behavior of the model equations. The Taylor rule provides an es-
sential stabilization role, and an excessively dovishmonetary authority ends up creating
explosive dynamics in the model equations. Del Negro et al. (2012); McKay et al. (2016);
Andrade et al. (2019); Hagedorn et al. (2019); Angeletos and Lian (2018) have contributed
to a growing literature that tries to find an explanation for the FGP from different angles,
my approach combining those of Hagedorn et al. (2019) and Angeletos and Lian (2018).
I find that, although there is compounding at the aggregate DIS curve arising from
countercyclical income inequality, higher-order uncertainty induces enough anchoring
to cure the FGP, a failure of the standard NK framework. Because expectations play a key
role in the determination of aggregate variables, anchoring in expectations translates
into intrinsic persistence in endogenous aggregate variables and myopia towards the

5Havranek et al. (2017) present a meta-analysis of the different estimates of habits in the macro
literature and the available micro-estimates. In general, macro models take values around 0.75, whereas
micro-estimates suggest a value around 0.4. Groth and Khan (2010) conduct a similar analysis for the
investment adjustment frictions case, finding that the microeconomic estimates an order of magnitude
below the ones used in the empirical macro literature, in which they are estimated to minimize the
distance between model dynamics and empirical IRFs. Finally, the price-indexation model suggests that
every price is changed every period, which is inconsistent with the micro-data estimates provided by
Nakamura and Steinsson (2008).

3

future. These two results, taken together, enlarge the determinacy region of interest
rate rules and solve the FGP, consistent with the cognitive discounting framework in
Gabaix (2020).

Beliefs Shocks. The last contribution is to study expectation shocks. I consider the case
of public information, and I show that even if the non-fundamental shock is transitory,
its effects are persistent, which aligns with the findings in Lorenzoni (2009). Because
agents cannot fully disentangle whether the shock to the signal that they have observed
comes from the fundamental monetary policy rule or the non-fundamental noise part,
the “animal spirits” shock partially inherits the properties of the pure monetary shock,
which in turn explains its persistent consequences. In a second extension, I consider
both public and private information. I find that monetary policy is more effective than
in the public information case, and the effect of belief shocks is lessened, as a result
of effectively reducing the degree of information friction by including an additional
signal.

Roadmap. The paper proceeds as follows. In section 2 I describe the reduced-form
theoretical framework, focusing on both household financial heterogeneity and dis-
persed information, and derive the equilibrium dynamics. In section 3 I discuss the
different implications and insights provided by our HANK model beyond FIRE: the
amplification multiplier, the role of the PE vs. GE share, the FGP, and “animal spirits”
shocks. In section 4 I extend the theoretical setup to include firms, whose actions affect
households, and study the applications and insights in the extended framework. Section
5 concludes the paper.

2. The Analytical HANK Beyond FIREModel

TheHANK framework described in this section is a reduced-formversion of the standard
incomplete markets model, based on Bilbiie (2021). Households face an idiosyncratic
risk of not being able to access asset markets, instead of risky labor income. This simpli-
fying assumption allowsme to solve themodel in paper and pencil, and still provides the
desired precautionary savings motive that two-agents New Keynesian (TANK) models
lack. On top of household heterogeneity concerning their market participation, agents
face uncertainty about the state of nature. They receive idiosyncratic signals about the
true state, which endogenously generates heterogeneous information sets. Since agents

4
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rely on different information, their beliefs and forecasts will differ. This aspect will be
crucial for forecasts of endogenous aggregate variables like output or inflation. This
gives rise to higher-order beliefs: to forecast these endogenous outcomes, an agent
needs to forecast the action of other agents, and other agents need to forecast the action
of others, ad infinitum.

For simplicity, I consider only the demand side of the economy in this section. I
extend the model to firms in section 4.

2.1. Households
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by i ∈ Ic = [0, 1]. Household i maximizes an infinite stream of its expected utility
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tEitu(Cit,Nit), where Cit
denotes household i’s consumption decision at time t, and Nit denotes its labor supply
choice. Notice that, differently from standard FIREmodels, there is an i subscript in the
expectation operator, as a result of the heterogeneity in information sets and forecasts.

Financial frictions are exogenous to individual behavior. In everyperiod, a household
is either financially constrained or not. If the household is financially constrained, it
is unable to save and loses access to the firm profits, but keeps access to previous-
period savings.6 I denote constrained households as Hand-to-Mouth (HtM). In contrast,
unconstrained households benefit from having access to asset markets and firm profits.
To insure against the risk of becoming constrained, which entails losing access to part
of their resources (firm profits) and the ability to borrow, unconstrained households
save in bonds (precautionary savings).

In every period the household learns if it will be financially constrained or not
in that period. The exogenous shock takes the form of a Markov chain. Denote by s
the probability of remaining unconstrained, denote by h the probability of remaining
constrained, and denote by 1 – s and 1 – h the respective transition probabilities. For
simplicity, I assume that theMarkov process induces a stationary distribution. Formally,
the share of HtM agents λ is given by λ = (1 – s)/(2 – s – h). Notice that this analytical
HANK framework nests the TANKmodel when s = h = 1 (i.e., in the first period the state
of each household is revealed and will never change), and the RANK economy when
λ = 0.

6This will be innocuous for the analysis since assets are in zero net supply.
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Unconstrained households. A share (1– λ) of unconstrained households have access to
financial incomeBit; they also have access to labor incomeWr

t Nit, whereW
r
t is the aggre-

gate real wage rate. Finally, they receive the untaxed share of firm profits (1–τD)/(1–λ)Et,
where τD is the profit tax rate and Et. With these resources, an unconstrained household
can either consume or save in bonds Bit for tomorrow. The solution to their problem,
derived in Appendix B, is given by an individual Euler condition, C–σit ≥ βEit

(
RtC–σit+1

)
,

where I have assumed that utility takes a CRRA form, with σ denoting the intertemporal
elasticity of substitution andφ the inverse Frisch elasticity. Opening up the expectation
operator, considering on which state the household can potentially go to (Markov struc-
ture), the condition can bewritten as (CSit)

–σ = βEit
{
Rt

[
s
(
CSit+1

)–σ
+ (1 – s)

(
CHit+1

)–σ]}
.

The intratemporal optimality condition of the household i ∈ S problem is

(1) EitW
r
t =

(
CSit

)σ (
NSit

)φ

which is the optimal labor supply decision.

Hand-to-Mouth households. In contrast, a share λ of households is financially con-
strained. They are banned from asset markets and do not have access to firm dividends,
but they still have an intratemporal decision on how much labor to supply, and receive
the taxed share of firm profits as government transfers, τDλ Et. Formally, household i ∈ H
only faces an intratemporal labor decision. The optimal labor supply condition satisfies
EitW

r
t =

(
CHit

)σ (
NHit

)φ
.

2.2. Fiscal andMonetary Policy

I assume that the government, which conducts fiscal and monetary policy, does not
face any information friction. In fiscal terms, on top of the aforementioned optimal
production subsidy, it conducts a redistribution scheme: it taxes profits from uncon-
strained households and rebates the proceedings to the constrained. In log-linear terms,
eSt =

1–τD
1–λ et and e

H
t = τD

λ et. Furthermore, in the only demand-side setup, monetary policy
is conducted in reduced-form via an exogenous AR(1) real interest rate process

rt = ρrt–1 + σεεt, εt ∼ N(0, 1).(2)
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2.3. The Dynamic IS Curve

As in the textbook NK, the demand curve can be summarized as a single equation; but
it cannot be collapsed into a first-order expectational difference equation since the
hierarchy of beliefs prevents the LIE from holding at the aggregate level. In this case,
the individual average-household-level DIS curve is given by

cit = –
β

σ
(1 – λ)Eitrt + [1 – β(1 – λχ)]Eit yt + β[δ(1 – λχ) – 1]Eitct+1 + βEitci,t+1(3)

where a lower case variable denotes the logarithm of the capital letter variable, xt =
logXt, χ = 1 + φ

(
1 – τD

λ

)
measures the degree of amplification with respect to RANK

(if χ > 1 there is an amplification and if χ < 1 there is lessening), and δ = 1 + (χ–1)(1–s)
1–λχ

measures the degree of compounding at the consumer’s Euler condition (if δ > 1 there
is compounding and if δ < 1 there is discounting).7 Iterating forward and aggregating
across agents, the aggregate DIS curve can be written as

yt = –
β

σ
(1 – λ)

∞∑

k=0
βkE

c
t rt+k + [1 – β(1 – λχ)]E

c
t yt + (δ – β)(1 – λχ)

∞∑

k=1
βkE

c
t yt+k(4)

where E
c
t (·) =

∫ 1
0 Eit(·) di is the cross-sectional average forecast across households.

Conditions (3)-(4) are derived under a general information structure, in which I relax
the assumption that the aggregate household expectation operator satisfies the LIE and
where agents do not observe aggregate variables. Each household’s decision (3) can be
described as a beauty contest in which it needs to forecast current real interest rates
and future output, which in turn depend on each other households’ actions.

Note that, given that the inverse of the Frisch elasticity is strictly positive (φ > 0),
χ > 1 if τD < λ. There is an amplification of the effects of real interest rate changes if
χ > 1 or if income inequality is countercyclical (τD < λ), and a dampening otherwise.
Almgren et al. (2022) find empirical evidence for the amplification effects of real interest
rate, and I, therefore, focus on the case χ > 1, which in turn implies δ > 1. Under FIRE,
δ > 1 (coming from the precautionary savings motive) induces compounding in the
aggregate DIS curve.

Absent information frictions, first-order beliefs coincide with higher-order beliefs
and one can simplify the above expression by making use of the LIE at the aggregate

7The model derivation is relegated to Appendix B.
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level and obtain

(5) yt = –
1
ν

Etrt + δEt yt+1 = –
1
ν

∞∑

k=0
δkEtrt+k

where ν = σ1–λχ1–λ . A counterfactual consequence of compounding is that the FGP is
exacerbated. In the FIRE benchmark, one cannot have any amplification and cure the
FGP simultaneously (without including aggregate risk). This is a situation that Bilbiie
(2021) denominates Catch-22.

The beyond FIRE framework solves the Catch-22. In this case there is discounting in
the aggregate DIS curve even if the individual Euler condition preserves compounding
due to precautionary savings. Aggregate outcomes depend on expectations, whichmove
sluggishly due to an endogenous anchoring to priors. This anchoring in expectations
translates into both intrinsic persistence in outcomes and myopia about the future. I
show in section 3.2 that this myopia is sufficiently large to outweigh the compounding
induced by the precautionary savings motive.

2.4. Information Structure

Households can observe their current private variables (their wage, the consumption
and saving decisions they make, the transfers they receive) but not aggregate variables.
For instance, they observe all goods prices and are thus able to see the (current) aggre-
gate price index, but they do not observe the output, inflation, the nominal interest
rate, or the monetary policy shock.8 Every period, each agent receives a dose of private
information on the aggregate fundamental. Formally, there is a collection of private
Gaussian signals, one per agent and period. In particular, the period–t signal received
by household i is given by

xit = rt + σuuit, uit ∼ N(0, 1).(6)

where σu ≥ 0 parameterizes the noise in the private signal.
8I assume that agents observe the price level, but do not use this piece of information to form expecta-

tions. Vives and Yang (2016) motivates this through bounded rationality and inattention, while Angeletos
and Huo (2021) argue that inflation contains little statistical information about real variables. Huo and
Pedroni (2021) allow for endogenous information, but such a choice complicates the dynamics and a
closed-form solution is not feasible.

8

level and obtain

(5) yt = –
1
ν

Etrt + δEt yt+1 = –
1
ν

∞∑

k=0
δkEtrt+k

where ν = σ1–λχ1–λ . A counterfactual consequence of compounding is that the FGP is
exacerbated. In the FIRE benchmark, one cannot have any amplification and cure the
FGP simultaneously (without including aggregate risk). This is a situation that Bilbiie
(2021) denominates Catch-22.

The beyond FIRE framework solves the Catch-22. In this case there is discounting in
the aggregate DIS curve even if the individual Euler condition preserves compounding
due to precautionary savings. Aggregate outcomes depend on expectations, whichmove
sluggishly due to an endogenous anchoring to priors. This anchoring in expectations
translates into both intrinsic persistence in outcomes and myopia about the future. I
show in section 3.2 that this myopia is sufficiently large to outweigh the compounding
induced by the precautionary savings motive.

2.4. Information Structure

Households can observe their current private variables (their wage, the consumption
and saving decisions they make, the transfers they receive) but not aggregate variables.
For instance, they observe all goods prices and are thus able to see the (current) aggre-
gate price index, but they do not observe the output, inflation, the nominal interest
rate, or the monetary policy shock.8 Every period, each agent receives a dose of private
information on the aggregate fundamental. Formally, there is a collection of private
Gaussian signals, one per agent and period. In particular, the period–t signal received
by household i is given by

xit = rt + σuuit, uit ∼ N(0, 1).(6)

where σu ≥ 0 parameterizes the noise in the private signal.
8I assume that agents observe the price level, but do not use this piece of information to form expecta-

tions. Vives and Yang (2016) motivates this through bounded rationality and inattention, while Angeletos
and Huo (2021) argue that inflation contains little statistical information about real variables. Huo and
Pedroni (2021) allow for endogenous information, but such a choice complicates the dynamics and a
closed-form solution is not feasible.

8



BANCO DE ESPAÑA 14 DOCUMENTO DE TRABAJO N.º 2418

2.5. Equilibrium Dynamics

The equilibrium dynamics must satisfy the individual-level optimal policy functions
(3), and rational expectation formation should be consistent with the real interest rate
process (2) and the signal process (6). I show in Proposition 1 that the solution to the
fixed point is simply an AR(2) process.

PROPOSITION 1. In equilibrium, aggregate output obeys the following law of motion

(7) yt = ϑ yt–1 –
(
1 –

ϑ

ρ

)
1

ν(1 – ρδ)
rt

where ϑ is a scalar that is given by the reciprocal of the largest roots of the polynomial of the
following matrix

P(z) ≡ (β – z)(z – ρ)
(
z –

1
ρ

)
–

σ2ε
σ2uρ

β(1 – λχ)z(δ – z)

PROOF. See Appendix A.

In this framework, ϑ governs information frictions. When the signal noise is high
enough such that the signals are completely uninformative, ϑ reaches its maximum
value of ρ. The beyond FIRE model produces intrinsic persistence without assuming
habit formation, and equilibrium dynamics are more persistent, and less sensitive to
real interest rate changes, as a result of sluggish expectations and imperfect attention.
On the contrary, when the signals are perfectly informative, ϑ = 0. In that case, which is
simply the FIRE NKmodel, the model dynamics are given by yt = –

1
ν(1–ρδ)rt whenever

δ ∈ (0, 1), and are indeterminate otherwise. Given that I focus on the case δ ≥ 1,
the following corollary documents the degree of information frictions necessary to
outweight the forward-lookingness introduced by precautionary savings.

COROLLARY 1. The equilibrium dynamics described by (7) exist and are unique if λ < 1+φτD
1+φ =

λ∗ and σ2ε
σ2u

< (1–β)(1–ρ)2
β(1–λχ)(δ–1) .

PROOF. See Appendix A.

First, the model requires a moderate degree of amplification. The first condition
requires 1 – λχ > 0. Under the parametric space studied in Bilbiie (2021), this implies
that the share of HtM agents should not exceed 59.5%. Kaplan et al. (2014) find that
the share of HtM agents does not exceed 40% in a cross-country comparison. Second,

9

the model requires a sufficiently high degree of information frictions, modulated by
the compounding δ: the larger the degree of compounding, the larger is the degree of
myopia required.

Comparative Statics: Interaction between Financial and Information Frictions. I now
study the interaction between information and financial frictions. I focus in the ampli-
fication case τD < λ, which implies χ > 1 and δ > 1. In proposition 1, I have documented
how are the equilibrium dynamics affected by the information frictions parameter
ϑ(0, ρ). A larger ϑ produces additional intrinsic persistence, generating hump-shaped
dynamics, and reduces the sensitivity of output towards the real interest rate. The
following corollary documents the interaction between the two frictions.

COROLLARY 2. The information-related parameter ϑ is increasing in the share of HtM agents
λ and decreasing in the persistence of the income process s.

PROOF. See Appendix A.

First, I find that a larger share of HtM agents increases the effect of information
frictions, holding them constant. A higher share of HtM agents λ ∈ (τD, λ∗) amplifies
the effect of a given shock in the FIRE NKmodel. Under information frictions, a change
in the share of HtM agents also implies higher strategic complementarities across
agents, making them rely less on their private signals, and amplifying the consequences
of a given level of information on persistence and sensitivity. Second, similar to the
previous case, a decrease in s ∈ (0, 1) increases the effects of information frictions. A
lower persistence of the income process maps to greater relevance of future GE effects,
captured in reduced form by δ > 1. A larger δ amplifies the effect of a given shock in the
FIRE NK model, and induces greater strategic complementarities among agents under
information frictions, making them less responsive to private signals. For a given level
of information frictions, this amplifies persistence and reduces the sensitivity towards
exogenous shocks.

Calibration. Table 1 reports the parameters used in the different analyses. All these
values are standard in the literature. The first block contains the standard RANK param-
eters. The discount factor β, the intertemporal rate of substitution σ, the inverse Frisch
elasticity φ, and the autocorrelation ρ and the variance of the real interest rate shock
σ2ε have standard values in the literature, taken from Bilbiie (2021).
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σ2ε have standard values in the literature, taken from Bilbiie (2021).
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Parameter Description Value Source

β Discount factor 0.99 Bilbiie (2021)
σ Intertemporal elasticity of substitution 1 Bilbiie (2021)
φ Inverse Frisch elasticity 1 Bilbiie (2021)
σ2ε Variance of shock 1 Bilbiie (2021)
ρ Autocorrelation of real interest rates shock 0.8 Bilbiie (2021)

τD Profit tax rate 0.19 Bilbiie (2021)
λ Share of HtM 0.37 Bilbiie (2021)
s Pr(unconstrainedt+1|unconstrainedt) 0.96 Bilbiie (2021)

σ2u Consumer signal innovation variance 2.98 Coibion and Gorodnichenko (2015)

TABLE 1. Parameter values.

The second block contains the parameters related to household financial heterogene-
ity. These are taken from Bilbiie (2021) and include the probability of being financially
restricted s, set to match the quarterly autocorrelation of the income process in Guve-
nen et al. (2014), the profit tax rate τD and the share of HtM λ, jointly set to match the
aggregate MPC and the amplification magnitude in Kaplan et al. (2018).

The third block contains the parameters related to imperfect information. The
informational friction in our HANK beyond FIRE setting depends on how precise are
the signals that consumers receive. Coibion and Gorodnichenko (2015) focus on annual
inflation (GDP Deflator) expectations and regress the ex-ante average forecast error,
computed as the difference between the realized variable at t + 3 and the expectation at
time t of that variable at t+3, πt+3,t –Ftπt+3,t, on the average forecast revision, defined as
the change in the forecast of a variable at time t + 3 formed at time t minus the forecast
of that same variable formed at time t –1, Ftπt+3,t –Ft–1πt+3,t. I match the underrevision
coefficient of households in Coibion and Gorodnichenko 2015 (using data on forecasts
from the Michigan Survey of Consumers), β̂π = 0.705.9 For this purpose, I obtain the
model-implied coefficient in our HANK beyond FIRE, βM

π . The following proposition
serves that purpose.

PROPOSITION 2. In our beyond FIRE framework the regression coefficient βM
π is given by

βM
π =

λ3u
(ρ – λu)(1 + λu + λ2u + λ3u)(ϑ – λu)

[
λuϑ(1 – λ2u)(1 + ϑ)(1 + ϑ2)(1 – ρϑ)

1 – λuϑ

9To be precise, Coibion and Gorodnichenko (2015) estimate a variant of the above regression that does
not include forecast revisions (because the dataset does not permit the calculation) and include oil price
changes in an IV setup. However, they show that for the case of the SPF, in which they can perform both
estimations, the estimated coefficients are nearly identical.
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+ (1 + λ2u){(ρ – λu)[ϑ(1 + λu) – λu(1 – λuϑ)] – ρλ2u(1 + λu)(1 – λuϑ)}

]
(8)

where λuis the inside root of the polynomialD(z) ≡ (1 – ρz)(ρ – z) – σ2ε
σ2u
z.

PROOF. See Appendix A.

Note that λu and ϑ are endogenous to the signal precision σu. I calibrate σu by
minimizing the square distance between the model-implied coefficient βM

π and the
estimated coefficient in Coibion and Gorodnichenko (2015). This implies that σ2u =
2.9766.

3. Applications and Additional Insights

In this section, I study the different implications of the HANK beyond FIRE economy by
conducting several policy experiments. I exploit the two main frictions, financial and
informational, and explain their joint interaction and consequences. In particular, I
explain the key role of PE vs. GE effects and how these are affected by financial frictions,
I show that the model solves the FGP, and I obtain the effect of an “animal spirits” shock.
In section 4, the model is extended with a supply side and a Taylor rule, and I show
that the Taylor Principle is relaxed in the economy beyond FIRE (with the determinacy
region widened).

3.1. Response after a Real Interest Rate Shock

The HANK beyond FIRE differs from the textbook NK in two dimensions: household
heterogeneity and information frictions. To isolate the effects of both frictions, I study
these separately. I plot the impulse response of output after a real interest rate shock
in the FIRE economy in figure 1A (solid line). The peak response occurs on impact,
due to the lack of intrinsic persistence. Once I consider information frictions (dashed
line), the IRFs have the hump-shaped dynamics observed in the data (Christiano et al.
2005; Ramey 2016) without compromising the individual (monotonically decreasing)
responses to income shocks documented in Fagereng et al. (2019).

Amplification. Bilbiie (2008, 2021) finds that, under plausible parametric assumptions,
adding HtM households amplifies the response of aggregate variables to monetary
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A. Output dynamics after a 100 b.p. real interest rate shock in the FIRE (solid line) and Beyond FIRE
(dashed line) frameworks.
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B. Amplification multiplier with respect to RANK for different shares of HtM λ, in the FIRE (solid line)
and Beyond FIRE (dashed line) frameworks.

FIGURE 1. Theoretical Dynamics of Output.

shocks. The proposed transmission mechanism works as follows. Unconstrained house-
holds change their consumption choice after a real interest rate shock (according to their
individual Euler condition), which in turn affects aggregate demand. Because wages
are fully flexible, they adjust to the new schedule. This is how real interest rate shocks
affect the HtM. Because they have a unity MPC, they will consume all income change
from wages and will magnify any change in aggregate demand. In figure 1B, I plot the
ratio between the output response to a real interest rate shock under a given HtM share,
and the output response under no amplification (τD = λ), for different degrees of HtM
shares. Consider first the FIRE benchmark (solid line). The HtM transmission channel
is present: output respondsmore to real interest rate shocks the larger the share of HtM
agents, λ. For the benchmark calibration λ = 0.37, the peak output response is 69.28%

13

larger than without financial frictions. Under information frictions (dashed line), the
amplification effect of HtM agents is still present but partially muted. A larger degree
of financial frictions leads to a larger response of output to real interest rate shocks, but
the multiplier is smaller than in the FIRE case. For the benchmark calibration, the peak
output response is 27.48% larger than without financial frictions. The HtMmechanism,
which operates through general equilibrium dynamics, is partially muted by dispersed
information.

PE vs. GE. Using Norwegian administrative data, Holm et al. (2021) decompose the
households’ consumption responses to monetary shocks into PE and GE effects by
controlling for households’ income changes throughout the impulse response, and find
that the IRF is initially driven by the PE effects. The results obtained in the beyond FIRE
framework can be interpreted as a rationale for this finding.

The amplification effect of HtM agents is present but dampened by information
frictions. The transmissionmechanismproposed by Bilbiie (2008, 2021) relies heavily on
GE effects. Beyond FIRE, agents need to forecast the exogenous fundamental (the real
interest rate shock) and aggregate output. While the information friction environment
complicates the forecast of the fundamental, it does not give rise to any higher-order
beliefs since its realization does not depend on others’ beliefs and actions. On the
contrary, predicting aggregate output leads to higher-order beliefs: agents need to infer
what others believe since its realization hinges on their actions. These higher-order
beliefs, more anchored to priors at each increasing order, increase the sluggishness of
the GE dimension. As a result, aggregate dynamics are driven by PE effects in the initial
periods and, over time, rely more on GE effects until the PE vs. GE share converges to
the FIRE benchmark.

I decompose the total response in the DIS curve (4) into partial equilibrium (direct)
and general equilibrium (indirect) effect components:

yt = –
β

σ
(1 – λ)

∞∑

k=0
βkEtrt+k

︸ ︷︷ ︸
PE effect

+[1 – β(1 – λχ)]Et yt + (δ – β)(1 – λχ)
∞∑

k=1
βkEt yt+k

︸ ︷︷ ︸
GE effect

(9)

In IRF terms, output at time τ ∈ {t, t + 1, t + 2, ...} after a real interest rate shock at
time t can be written in terms of the two PE and GE components, IRFt,τ = ∂ yτ/∂εt =
∂PEτ/∂εt + ∂GEτ/∂εt. Defining the PE share at time τ as µτ = PEτ/(PEτ + GEτ), the
following proposition provides the PE share µτ beyond FIRE.
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are fully flexible, they adjust to the new schedule. This is how real interest rate shocks
affect the HtM. Because they have a unity MPC, they will consume all income change
from wages and will magnify any change in aggregate demand. In figure 1B, I plot the
ratio between the output response to a real interest rate shock under a given HtM share,
and the output response under no amplification (τD = λ), for different degrees of HtM
shares. Consider first the FIRE benchmark (solid line). The HtM transmission channel
is present: output respondsmore to real interest rate shocks the larger the share of HtM
agents, λ. For the benchmark calibration λ = 0.37, the peak output response is 69.28%
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larger than without financial frictions. Under information frictions (dashed line), the
amplification effect of HtM agents is still present but partially muted. A larger degree
of financial frictions leads to a larger response of output to real interest rate shocks, but
the multiplier is smaller than in the FIRE case. For the benchmark calibration, the peak
output response is 27.48% larger than without financial frictions. The HtMmechanism,
which operates through general equilibrium dynamics, is partially muted by dispersed
information.

PE vs. GE. Using Norwegian administrative data, Holm et al. (2021) decompose the
households’ consumption responses to monetary shocks into PE and GE effects by
controlling for households’ income changes throughout the impulse response, and find
that the IRF is initially driven by the PE effects. The results obtained in the beyond FIRE
framework can be interpreted as a rationale for this finding.

The amplification effect of HtM agents is present but dampened by information
frictions. The transmissionmechanismproposed by Bilbiie (2008, 2021) relies heavily on
GE effects. Beyond FIRE, agents need to forecast the exogenous fundamental (the real
interest rate shock) and aggregate output. While the information friction environment
complicates the forecast of the fundamental, it does not give rise to any higher-order
beliefs since its realization does not depend on others’ beliefs and actions. On the
contrary, predicting aggregate output leads to higher-order beliefs: agents need to infer
what others believe since its realization hinges on their actions. These higher-order
beliefs, more anchored to priors at each increasing order, increase the sluggishness of
the GE dimension. As a result, aggregate dynamics are driven by PE effects in the initial
periods and, over time, rely more on GE effects until the PE vs. GE share converges to
the FIRE benchmark.

I decompose the total response in the DIS curve (4) into partial equilibrium (direct)
and general equilibrium (indirect) effect components:

yt = –
β

σ
(1 – λ)

∞∑

k=0
βkEtrt+k

︸ ︷︷ ︸
PE effect

+[1 – β(1 – λχ)]Et yt + (δ – β)(1 – λχ)
∞∑

k=1
βkEt yt+k

︸ ︷︷ ︸
GE effect

(9)

In IRF terms, output at time τ ∈ {t, t + 1, t + 2, ...} after a real interest rate shock at
time t can be written in terms of the two PE and GE components, IRFt,τ = ∂ yτ/∂εt =
∂PEτ/∂εt + ∂GEτ/∂εt. Defining the PE share at time τ as µτ = PEτ/(PEτ + GEτ), the
following proposition provides the PE share µτ beyond FIRE.
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PROPOSITION 3. Beyond FIRE, the time-varying PE share µτ is given by

µτ =
β(1 – λχ)(1 – ρδ)

1 – ρβ
ρτ+1 – λτ+1u
ρτ+1 – ϑτ+1

PROOF. See Appendix A.

I plot the aggregate output response, the PE response (grey shaded region), and
the GE response (light grey shaded region) after a real interest rate shock in figure 2A
(figure 2B reports the same dynamics in the FIRE economy). GE effects are arrested
in the first periods compared to the FIRE benchmark, consistent with the empirical
findings in Holm et al. (2021). Therefore, amplification, which nourishes from the GE
dimension, is partially muted. Figure 2C reports the PE share µτ (solid line) at each τ

period after the real interest rate shock, togetherwith the PE share under no information
frictions (dashed line). The GE share beyond FIRE is lower than in FIRE, and mutes the
amplification multiplier coming from HtM households.

To summarize, information frictions reduce the degree of complementarity of ac-
tions across agents, although the amplification mechanism is still present in the model.
Higher-order uncertainty effectively arrests and slows down the GE effect.

3.2. Forward Guidance

A documented failure of the standard NKmodel is the Forward Guidance Puzzle. Forward
guidance is an unconventional monetary policy tool used by central banks in a situation
in which the nominal interest rate (their main policy tool) is stuck at zero so that further
expansionary conventional policy is unfeasible. The central bank commits to keep the
nominal interest rate low (relative to what their Taylor rule wouldmandate), in the hope
of unanchoring the inflation expectations and output. Several central banksmade use of
it in the recent financial crisis (see Angeletos and Sastry 2020 for a more comprehensive
treatment).

The (excessively) forward-looking standard NK model predicts that a forward guid-
ance τ–shock (i.e., a promise at time t to shock the economy in period τ ≥ t by using
the real interest rate) has the same (or more) effect the more into the future it is promised.
This is easily verified from the FIRE DIS curve (5) iterated forward. In the standard
NK, ν = σ, δ = 1, and yt = –1/σ

∑∞
k=0 Etrt+k. Any future shock on the real interest rate

(a forward guidance shock) has an identical impact on today’s output, irrespective of
when is it realized. This is aggravated in the case of financial constraints, since the

15
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FIGURE 3. The Effect of Forward Guidance on current Output.

precautionary savings motive and amplification induce compounding (δ > 1), making
the process explosive: the further into the future that the shock takes place, the larger
is the increase in the output gap today (solid line in figure 3). This is the situation that
Bilbiie (2021) denominates Catch-22: a realistic amplification of monetary policy effects
aggravates the FGP. It is, however, wishful thinking that this policy tool is so effective.
Del Negro et al. (2012) study this empirically and find that forward guidance is indeed
less effective than what the theoretical model suggests.

Consider a situation in which the economy is stuck in a liquidity trap. Suppose
that the zero lower bound (ZLB) for nominal interest rates is binding between periods
t and τ, such that τ ≥ t. I show in Proposition 4 that information frictions induce
intrinsic persistence and myopia at the aggregate level, as discussed in Angeletos and
Lian (2018); Angeletos and Huo (2021). This result is sufficient to cure the FGP, whilst
the amplification result is maintained.

PROPOSITION 4. (i) The ad-hoc equilibrium dynamics

yt = ωb yt–1 + δω f Et yt+1 –
1
ν
rt(10)

produce identical dynamics to the dispersed information model if

ωb =
ρϑ(1 – δϑ)
ρ2 – ϑ2

, ω f =
ρ2δ – ϑ

δ(ρ2 – ϑ2)
(11)

(ii) Dispersed information cures the FGP if one of the roots of the polynomial Q(x) ≡
δω f x

2 – x + ωb lies outside the unit circle, and the other root lies inside the unit circle.
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Furthermore, the effect of forward guidance at period τ on consumption in period t is given by

FGt,t+τ =
∂ yt

∂Etrt+τ
= –

ζ

ωbν

(
ζ
δω f
ωb

)τ

where ζ ∈ (0, 1) is the only inside root of the polynomial Q(x).

PROOF. See Appendix A.

To study the effect of forward guidance, I first rewrite the equilibrium dynamics
under FIRE. Proposition 4 (i) delivers the ad-hoc dynamics (10), which under a certain
pair (ωb,ω f ) is observationally equivalent to the beyond FIRE dynamics (7). Dispersed
information adds intrinsic persistence and myopia in the DIS curve: compared to (5),
intrinsic persistence is added by introducing an additional lagged term,ωb, andmyopia
is introduced by the coefficient ω f .10 Part (ii) derives the output response today of
an expected real interest rate shock at time t + τ. Notice that the FGP is only solved
if ζ ∈ (0, 1) and the other root lies is greater than 1. Using the quadratic formula,
these two conditions are met when δω f + ωb < 1. Using (11), this can be written as
ρ(ρ – ϑ) + ϑ(1 – ϑ) > ρδ(ρ – ϑ2), which is satisfied if the degree of information frictions is
sufficiently large. Under the parameterization in table 1,ωb = 0.705 andω f = 0.1552,
which satisfies the restriction. In Figure 9B I plot the impact of a forward guidance
shock in period τ on today’s output for each τ under FIRE (solid line) and beyond FIRE
(dashed line). The FGP is cured, so the further into the future the forward guidance is
executed, the lesser the effect.

3.3. Beliefs Shock

What is the effect of an “animal spirits” shock? The benchmarkmodel does not allow for
this exercise, since a shock to an individual signal does not have any effect on aggregate
variables. In this section, I replace private information with public information and
obtain themodel dynamics after a shock to the common signal. Instead of the individual
signal, all agents receive a common and public noisy signal informing them of the real
interest rate shock vt. Formally, there is a collection of public Gaussian signals, one
per period and common across agents. In particular, the period–t signal received by all
agents is given by

zt = rt + σϵϵt, ϵt ∼ N(0, 1)(12)

10In the FIRE NKmodel,ωb = 0 andω f = 1, and the DIS curve is reduced to (5).

18



BANCO DE ESPAÑA 22 DOCUMENTO DE TRABAJO N.º 2418

where σϵ ≥ 0 parameterizes the noise in the common signal. The rest of the model is
unchanged. The following proposition summarizes the equilibrium dynamics under
public information.

PROPOSITION 5. In equilibrium, aggregate output obeys the following law of motion

(13) yt = ϑ̃ yt–1 –

(
1 –

ϑ̃

ρ

)
1

ν(1 – ρδ)
rt –

(
1 –

ϑ̃

ρ

)
1

ν(1 – ρδ)
ϵt

where ϑ̃ is a scalar that is given by the reciprocal of the largest roots of the polynomial of the
following matrix

Ppublic(z) ≡ (β – z)(z – ρ)
(
z –

1
ρ

)
–

σ2ε
σ2ϵρ

β(1 – λχ)z(δ – z)

PROOF. See Appendix A.

The new equilibrium dynamics now contain an additional contemporaneous exoge-
nous shock ϵt. This term can be interpreted as a belief or “animal spirits” shock. Both
shocks have identical effects on impact on aggregate variables, given that agents cannot
completely disentangle the noise and the fundamental shock from the signal. However,
since the belief shock, ϵt is purely transitory, it has fewer long-lasting effects than the
real interest rate shock (see figure 4, dashed-dotted line). However, although the belief
shock is purely transitory, it produces persistent effects on output over time. This is the
result of having imperfectly informed agents, which cannot immediately differentiate
between a belief shock and a true real interest rate shock.

4. The Full Analytical HANK Beyond FIREModel

So far I have only considered the demand side of the economy. Since the real interest
rate is assumed to be exogenous, output dynamics are orthogonal to inflation, and I do
not need to keep track of firms’ decisions. In this section, I decompose the real interest
rate into a nominal interest rate part and expected inflation, I assume that the nominal
interest rate follows a standard Taylor rule, which reacts to inflation and output, and I
explicitly model firms’ behavior and revisit the set of results presented in section 3. The
economy will be described as a pair of across–group dynamic beauty contests between
consumers and firms (the inflation-spending NK multiplier), with each group playing a
within-group dynamic beauty contest (the spending-income multiplier running within
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information adds intrinsic persistence and myopia in the DIS curve: compared to (5),
intrinsic persistence is added by introducing an additional lagged term,ωb, andmyopia
is introduced by the coefficient ω f .10 Part (ii) derives the output response today of
an expected real interest rate shock at time t + τ. Notice that the FGP is only solved
if ζ ∈ (0, 1) and the other root lies is greater than 1. Using the quadratic formula,
these two conditions are met when δω f + ωb < 1. Using (11), this can be written as
ρ(ρ – ϑ) + ϑ(1 – ϑ) > ρδ(ρ – ϑ2), which is satisfied if the degree of information frictions is
sufficiently large. Under the parameterization in table 1,ωb = 0.705 andω f = 0.1552,
which satisfies the restriction. In Figure 9B I plot the impact of a forward guidance
shock in period τ on today’s output for each τ under FIRE (solid line) and beyond FIRE
(dashed line). The FGP is cured, so the further into the future the forward guidance is
executed, the lesser the effect.

3.3. Beliefs Shock

What is the effect of an “animal spirits” shock? The benchmarkmodel does not allow for
this exercise, since a shock to an individual signal does not have any effect on aggregate
variables. In this section, I replace private information with public information and
obtain themodel dynamics after a shock to the common signal. Instead of the individual
signal, all agents receive a common and public noisy signal informing them of the real
interest rate shock vt. Formally, there is a collection of public Gaussian signals, one
per period and common across agents. In particular, the period–t signal received by all
agents is given by

zt = rt + σϵϵt, ϵt ∼ N(0, 1)(12)

10In the FIRE NKmodel,ωb = 0 andω f = 1, and the DIS curve is reduced to (5).
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where σϵ ≥ 0 parameterizes the noise in the common signal. The rest of the model is
unchanged. The following proposition summarizes the equilibrium dynamics under
public information.

PROPOSITION 5. In equilibrium, aggregate output obeys the following law of motion

(13) yt = ϑ̃ yt–1 –

(
1 –

ϑ̃

ρ

)
1

ν(1 – ρδ)
rt –

(
1 –

ϑ̃

ρ

)
1

ν(1 – ρδ)
ϵt

where ϑ̃ is a scalar that is given by the reciprocal of the largest roots of the polynomial of the
following matrix

Ppublic(z) ≡ (β – z)(z – ρ)
(
z –

1
ρ

)
–

σ2ε
σ2ϵρ

β(1 – λχ)z(δ – z)

PROOF. See Appendix A.

The new equilibrium dynamics now contain an additional contemporaneous exoge-
nous shock ϵt. This term can be interpreted as a belief or “animal spirits” shock. Both
shocks have identical effects on impact on aggregate variables, given that agents cannot
completely disentangle the noise and the fundamental shock from the signal. However,
since the belief shock, ϵt is purely transitory, it has fewer long-lasting effects than the
real interest rate shock (see figure 4, dashed-dotted line). However, although the belief
shock is purely transitory, it produces persistent effects on output over time. This is the
result of having imperfectly informed agents, which cannot immediately differentiate
between a belief shock and a true real interest rate shock.

4. The Full Analytical HANK Beyond FIREModel

So far I have only considered the demand side of the economy. Since the real interest
rate is assumed to be exogenous, output dynamics are orthogonal to inflation, and I do
not need to keep track of firms’ decisions. In this section, I decompose the real interest
rate into a nominal interest rate part and expected inflation, I assume that the nominal
interest rate follows a standard Taylor rule, which reacts to inflation and output, and I
explicitly model firms’ behavior and revisit the set of results presented in section 3. The
economy will be described as a pair of across–group dynamic beauty contests between
consumers and firms (the inflation-spending NK multiplier), with each group playing a
within-group dynamic beauty contest (the spending-income multiplier running within
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FIGURE 4. Impulse response of output after a 100 b.p. real interest rate shock under
FIRE (solid line), beyond FIRE (dashed line), and after a belief shock (dashed-dotted
line). To produce this figure I set the public signal noise to σϵ = σu.

the demand block and the strategic complementarity in price-setting running within
the supply block).

4.1. Firms and the Phillips Curve

Households consume an aggregate basket of goods j ∈ I f = [0, 1], which takes the formof

the standard CES aggregator, Ct =
(∫

I f
C

ϵ–1
ϵ
jt dj

) ϵ
ϵ–1
, where ϵ > 1 is the constant elasticity

of substitution between different good varieties. Cost minimization from the final good
firm implies that the demand from each good is Cjt+k =

(
Pjt/Pt+k

)–ϵ
Ct+k, where Pjt/Pt is

good j’s price in relative terms to the aggregate price index, Pt =
(∫

I f
P1–ϵjt dj

) 1
1–ϵ . Each

good is produced by an intermediate monopolistic firm that uses technology linear in
labor Yjt = Njt.

Aggregate Price Dynamics. Nominal price rigidities take the form of a Calvo-lottery
friction. In every period, eachfirmcan reset its pricewith probability (1–θ), independent
of the time of the last price change. A measure (1 – θ) of firms can reset their prices
in a given period, and the average duration of a price is given by 1/(1 – θ). Such an
environment implies that the aggregate price dynamics are given (in log-linear terms)
by πt =

∫
I f

πjt dj = (1 – θ)
[∫

I f
p∗jt dj – pt–1

]
= (1 – θ)

(
p∗t – pt–1

)
.
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Optimal Price Setting. A firm re-optimizing in period t will choose the price P∗jt that
maximizes the current market value of the profits generated while the price remains
effective. Formally, P∗jt = argmaxPjt

∑∞
k=0 θ

kEjt
{
Λt,t+k/Pt+k

[
PjtYj,t+k|t – Ct+k(Yj,t+j|t)

]}
,

subject to the sequence of the demand schedules Yj,t+k|t =
(
Pjt/Pt+k

)–ϵ
Yt+k, where

Λt,t+k ≡ βk
(
Ct+k
Ct

)–σ
is the stochastic discount factor,Ct(·) is the (nominal) cost function,

and Yj,t+k|t denotes output in period t + k for a firm j that last reset its price in period t.
Note that, under flexible prices (θ = 0), P∗jt =

ϵ
ϵ–1Wt. Aggregating over firms I obtain

the standard result that the aggregate price level is greater than the aggregate marginal
cost, due to the markup of monopolistic firms: Pt = ϵ

ϵ–1Wt. Aggregating the optimal
labor supply condition (1) over households, I obtain Nφ

t = WtC–σt . Combining the last
two conditions, I can write Nφ

t C
σ
t = Wt = ϵ–1

ϵ Pt < P
s p
t = Wt, where P

s p
t is the price set by

a hypothetical social planner. That is, inequality implies that output and employment
are below their efficient levels, which comes as a result of monopolistic competition.
To solve this suboptimality, the government implements the standard optimal subsidy
that induces marginal cost pricing, so that the model is efficient in equilibrium: with
the desired markup defined by P∗jt =

ϵ
ϵ–1

1
1–τsWt, the optimal subsidy is τs = 1

ϵ–1. The

profit function is Djt = (1 + τs)PjtYjt –WtNjt – T
f
t . The subsidy is financed by taxing firms

T ft = τsYt, which gives the total profits Dt = PtYt –WtNt.
The (log-linearized) firm-level Phillips curve is given by

πjt = κθEjt yt + (1 – θ)Ejtπt + βθEjtπj,t+1(14)

where κ = (1–θ)(1–βθ)
θ (σ +φ). Iterating forward and aggregating across firms, the aggre-

gate Phillips curve can be written as

πt = κθ

∞∑

k=0
(βθ)kE ft yt+k + (1 – θ)

∞∑

k=0
(βθ)kE ft πt+k(15)

where E
f
t (·) =

∫ 1
0 Ejt(·) dj is the cross-sectional average forecast across firms.11

Conditions (14)-(15) are derived under a general information structure, in which
I relax the assumption that the aggregate firm expectation operator satisfies the LIE.
Each firm’s decision (14) can be described as a beauty contest in which they need to
forecast current output and inflation, which in turn depend on each household’s and

11The model derivation is relegated to Appendix B.
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firm’s actions and their future optimal action.

4.2. Fiscal andMonetary Policy

As in section 2, I assume that the government does not face any information friction.
On top of the aforementioned optimal subsidy and redistribution scheme, monetary
policy is conducted following a Taylor rule of the form

it = ϕππt + ϕ y yt + vt(16)

vt = ρvt–1 + σεεt, εt ∼ N(0, 1)(17)

where the monetary policy shock vt follows an AR(1) process, to match the empirically
observed inertia in the interest rate.

4.3. Information Structure

Both types of agents, households and firms, are subject to information frictions: they do
not observe the fundamental shock and are uncertain about the state of nature. Every
period, each agent receives a dose of private information on the aggregate fundamental.
Formally, there is a collection of private Gaussian signals, one per agent and per period.
In particular, the period–t signal received by agent l in group g is given by

xl gt = vt + σgul gt, ul gt ∼ N(0, 1)(18)

where g = {household, firm}, σg ≥ 0 parameterizes the noise in group g. Notice that, by
allowing σg to differ by g, I accommodate rich information heterogeneity (for example,
firms could on average be more informed than households.)

4.4. Equilibrium Dynamics

The equilibrium dynamics must satisfy the individual-level optimal policy functions (3)
and (14), and rational expectation formation must be consistent with the Taylor rule
(16), the exogenous monetary shock process (17) and the signal process (18). I show in
Proposition 6 that the solutions to the fixed points is a VARX(1), where the exogenous
component is the monetary policy shock.
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PROPOSITION 6. In equilibrium, the aggregate outcome obeys the following law of motion

(19) xt = A(ϑ1, ϑ2)xt–1 + B(ϑ1, ϑ2)vt

where xt =

yt πt

⊺
is a vector containing output and inflation, A(ϑ1, ϑ2) is a 2× 2matrix

and B(ϑ1, ϑ2) is a 2× 1 vector

A =



ψ11ψ22ϑ1–ψ12ψ21ϑ2
ψ11ψ22–ψ12ψ21 – ψ11ψ12(ϑ1–ϑ2)

ψ11ψ22–ψ12ψ21
ψ21ψ22(ϑ1–ϑ2)
ψ11ψ22–ψ12ψ21 –(ψ12ψ21ϑ1–ψ11ψ22ϑ2)ψ11ψ22–ψ12ψ21


 , B =


ψ11


1 – ϑ1

ρ


+ψ12


1 – ϑ2

ρ



ψ21

1 – ϑ1

ρ


+ψ22


1 – ϑ2

ρ





where {ψgk}2g=1,k=1 are fixed scalars that depend on deep parameters of the model, satisfying

2

j=1
ψ1j = –

1 – ρβ
(1 – βρ)[ν(1 – δρ) + ϕ y] + κ(ϕπ – ρ)

,
2

j=1
ψ2j = –

κ

(1 – βρ)[ν(1 – δρ) + ϕ y] + κ(ϕπ – ρ)

(20)

and (ϑ1, ϑ2) are two scalars that are given by the reciprocal of the two largest roots of the

characteristic polynomial of C(z) =


C11(z) C12(z)
C21(z) C22(z)


, where

C11(z) = λ1


(β – z)


z –

1
ρ


(z – ρ) +

σ2ε
ρσ21

βz

z

1 – λχ +

ϕ y(1 – λ)
σ


– δ(1 – λχ)



C12(z) = –λ1z
σ2ε
ρσ21

β

σ
(1 – λ)(1 – zϕπ)

C21(z) = –λ2z2
σ2ε
ρσ22

κθ

C22(z) = λ2


(βθ – z)


z –

1
ρ


(z – ρ) +

σ2ε
ρσ22

θz (z – β)



where λg, g ∈ {1, 2} is the inside root of the polynomial D(z) ≡ (1 – ρz)(ρ – z) – σ2ε
σ2g
z.

PROOF. See Appendix A.

The equilibrium dynamics (19) follow a VARX(1) process. In this framework, ϑ1 and
ϑ2 govern information frictions. When the signal noise is high enough such that the
signals are completely uninformative, ϑ1 and ϑ2 reach their maximum value of ρ. On
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PROPOSITION 6. In equilibrium, the aggregate outcome obeys the following law of motion

(19) xt = A(ϑ1, ϑ2)xt–1 + B(ϑ1, ϑ2)vt

where xt =

yt πt

⊺
is a vector containing output and inflation, A(ϑ1, ϑ2) is a 2× 2matrix

and B(ϑ1, ϑ2) is a 2× 1 vector

A =



ψ11ψ22ϑ1–ψ12ψ21ϑ2
ψ11ψ22–ψ12ψ21 – ψ11ψ12(ϑ1–ϑ2)

ψ11ψ22–ψ12ψ21
ψ21ψ22(ϑ1–ϑ2)
ψ11ψ22–ψ12ψ21 –(ψ12ψ21ϑ1–ψ11ψ22ϑ2)ψ11ψ22–ψ12ψ21


 , B =


ψ11


1 – ϑ1

ρ


+ψ12


1 – ϑ2

ρ



ψ21

1 – ϑ1

ρ


+ψ22


1 – ϑ2

ρ





where {ψgk}2g=1,k=1 are fixed scalars that depend on deep parameters of the model, satisfying

2

j=1
ψ1j = –

1 – ρβ
(1 – βρ)[ν(1 – δρ) + ϕ y] + κ(ϕπ – ρ)

,
2

j=1
ψ2j = –

κ

(1 – βρ)[ν(1 – δρ) + ϕ y] + κ(ϕπ – ρ)

(20)

and (ϑ1, ϑ2) are two scalars that are given by the reciprocal of the two largest roots of the

characteristic polynomial of C(z) =


C11(z) C12(z)
C21(z) C22(z)


, where

C11(z) = λ1


(β – z)


z –

1
ρ


(z – ρ) +

σ2ε
ρσ21

βz

z

1 – λχ +

ϕ y(1 – λ)
σ


– δ(1 – λχ)



C12(z) = –λ1z
σ2ε
ρσ21

β

σ
(1 – λ)(1 – zϕπ)

C21(z) = –λ2z2
σ2ε
ρσ22

κθ

C22(z) = λ2


(βθ – z)


z –

1
ρ


(z – ρ) +

σ2ε
ρσ22

θz (z – β)



where λg, g ∈ {1, 2} is the inside root of the polynomial D(z) ≡ (1 – ρz)(ρ – z) – σ2ε
σ2g
z.

PROOF. See Appendix A.

The equilibrium dynamics (19) follow a VARX(1) process. In this framework, ϑ1 and
ϑ2 govern information frictions. When the signal noise is high enough such that the
signals are completely uninformative, ϑ1 and ϑ2 reach their maximum value of ρ. On
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Parameter Description Value Source

θ Calvo probability 0.75 Bilbiie (2021)
σ2ε Variance of monetary shock 1 Bilbiie (2021)
ϕπ Inflation response in Taylor rule 1.5 Christiano et al. (2005)
ϕ y Output response in Taylor rule 0.1 Christiano et al. (2005)
ρ Autocorrelation of monetary shock 0.8 Christiano et al. (2005)

σ21 Consumer signal innovation variance 3.50 Coibion and Gorodnichenko (2015)
σ22 Firm signal innovation variance 3.50 Coibion and Gorodnichenko (2015)

TABLE 2. Parameter values.

the other hand, when the signals are perfectly informative, ϑ1 = ϑ2 = 0. The square
coefficient matrix A(ϑ1, ϑ2) is endogenous to ϑ1 and ϑ2 (the roots of its characteristic
polynomial), and we have A(0, 0) = 0. In that case, which is simply the FIRE NKmodel,
the model dynamics are given by xt = B(0, 0)vt.

Two aspects are worth discussing. First, the beyond FIRE model produces intrinsic
persistence, in the sense that A(ϑ1, ϑ2) ̸= 0, without assuming habits, adjustment costs,
or price indexation. Second, the equilibrium dynamics are less sensitive to monetary
policy changes. This is easily verified by comparingB(ϑ1, ϑ2) andB(0, 0): each element in
B(ϑ1, ϑ2) is smaller than each element in B(0, 0) (in absolute terms), given that {ϑ1, ϑ2} ∈
[0, ρ]2.

Calibration. Table 2 reports the additional parameters used in the different policy
analyses. The first block contains the monetary policy parameters. The Calvo inaction
probability θ, variance of the monetary policy shock σ2ε, taken from Bilbiie (2021), the
autocorrelation ρ set to match the empirically observed inertia in the Taylor rule, and
the Taylor rule coefficients ϕ y and ϕπ to the values used in Christiano et al. (2005).

The second block contains the parameters related to imperfect information. Al-
though the framework is flexible to accommodate heterogeneous signals precision, I
restrict attention to households’ inflation forecasts and set σ1 = σ2 to match the under-
revision coefficient of households. In this case, the model-implied coefficient in the full
HANK beyond FIRE, βM

cπ is given by the following proposition.

PROPOSITION 7. In our beyond FIRE framework the regression coefficient βM
cπ is given by

βM
cπ =

λ31
(ρ – λ1)(1 + λ1 + λ21 + λ

3
1)
∑2
k=1ψ2g

ρ–ϑk
1–λ1ϑk

×
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3
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ρ–ϑk
1–λ1ϑk
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×
2∑
g=1

(ρ – ϑg)ψ2g
(1 – λ1ϑg)(ϑg – λ1)

[
λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg

+ (1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}

]
(21)

PROOF. See Appendix A.

Note that the set (λ1, ϑ1, ϑ2,ψ21,ψ22) is endogenous to the signals’ precisions σ1 and
σ2. I calibrate the pair (σ1,σ2) by minimizing the square distance between the model-
implied coefficient βM

cπ and the estimated coefficient in Coibion and Gorodnichenko
(2015). This implies that σ21 = σ22 = 3.4989.

4.5. Applications and Additional Insights

I study the different implications of the HANK beyond FIRE economy by conducting
several policy experiments, revisiting the results in section 3. I exploit the twomain fric-
tions, financial and informational, and explain their joint interaction and consequences.
In particular, I show that the Taylor Principle is satisfied in the economy beyond FIRE
(with the determinacy region widened), I explain the key role of PE vs. GE effects and
how these are affected by financial frictions, I show that the model solves the FGP, and
I obtain the effect of an “animal spirits” shock.

4.5.1. Response after a Monetary Policy Shock

The HANK beyond FIRE differs from the textbook NK in two dimensions: household
heterogeneity and information frictions. To isolate the effects of both frictions, I study
these separately. I plot the impulse response of output after a monetary policy shock
in the FIRE economy in figure 5A (solid line). The peak response occurs on impact,
due to the lack of intrinsic persistence since xt = B(0, 0)vt. Two problems arise. First,
the finding that output increases by 1.25 p.p. after a 100 b.p. monetary policy shock
is excessive. The empirical macro literature generally presents results in the range
of 0.2 – 0.8 b.p. (see e.g. Ramey (2016) for a literature review.) Second, the peak of the
IRF occurs on impact, while empirical evidence suggests a hump-shaped IRF. I show
in the sequel that information frictions solve these puzzles, reconciling the micro-
and macro-econometric evidence. An additional counterfactual prediction of the FIRE
framework is that the policy rate increases after an expansionary monetary policy
shock (see figure 5C, solid line), as opposed to the decrease found by empirical evidence
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(Ramey 2016). Once I consider information frictions (dashed line), the peak effect in
output is around 1/4 of that of the standard framework, around 0.3 p.p. and in line with
the findings in Ramey (2016), and the IRFs have the hump-shaped dynamics observed
in the data (Christiano et al. 2005; Ramey 2016) without compromising the individual
(monotonically decreasing) responses to income shocks documented in Fagereng et
al. (2019). Finally, the nominal interest rate decreases after an expansionary monetary
policy shock.

Amplification. As argued in section 3, HtM households amplify the response of ag-
gregate variables to monetary shocks. In figure 5B I plot the ratio between the output
response to a monetary policy shock under a given HtM share, and the output response
under RANK, for different degrees of HtM shares (solid line). The HtM transmission
channel is present: output respondsmore to monetary policy shocks the larger the share
of HtM agents, λ. For the benchmark calibration λ = 0.37, the peak output response is
10.28% larger than without financial frictions. Under information frictions, the amplifi-
cation effect of HtM agents is still present but partially muted (dashed line). A larger
degree of financial frictions leads to a larger response of output to monetary shocks,
but the multiplier is smaller than in the FIRE case. For the benchmark calibration
λ = 0.37, the peak output response is 7.72% larger than without financial frictions. The
HtMmechanism, which operates through general equilibrium dynamics, is partially
muted by dispersed information.

PE vs. GE. The amplification effect of HtM agents is present but dampened by infor-
mation frictions, which mute the GE dimension. Following (9), I decompose the total
response in the DIS curve into partial equilibrium (direct) and general equilibrium
(indirect) effect components, with the caveat that what I used to call PE effects are now
composed of pure PE effects coming from the monetary shock, the stabilization role of
the Taylor rule (16) and inflation expectations. The following proposition provides the
PE share µτ in the full HANK economy.

PROPOSITION 8. Beyond FIRE, the time-varying PE share µτ is given by

µτ =
ρ
(∑2

g=1ψ1g – δ1
)
ρτ – ρδ2λτ1 –

∑2
g=1(ψ1gϑg + δ3j)ϑτg

ρ
∑2
g=1ψ1gρ

τ –
∑2
g=1ψ1gϑgϑ

τ
g
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A. Output dynamics after a 100 b.p. monetary policy shock in the FIRE (solid line) and Beyond FIRE
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B. Amplification multiplier with respect to RANK in the FIRE (solid line) and Beyond FIRE (dashed line)
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C. Policy rate dynamics after a 100 b.p. monetary policy shock in the FIRE (solid line) and Beyond FIRE
(dashed line) frameworks.
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where

δ1 =
{
[1 – β(1 – λχ)] + (δ – β)(1 – λχ)β

ρ

1 – ρβ

} 2∑

j=1
ψ1j

δ2 = [1 – β(1 – λχ)]
2∑

j=1
ψ1j

λ21 (ρ – ϑj)(1 – ρϑj)
ρ2(ϑj – λ1)(1 – ϑjλ1)

+ (δ – β)(1 – λχ)β
2∑

j=1
ψ1j

λ1(ρ – ϑj)
[
ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)

]

ρ2(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

δ3j = –
ψ1jϑ

2
j (ρ – λ1)(1 – ρλ1)

ρ2(ϑj – λ1)(1 – ϑjλ1)

{
[1 – β(1 – λχ)] + (δ – β)(1 – λχ)β

ϑj
1 – βϑj

}

PROOF. See Appendix A.

I plot the aggregate output response, the PE response (grey shaded region), and
the GE response (light grey shaded region) after a monetary policy shock in figure 6A
(figure 6B reports the same dynamics in the FIRE economy). GE effects are arrested
in the first periods compared to the FIRE benchmark, consistent with the empirical
findings in Holm et al. (2021). While GE effects depend on the hierarchy of beliefs,
with each higher-order belief creating more intrinsic persistence, PE effects depend
partially on the expectations of the fundamental, which do not lead to higher-order
beliefs. Therefore, amplification, which nourishes from the GE dimension, is partially
muted. Figure 6C reports the PE share µτ (solid line) at each τ period after the monetary
policy shock, together with the PE share under no information frictions (dashed line).
The GE share beyond FIRE is lower than in FIRE (except for the initial period), and
mutes the amplification multiplier coming from HtM households. As stressed before,
the PE effect is contaminated by higher-order beliefs, which results in a non-monotonic
PE share over time. The non-monotonic shape of the PE share depends crucially on
the hawkishness of the monetary authority. Suppose instead that the central bank
is less aggressive with respect to inflation, such that ϕπ = 1. Figure 7 presents the
dynamics in that case, which are monotonically decreasing and closer to those in
section 3. Now, suppose that the monetary authority increases ϕπ. This increase will
dampen GE effects, since nominal interest rates will react more to exogenous shocks to
provide the desired stabilization. This reduces the degree of strategic complementarities
(and increases strategic substitutability), affecting agents’ forecasting. Since strategic
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(Ramey 2016). Once I consider information frictions (dashed line), the peak effect in
output is around 1/4 of that of the standard framework, around 0.3 p.p. and in line with
the findings in Ramey (2016), and the IRFs have the hump-shaped dynamics observed
in the data (Christiano et al. 2005; Ramey 2016) without compromising the individual
(monotonically decreasing) responses to income shocks documented in Fagereng et
al. (2019). Finally, the nominal interest rate decreases after an expansionary monetary
policy shock.

Amplification. As argued in section 3, HtM households amplify the response of ag-
gregate variables to monetary shocks. In figure 5B I plot the ratio between the output
response to a monetary policy shock under a given HtM share, and the output response
under RANK, for different degrees of HtM shares (solid line). The HtM transmission
channel is present: output respondsmore to monetary policy shocks the larger the share
of HtM agents, λ. For the benchmark calibration λ = 0.37, the peak output response is
10.28% larger than without financial frictions. Under information frictions, the amplifi-
cation effect of HtM agents is still present but partially muted (dashed line). A larger
degree of financial frictions leads to a larger response of output to monetary shocks,
but the multiplier is smaller than in the FIRE case. For the benchmark calibration
λ = 0.37, the peak output response is 7.72% larger than without financial frictions. The
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PE vs. GE. The amplification effect of HtM agents is present but dampened by infor-
mation frictions, which mute the GE dimension. Following (9), I decompose the total
response in the DIS curve into partial equilibrium (direct) and general equilibrium
(indirect) effect components, with the caveat that what I used to call PE effects are now
composed of pure PE effects coming from the monetary shock, the stabilization role of
the Taylor rule (16) and inflation expectations. The following proposition provides the
PE share µτ in the full HANK economy.

PROPOSITION 8. Beyond FIRE, the time-varying PE share µτ is given by

µτ =
ρ
(∑2

g=1ψ1g – δ1
)
ρτ – ρδ2λτ1 –

∑2
g=1(ψ1gϑg + δ3j)ϑτg

ρ
∑2
g=1ψ1gρ

τ –
∑2
g=1ψ1gϑgϑ

τ
g
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where

δ1 =
{
[1 – β(1 – λχ)] + (δ – β)(1 – λχ)β

ρ

1 – ρβ

} 2∑

j=1
ψ1j

δ2 = [1 – β(1 – λχ)]
2∑

j=1
ψ1j

λ21 (ρ – ϑj)(1 – ρϑj)
ρ2(ϑj – λ1)(1 – ϑjλ1)

+ (δ – β)(1 – λχ)β
2∑

j=1
ψ1j

λ1(ρ – ϑj)
[
ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)

]

ρ2(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

δ3j = –
ψ1jϑ

2
j (ρ – λ1)(1 – ρλ1)

ρ2(ϑj – λ1)(1 – ϑjλ1)

{
[1 – β(1 – λχ)] + (δ – β)(1 – λχ)β

ϑj
1 – βϑj

}

PROOF. See Appendix A.
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dampen GE effects, since nominal interest rates will react more to exogenous shocks to
provide the desired stabilization. This reduces the degree of strategic complementarities
(and increases strategic substitutability), affecting agents’ forecasting. Since strategic
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complementarities are less important, agents rely more on their private signal, and
forecasts become less anchored to priors. As a result, forecasts are closer to the FIRE
case, in which case GE effects dominate PE effects.

4.5.2. The Taylor Principle beyond FIRE

Extending the demand-side model in section 2 allows us to study the Taylor Principle.
As in the standard NK model, the Taylor Principle boils down to studying the determi-
nacy of the system (4), (15), (16) and (17). The equilibrium is indeterminate when the
current outcomes are excessively affected by expectations of the future. One should
therefore expect, as discussed in Gabaix (2020), that introducing myopia should widen
the determinacy region, making the system (4), (15), (16) and (17) stable for a larger set
of (ϕπ,ϕ y) combinations.

I start discussing the FIRE benchmark. In the empirically factual case of ampli-
fication, δ > 1 generates compounding in the DIS curve, the model becomes more
forward-looking, and the stability region is reduced. Part (i) in the following proposition
summarizes how financial frictions affect the determinacy region.

PROPOSITION 9. (i) The FIRE equilibrium exists and is unique if

(1 – βδ) +
1
ν
(κϕπ + ϕ y) > 0(22)

(1 – β)(1 – δ) +
1
ν
[κ(ϕπ – 1) + (1 – β)ϕ y] > 0(23)

(1 + β)(1 + δ) +
1
ν
[κ(ϕπ + 1) + (1 + β)ϕ y] > 0(24)

(ii) The beyond FIRE equilibrium exists and is unique if

1 – ϑ1ϑ2 > 0(25)

(1 – ϑ1)(1 – ϑ2) > 0(26)

(1 + ϑ1)(1 + ϑ2) > 0(27)

and ϑ1 and ϑ2 are the only two outside roots of polynomial C(z), defined in proposition 6.

PROOF. See Appendix A.

In the TANK case δ = 1, (24) is always satisfied for strictly positive Taylor rule
coefficients, condition (23) implies (22), and I am only left with κ(ϕπ – 1) + (1 – β)ϕ y > 0.
The term ν is completely innocuous for determinacy. As a result, the determinacy
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complementarities are less important, agents rely more on their private signal, and
forecasts become less anchored to priors. As a result, forecasts are closer to the FIRE
case, in which case GE effects dominate PE effects.

4.5.2. The Taylor Principle beyond FIRE

Extending the demand-side model in section 2 allows us to study the Taylor Principle.
As in the standard NK model, the Taylor Principle boils down to studying the determi-
nacy of the system (4), (15), (16) and (17). The equilibrium is indeterminate when the
current outcomes are excessively affected by expectations of the future. One should
therefore expect, as discussed in Gabaix (2020), that introducing myopia should widen
the determinacy region, making the system (4), (15), (16) and (17) stable for a larger set
of (ϕπ,ϕ y) combinations.

I start discussing the FIRE benchmark. In the empirically factual case of ampli-
fication, δ > 1 generates compounding in the DIS curve, the model becomes more
forward-looking, and the stability region is reduced. Part (i) in the following proposition
summarizes how financial frictions affect the determinacy region.

PROPOSITION 9. (i) The FIRE equilibrium exists and is unique if

(1 – βδ) +
1
ν
(κϕπ + ϕ y) > 0(22)

(1 – β)(1 – δ) +
1
ν
[κ(ϕπ – 1) + (1 – β)ϕ y] > 0(23)

(1 + β)(1 + δ) +
1
ν
[κ(ϕπ + 1) + (1 + β)ϕ y] > 0(24)

(ii) The beyond FIRE equilibrium exists and is unique if

1 – ϑ1ϑ2 > 0(25)

(1 – ϑ1)(1 – ϑ2) > 0(26)

(1 + ϑ1)(1 + ϑ2) > 0(27)

and ϑ1 and ϑ2 are the only two outside roots of polynomial C(z), defined in proposition 6.

PROOF. See Appendix A.

In the TANK case δ = 1, (24) is always satisfied for strictly positive Taylor rule
coefficients, condition (23) implies (22), and I am only left with κ(ϕπ – 1) + (1 – β)ϕ y > 0.
The term ν is completely innocuous for determinacy. As a result, the determinacy
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region in RANK and TANK is identical. It is ultimately δ, which is the companion of the
forward-looking element in (5), that will drive the restrictions on the Taylor Principle.
Under HANK (with δ > 1), the determinacy region is reduced. In that case, (24) is always
satisfied. The coefficient δ > 1 is reducing the leftmost term in (22)-(23). As a result, the
rightmost element on the left-hand side in both conditions needs to be sufficiently larger.
Precautionary savings are reducing the determinacy region, which I report in Figure
8A, through compounding in the individual Euler condition.

I now turn to the beyond FIRE case. Under the parameter values reported in Table 2,
I conduct the beyond FIRE equivalent of Blanchard and Kahn (1980), which I summarize
in Proposition 9, part (ii). Condition (26) is usually the only one considered in the stan-
dard framework since the FIRE equivalent of conditions (25) and (27) is trivially satisfied.
In the beyond FIRE framework (25)-(27) are satisfied since {ϑg}g=1,2 ∈ [0, ρ]. The most
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region in RANK and TANK is identical. It is ultimately δ, which is the companion of the
forward-looking element in (5), that will drive the restrictions on the Taylor Principle.
Under HANK (with δ > 1), the determinacy region is reduced. In that case, (24) is always
satisfied. The coefficient δ > 1 is reducing the leftmost term in (22)-(23). As a result, the
rightmost element on the left-hand side in both conditions needs to be sufficiently larger.
Precautionary savings are reducing the determinacy region, which I report in Figure
8A, through compounding in the individual Euler condition.

I now turn to the beyond FIRE case. Under the parameter values reported in Table 2,
I conduct the beyond FIRE equivalent of Blanchard and Kahn (1980), which I summarize
in Proposition 9, part (ii). Condition (26) is usually the only one considered in the stan-
dard framework since the FIRE equivalent of conditions (25) and (27) is trivially satisfied.
In the beyond FIRE framework (25)-(27) are satisfied since {ϑg}g=1,2 ∈ [0, ρ]. The most
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restrictive condition is that ϑ1 and ϑ2 are the only outside roots of polynomial C(z). Note
that ϑ1 and ϑ2 are endogenously determined by the deep parameters in the model, so
that some parameterizations can yield an indeterminacy even if conditions (25)-(27)
are met but C(z) contains more than two outside roots. I plot the determinacy regions
both beyond FIRE and under FIRE in Figure 8B. Imperfect information widens the de-
terminacy region as a result of aggregate myopia, micro-founded through sluggishness
updating of expectations.

4.5.3. Forward Guidance

In the FIRE model, the Phillips curve is given by πt = κ yt + βEtπt+1, the DIS curve is
given by (5), and the Taylor rule is given by (16)-(17). Inserting the Taylor rule into the
DIS curve, one can write the model as a system of two first-order stochastic difference
equations, Ãxt = B̃Etxt+1 + C̃vt, where

Ã =

[
ν + ϕ y ϕπ

–κ 1

]
, B̃ =

[
νδ 1
0 β

]
, and C̃ =

[
–1
0

]

Premultiplying the system by Ã–1 I obtain

xt = φvt + δEtxt+1(28)

where δ = Ã–1B̃ andφ = Ã–1C̃. I show in Proposition 10 that information frictions induce
intrinsic persistence and myopia at the aggregate level, as discussed in Angeletos and
Lian (2018); Angeletos and Huo (2021). This result is sufficient to cure the FGP, whilst
the amplification result is maintained.

Consider a situation in which the economy is stuck in a liquidity trap. Suppose that
the ZLB for nominal interest rates is binding between periods t and τ, such that τ ≥ t.
The following proposition rewrites the DIS curve beyond FIRE in FIRE terms, and proves
that there is no FGP anymore.

PROPOSITION 10. (i) The ad-hoc equilibrium dynamics

xt =ωbxt–1 + δω f Etxt+1 +φvt(29)

withωb =

[
ωb,11 ωb,12
ωb,21 ωb,22

]
andω f =

[
ω f ,11 ω f ,12
ω f ,21 ω f ,22

]
produce identical dynamics to the
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dispersed information model if (ωb,ω f ) satisfy

ωb = [I – δω f A]A

B –φ = δω f (A + ρ)B
(30)

The DIS curve can be written in FIRE terms as

yt = ωb y yt–1 +ωbππt–1 –
1
ν
(it – Etπt+1) +ω f yEt yt+1 +ω f πEtπt+1(31)

where ωb y =
(ν+ϕ y)ωb,11+ϕπωb,21

ν , ωbπ =
(ν+ϕ y)ωb,12+ϕπωb,22

ν , ω f y =
νδω f ,11+ω f ,21

ν , and

ω f π =
νδω f ,12+ω f ,22–1

ν .
(ii) Dispersed information cures the FGP if one of the roots of the polynomial Q(x) ≡

ω f yx
2 – x + ωb y lies outside the unit circle, and the other root lies inside the unit circle.

Furthermore, the effect of forward guidance at period τ on consumption in period t is given by

FGt,t+τ =
∂ yt

∂Etrt+τ
= –

ζ

ωb y


 1
ν
+ω f π +ωbπζ

2
ω2
f y

ω2
b y





ζ
ω f y
ωb y

τ

where ζ ∈ (0, 1) is the only inside root of the polynomial Q(x).

PROOF. See Appendix A.

In the benchmark NK model with no information frictions,ωb y = ωbπ = ω f π = 0
andω f y = δ, and theDIS curve is reduced to (5). A caveat of the above proposition is that
the scalars {ωb y,ωbπ,ω f y,ω f π} are not unique, although the dynamics are unique.
That is, different weights are consistent with the equilibriumdynamics described by (19).
Intuitively, agents’ actions can be anchored and/or myopic with respect to aggregate
output or inflation, or a combination of both. Hence, to study the dynamics in the
Phillips curve and the FGP, the theorist is left with one degree of freedom for each
equation. For {ω f ,11,ω f ,21} ∈ [0, 1]2, I plot in Figure 9A the space in which the FGP is
cured (that is, a polynomial Q(x) has only one inside root). Only the dark-shaded region
is consistent with (30) and cures the FGP.

Proposition 10 derives the general DIS curve in FIRE terms. To analyze the effects
of forward guidance, consider a situation in which the economy is stuck at the ZLB
in which nominal interest rates are binding at the zero constraint for k ∈ (t, τ). The
ex-ante real interest rate is the (log) inverse of expected inflation, Etrk = –Etπk+1, and

34
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Proposition 10 derives the general DIS curve in FIRE terms. To analyze the effects
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in which nominal interest rates are binding at the zero constraint for k ∈ (t, τ). The
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the DIS curve (31) becomes

(32) yt = ωb y yt–1 +ωbππt–1 –
(
1
ν
+ω f π

)
Etrt +ω f yEt yt+1

Dispersed information adds intrinsic persistence and myopia in the DIS curve: intrinsic
persistence is added both via output and inflation by introducing two additional lagged
terms. Myopia is introduced by introducing a termω f y ∈ (0, 1). The contemporaneous
effect of a real interest rate shock is also diminished sinceω f π < 0. In Figure 9B I plot
the impact of a forward guidance shock in period τ on today’s output for each τ under
FIRE (solid line) and beyond FIRE (dashed line). The FGP is cured, so the further the
forward guidance is implemented, the lesser the effect.

4.5.4. Beliefs Shock

Public Information. Consider a collection of public Gaussian signals, one per period
and common across agents. In particular, the period–t signal received by all agents,
regardless of their group g, is given by

zt = vt + σϵϵt, ϵt ∼ N(0, 1)(33)

where σϵ ≥ 0 parameterizes the noise in the common signal. The rest of the model is
unchanged. The following proposition summarizes the equilibrium dynamics under
public information.

PROPOSITION 11. In equilibrium, the aggregate outcome obeys the following law of motion

(34) xt = A(ϑ1, ϑ2)xt–1 + B(ϑ1, ϑ2)vt + B(ϑ1, ϑ2)ϵt

where (ϑ1, ϑ2) are two scalars that are given by the reciprocal of the two largest roots of the
characteristic polynomial of the following matrix

C(z) =

[
C11(z) C12(z)
C21(z) C22(z)

]

where

C11(z) = λ̂

{
(β – z)

(
z –

1
ρ

)
(z – ρ) +

σ2ε
ρσ2ϵ

z
[
z
(
1 +

ϕ y
ν

)
– δ

]}
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C12(z) = –λ̂z
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β
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(1 – zϕπ)

C21(z) = –λ̂z2
σ2ε
ρσ2ϵ

κθ

C22(z) = λ̂

[
(βθ – z)

(
z –

1
ρ

)
(z – ρ) +

σ2ε
ρσ2ϵ

θz (z – β)

]

where λ̂ is the inside root of the polynomial Dϵ(z) ≡ (1 – ρz)(ρ – z) – σ2ε
σ2ϵ
z.

PROOF. See Appendix A.

The equilibrium dynamics still follow a VARX(1) process, with an additional con-
temporaneous exogenous shock ϵt. This term can be interpreted as a belief or “animal
spirits” shock. Both shocks have identical effects on impact on aggregate variables, given
that agents cannot completely disentangle the noise and the fundamental shock from
the signal. However, since the belief shock, ϵt is transitory, it has fewer long-lasting
effects than the monetary policy shock (see figure 10A). Although the belief shock is
purely transitory, it produces persistent and hump-shaped dynamics of output over time.
This is the result of having imperfectly informed agents, which cannot immediately
differentiate between a belief shock and a true monetary policy shock. Notice also the
different response of the policy rate: after the expansionary monetary policy shock the
policy rate decreases. After the non-fundamental belief shock, the central bank raises
the interest rates to cool down the economy, which reduces the GE effect of the belief
shock (see figure 10B).12

Private and Public Information. What if instead of replacing private with public
signals, I allow agents to observe both private and public signals? I extend the model to
include public information and obtain themodel dynamics after a shock to the common
signal. On top of the individual signal (18), all agents receive a common and public
noisy signal informing them about the monetary policy shock vt, (33). The following
proposition summarizes the equilibrium dynamics under public information.

PROPOSITION 12. In equilibrium, the aggregate outcome obeys the following law of motion

(35) xt = Qv
∞∑

k=0
ΛkΓvt–k + Qu

∞∑

k=0
ΛkΓϵt–k

12To produce these figures I set the public signal noise to σϵ = σ1 = σ2.
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the DIS curve (31) becomes

(32) yt = ωb y yt–1 +ωbππt–1 –
(
1
ν
+ω f π

)
Etrt +ω f yEt yt+1

Dispersed information adds intrinsic persistence and myopia in the DIS curve: intrinsic
persistence is added both via output and inflation by introducing two additional lagged
terms. Myopia is introduced by introducing a termω f y ∈ (0, 1). The contemporaneous
effect of a real interest rate shock is also diminished sinceω f π < 0. In Figure 9B I plot
the impact of a forward guidance shock in period τ on today’s output for each τ under
FIRE (solid line) and beyond FIRE (dashed line). The FGP is cured, so the further the
forward guidance is implemented, the lesser the effect.

4.5.4. Beliefs Shock

Public Information. Consider a collection of public Gaussian signals, one per period
and common across agents. In particular, the period–t signal received by all agents,
regardless of their group g, is given by

zt = vt + σϵϵt, ϵt ∼ N(0, 1)(33)

where σϵ ≥ 0 parameterizes the noise in the common signal. The rest of the model is
unchanged. The following proposition summarizes the equilibrium dynamics under
public information.

PROPOSITION 11. In equilibrium, the aggregate outcome obeys the following law of motion

(34) xt = A(ϑ1, ϑ2)xt–1 + B(ϑ1, ϑ2)vt + B(ϑ1, ϑ2)ϵt

where (ϑ1, ϑ2) are two scalars that are given by the reciprocal of the two largest roots of the
characteristic polynomial of the following matrix

C(z) =

[
C11(z) C12(z)
C21(z) C22(z)

]

where

C11(z) = λ̂

{
(β – z)

(
z –

1
ρ

)
(z – ρ) +

σ2ε
ρσ2ϵ

z
[
z
(
1 +

ϕ y
ν

)
– δ

]}
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A. Impulse response of output after a 100 b.p. monetary policy shock under FIRE (solid line), beyond
FIRE (dashed line), and after a belief shock (dashed-dotted line).
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B. Impulse response of the policy rate after a 100 b.p. monetary policy shock under FIRE (solid line),
beyond FIRE (dashed line), and after a belief shock (dashed-dotted line).
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C. Impulse response of output after a 100 b.p. monetary policy shock under FIRE (solid line), beyond
FIRE (dashed line), and after a belief shock (dashed-dotted line).
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D. Impulse response of the policy rate after a 100 b.p. monetary policy shock under FIRE (solid line),
beyond FIRE (dashed line), and after a belief shock (dashed-dotted line).

FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).

38

0 2 4 6 8 10 12 14 16 18 20
Quarters

0

0.5

1

1.5

Im
pu

ls
e 

R
es

po
ns

e,
 O

ut
pu

t

FIRE
Monetary Shock
Belief Shock

A. Impulse response of output after a 100 b.p. monetary policy shock under FIRE (solid line), beyond
FIRE (dashed line), and after a belief shock (dashed-dotted line).

0 2 4 6 8 10 12 14 16 18 20
Quarters

-0.4

-0.2

0

0.2

0.4

0.6

Im
pu

ls
e 

R
es

po
ns

e,
 P

ol
ic

y 
R

at
e

FIRE
Monetary Shock
Belief Shock

B. Impulse response of the policy rate after a 100 b.p. monetary policy shock under FIRE (solid line),
beyond FIRE (dashed line), and after a belief shock (dashed-dotted line).

0 2 4 6 8 10 12 14 16 18 20
Quarters

0

0.5

1

1.5

Im
pu

ls
e 

R
es

po
ns

e,
 O

ut
pu

t

FIRE
Monetary Shock
Belief Shock

C. Impulse response of output after a 100 b.p. monetary policy shock under FIRE (solid line), beyond
FIRE (dashed line), and after a belief shock (dashed-dotted line).

0 2 4 6 8 10 12 14 16 18 20
Quarters

-0.4

-0.2

0

0.2

0.4

0.6

Im
pu

ls
e 

R
es

po
ns

e,
 P

ol
ic

y 
R

at
e

FIRE
Monetary Shock
Belief Shock

D. Impulse response of the policy rate after a 100 b.p. monetary policy shock under FIRE (solid line),
beyond FIRE (dashed line), and after a belief shock (dashed-dotted line).

FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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D. Impulse response of the policy rate after a 100 b.p. monetary policy shock under FIRE (solid line),
beyond FIRE (dashed line), and after a belief shock (dashed-dotted line).

FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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beyond FIRE (dashed line), and after a belief shock (dashed-dotted line).

FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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FIGURE 10. Output and Policy Rate dynamics with Public Information (figures 10A and
10B) and Public and Private Information (figures 10C and 10D).
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where

Qv =


ψ11 ψ12

ψ21 ψ22


, Qu =


ϕ11 ϕ12

ϕ21 ϕ22


, Λ =


ϑ1 0
0 ϑ2


, Γ =


1 – ϑ1/ρ
1 – ϑ2/ρ



where {ψgk,ϕgk}2g=1,k=1 are fixed scalars that depend on deep parameters of the model, and
(ϑ1, ϑ2) are two scalars that are given by the reciprocal of the two largest roots of the charac-
teristic polynomial of the following matrix
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
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
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(z–λ2)(1–λ2z)ρσ2ϵ
, C33(z) = 1 – σ2ε


1 – θ


1 – β
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, and λg, g ∈ {1, 2} is the inside root of the

polynomial Dg(z) ≡ (1 – ρz)(ρ – z) –
(σ2g+σ2ϵ)σ2ε

σ2gσ2ϵ
z.

PROOF. See Appendix A.

The first aspect to notice is that the equilibrium dynamics do not follow a VARX(1)
process anymore unless Qv = Qu, which is not generally satisfied. In this case, the two
exogenous shocks no longer share the impact effect anymore, since agents can partly
disentangle them through the two signals. By introducing an additional signal, I am
effectively reducing the degree of information friction that agents face. Even if there
is an exogenous shock to the common signal, private signals will be unaffected. As a
result, agents will not fully react to the “animal spirits” shock. I find that the effect of
the belief shock is smaller than before, the monetary policy shock is more powerful
and the produced dynamics are closer to the standard FIRE dynamics (see Figure 10C).
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[
(βθ – z)

(
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1
ρ

)
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σ2ε
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θz (z – β)

]

where λ̂ is the inside root of the polynomial Dϵ(z) ≡ (1 – ρz)(ρ – z) – σ2ε
σ2ϵ
z.

PROOF. See Appendix A.

The equilibrium dynamics still follow a VARX(1) process, with an additional con-
temporaneous exogenous shock ϵt. This term can be interpreted as a belief or “animal
spirits” shock. Both shocks have identical effects on impact on aggregate variables, given
that agents cannot completely disentangle the noise and the fundamental shock from
the signal. However, since the belief shock, ϵt is transitory, it has fewer long-lasting
effects than the monetary policy shock (see figure 10A). Although the belief shock is
purely transitory, it produces persistent and hump-shaped dynamics of output over time.
This is the result of having imperfectly informed agents, which cannot immediately
differentiate between a belief shock and a true monetary policy shock. Notice also the
different response of the policy rate: after the expansionary monetary policy shock the
policy rate decreases. After the non-fundamental belief shock, the central bank raises
the interest rates to cool down the economy, which reduces the GE effect of the belief
shock (see figure 10B).12

Private and Public Information. What if instead of replacing private with public
signals, I allow agents to observe both private and public signals? I extend the model to
include public information and obtain themodel dynamics after a shock to the common
signal. On top of the individual signal (18), all agents receive a common and public
noisy signal informing them about the monetary policy shock vt, (33). The following
proposition summarizes the equilibrium dynamics under public information.

PROPOSITION 12. In equilibrium, the aggregate outcome obeys the following law of motion

(35) xt = Qv
∞∑

k=0
ΛkΓvt–k + Qu

∞∑

k=0
ΛkΓϵt–k

12To produce these figures I set the public signal noise to σϵ = σ1 = σ2.
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The policy rate dynamics are qualitatively similar to the only public information case
(see Figure 10D).

To summarize, adding public information reduces information frictions, which in
turn dampens the effect of any belief shock and enlarges the effect of monetary policy
shocks.

5. Conclusion

I study the transmission channel of monetary policy in HANK economies. The amplifi-
cation result in the FIRE benchmark relies on financially constrained households being
immediately affected after a monetary policy shock through the GE effects. By relaxing
the FIRE assumption, I show that a framework with dispersed information results in a
different PE vs. GE share than in standard FIRE models, and is consistent with recent
empirical evidence. By introducing dispersed information, the GE effects are dampened
in the initial periods, thus reducing the magnitude of the multiplier.

I use the theory to shed some light on other questions. I find that the framework
produces hump-shaped IRFs without resorting to ad-hocmicro-inconsistent adjustment
costs in habits, pricing, or investment decisions. Instead, I micro-found aggregate
sluggishness through expectation formation sluggishness, for which the literature has
found empirical evidence. I also show that dispersed information produces as if myopia,
which extends the equilibrium determinacy region and is crucial for the solution of the
forward guidance puzzle. Finally, I find that purely transitory “animal spirits” shocks
can generate large and persistent effects on output.
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Notice that (A1) is equivalent to (4) if at = yt, vt = rt, Et(·) = E
c
t (·), and the following

parametric restrictions are satisfied: φu = –β(1–λ)σ , βu = β, γu = 1 – β (1 – λχ), and
αu = β[δ(1 – λχ) – 1].

I now turn to solve the expectation terms. I canwrite the fundamental representation
of the signal process as a system containing (2) and (6), which admits the following
state-space representation:

Zt = FZt–1 +Φsit, xit = HZt +Ψsit(A2)

with F = ρ,Φ =
[
σε 0

]
, Zt = rt, sit =

[
εrt uit

]⊺
,H = 1, andΨ =

[
0 σu

]
. It is convenient

to rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2ε
, τu ≡ 1

σ2u
,

and τεu = τu
τε
. The signal system can be written as

xit =
σε

1 – ρL
εrt + σuuit =

[
τ
– 12
ε

1–ρL τ
– 12
u

] [
εrt

uit

]
= M(L)sit, sit ∼ N(0, I)(A3)

The Wold theorem states that there exists another representation of the signal process
(A3), xit = B(L)wit such that B(z) is invertible andwit ∼ (0,V) is white noise. Hence, I
can write xit = M(L)sit = B(L)wit. In the Wold representation of xit, observing {xit} is
equivalent to observing {wit}, and {xti } and {w

t
i} contain the same information. Further-

more, note that the Wold representation has the property that both processes share
the autocovariance generating function, ρxx(z) = M(z)M⊺(z–1) = B(z)VB⊺(z–1). Given
the state-space representation of the signal process (A2), optimal expectations of the
exogenous fundamental take the form of a Kalman filter Eitvt = λuEit–1vt–1 +Kxit, where
λu = (I – KH)F, and K is given by

K = PH⊺V–1(A4)

P = F[P – PH⊺V–1HP]F +ΦΦ⊺

I still need to find the unknowns B(z) and V . Propositions 13.1-13.4 in Hamilton (1994)
provide us with these objects. Unknowns B(z) and V satisfy B(z) = I +H(I – Fz)–1FK and
V = HPH⊺ +ΨΨ⊺. I can write (A16) as

P2 + P[(1 – ρ2)σ2u – σ2ε] – σ2εσ2u = 0(A5)

from which I can infer that P is a scalar. Denote k = P–1 and rewrite (A5) as k =
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Appendix A. Proofs of Propositions

Proof of Proposition 1. The best response of household i is ait = φuEitvt + βuEitaigt+1 +
γuEitat + αuEitajt+1. Parameters {βu}, {γu}, {αu} help parameterize PE and GE con-
siderations. Parameter {φu} captures the direct exposure of household i to the ex-
ogenous shock. Iterating forward, ait = φu

∑∞
k=0 β

k
uEitvt+k + γuEitajt + (βuγu +

αu)
∑∞
k=0 β

k
uEitat+k+1. The aggregate action for household i is

at = φu

∞∑

k=0
βkuEtvt+k +

2∑

j=1
γuEtajt + (βuγu + αu)

∞∑

k=0
βkuEtat+k+1(A1)
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Notice that (A1) is equivalent to (4) if at = yt, vt = rt, Et(·) = E
c
t (·), and the following

parametric restrictions are satisfied: φu = –β(1–λ)σ , βu = β, γu = 1 – β (1 – λχ), and
αu = β[δ(1 – λχ) – 1].

I now turn to solve the expectation terms. I canwrite the fundamental representation
of the signal process as a system containing (2) and (6), which admits the following
state-space representation:

Zt = FZt–1 +Φsit, xit = HZt +Ψsit(A2)

with F = ρ,Φ =
[
σε 0

]
, Zt = rt, sit =

[
εrt uit

]⊺
,H = 1, andΨ =

[
0 σu

]
. It is convenient

to rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2ε
, τu ≡ 1

σ2u
,

and τεu = τu
τε
. The signal system can be written as

xit =
σε

1 – ρL
εrt + σuuit =

[
τ
– 12
ε

1–ρL τ
– 12
u

] [
εrt

uit

]
= M(L)sit, sit ∼ N(0, I)(A3)
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τε
2

{
1 – ρ2 – τεu ±

√[
τεu – (1 – ρ2)

]2 + 4τεu
}
. I also need to find K. Now that I have

found P in terms of model primitives, I can obtain K using condition (A4), K = 1
1+kσ2u

.

I can finally write λu =
kσ2uρ
1+kσ2u

= 1
2

[
1
ρ + ρ +

τεu
ρ ±

√(
1
ρ + ρ +

τεu
ρ

)2
– 4

]
. One can show

that one of the roots λu lies inside the unit circle and the other lies outside as long
as ρ ∈ (0, 1), which guarantees that the Kalman expectation process is stationary and
unique. I set λu to the root that lies inside the unit circle (the one with the ‘–’ sign).
Notice that I can also write V in terms of λ, V = k–1 + σ2u =

ρ
λuτu

, where I have used the
identity k = λuτu

ρ–λu . Finally, I can obtain B(z) = 1 +
ρz

(1–ρz)(1+kσ2u)
= 1–λuz

1–ρz and therefore one

can verify that B(z)VB⊺(z–1) = M(z)M⊺(z–1) =⇒ (ρ – λu)(1 – ρλu) = λuτεu.
Let us now move to the forecast of endogenous variables. Consider a variable f t =

A(L)sit. Applying the Wiener-Hopf prediction filter, I can obtain the forecast as Eit f t =[
A(L)M⊺(L–1)B(L–1)–1

]
+ V

–1B(L)–1xit, where [·]+ denotes the annihilator operator.
I need to find the A(z) polynomial for each of the forecasted variables. Let us start

from the exogenous fundamental vt to verify that the Kalman and Wiener-Hopf fil-

ters result in the same forecast. I can write the fundamental as vt =
[
τ
– 12
ε

1–ρL 0

]
sit =

Av(L)sit. Let me nowmove to the endogenous variables. Guess that household i’s pol-
icy function satisfies ait = h(L)xit. The aggregate outcome can then be expressed as

at =
∫
ait di =

∫
h(L)xit di = h(L) σε

1–ρLεt =
[
h(L) τ

– 12
ε

1–ρL 0

]
sl it = A(L)sit. Similarly, the

own and average future actions can be written as at+1 =
A(L)
L sit and ait+1 = h(L)xi,t+1 =[

τ
– 12
ε

h(L)
L(1–ρL) τ

– 12
u

h(L)
L

]
sit = Ai(L)sit. I now obtain the forecasts,

Eitvt =
[
Av(L)M⊺(L–1)B(L–1)–1

]
+
V–1B(L)–1xit =

[
L

(1 – ρL)(L – λu)

]

+

λuτεu
ρ

1 – ρL
1 – λuL

xit

=
[
ϕ1(L)
L – λu

]

+

λuτεu
ρ

1 – ρL
1 – λuL

xit =
ϕ1(L) – ϕ1(λu)

L – λu
λuτεu
ρ

1 – ρL
1 – λuL

xit, ϕ1(z) =
z

1 – ρz

=
λuτεu

ρ(1 – ρλu)
1

1 – λuL
xit =

(
1 –

λu
ρ

)
1

1 – λuL
xit = G1(L)xit

(A6)

Eitat+1 =
[
A(L)
L

M⊺(L–1)B(L–1)–1
]

+
V–1B(L)–1xit =

[
h(L)

(1 – ρL)(L – λu)

]

+

λuτεu
ρ

1 – ρL
1 – λuL

xit

=
[
ϕ2(L)
L – λu

]

+

λuτεu
ρ

1 – ρL
1 – λuL

xit =
ϕ2(L) – ϕ2(λu)

L – λu
λuτu
ρτε

1 – ρL
1 – λuL

xit, ϕ2(z) =
h(z)
1 – ρz
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=
λuτεu
ρ

[
h(L) – h(λu)

1 – ρL
1 – ρλu

]
1

(1 – λuL)(L – λu)
xit = G2(L)xit

(A7)

Eitat =
[
A(L)M⊺(L–1)B(L–1)–1

]
+
V–1B(L)–1xit =

[
h(L)L

(1 – ρL)(L – λu)

]

+

λuτεu
ρ

1 – ρL
1 – λuL

xit

=
[
ϕ3(L)
L – λu

]

+

λuτεu
ρ

1 – ρL
1 – λuL

xit =
ϕ3(L) – ϕ3(λu)

L – λu
λuτu
ρτε

1 – ρL
1 – λuL

xit, ϕ3(z) =
h(z)z
1 – ρz

=
λuτεu
ρ

[
h(L)L – h(λu)λu

1 – ρL
1 – ρλu

]
1

(1 – λuL)(L – λu)
xit = G3(L)xit

(A8)

Eitai,t+1 =
[
Aig(L)M

⊺(L–1)B(L–1)–1
]
+
V–1B(L)–1xit

=
[

h(L)
τε(1 – ρL)(L – λu)

+
h(L)(L – ρ)
τuL(L – λu)

]

+

λuτu
ρ

1 – ρL
1 – λuL

xit

=
{[

h(L)
τε(1 – ρL)(L – λu)

]

+
+
[
h(L)(L – ρ)
τuL(L – λu)

]

+

}
λuτu
ρ

1 – ρL
1 – λuL

xit

=
{[

ϕ4(L)
L – λu

]

+
+
[

ϕ5(L)
L(L – λu)

]

+

}
λuτu
ρ

1 – ρL
1 – λuL

xit

=
{
ϕ4(L) – ϕ4(λu)

L – λu
+
ϕ5(L) – ϕ5(λu)
λu(L – λu)

–
ϕ5(L) – ϕ5(0)

λuL

}
λuτu
ρ

1 – ρL
1 – λuL

xit

=
λu
ρ

{
h(L)
L – λu

[
τu

τε(1 – ρL)
+
L – ρ
L

]
–
h(λu)
L – λu

[
τu

τε(1 – ρλu)
+
λu – ρ
λu

]
–
ρh(0)
λuL

}
1 – ρL
1 – λuL

xit

=
{
h(L)
L – λu

[(
1 –

λu
ρ

)
1 – ρλu
1 – ρL

+
λu(L – ρ)

ρL

]
–
h(0)
L

}
1 – ρL
1 – λuL

xit

= G4(L)xit, ϕ4(z) =
h(z)

τε(1 – ρz)
, ϕ5(z) =

h(z)(z – ρ)
τu

(A9)

Inserting our obtained expressions into (A10),

h(L)xit = φuG1(L)xit + βuG4(L)xit + γuG3(L)xit + αuG2(L)xit

= φu

(
1 –

λu
ρ

)
1

1 – λuL
xit + βu

{
h(L)
L – λu

[(
1 –

λu
ρ

)
1 – ρλu
1 – ρL

+
λu(L – ρ)

ρL

]
–
h(0)
L

}
1 – ρL
1 – λuL

xit

+ γu
λuτεu
ρ

[
h(L)L – h(λu)λu

1 – ρL
1 – ρλu

]
1

(1 – λuL)(L – λu)
xit

+ αu
λuτεu
ρ

[
h(L) – h(λu)

1 – ρL
1 – ρλu

]
1

(1 – λuL)(L – λu)
xit
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Removing the xit terms, and rearranging terms on the LHS and RHS

h(z)
{
1 – βu

[(
1 –

λu
ρ

)
1 – ρλu
1 – ρz

+
λu(z – ρ)

ρz

]
1 – ρz

(1 – λuz)(L – λu)

}

– h(z)
(ρ – λu)(1 – ρλu)

ρ

γuz + αu
(1 – λuz)(z – λu)

= φu

(
1 –

λu
ρ

)
1

1 – λuz
– βu

1 – ρz
z(1 – λuz)

h(0) – h(λu)
(
1 –

λu
ρ

)
γuλu + αu

(1 – λuz)(z – λu)
(1 – ρz)

Multiplying both sides by z(z – λu)(1 – λuz),

h(z)
[
z(z – λu)(1 – λuz) – βu(z – λu)(1 – λuz)

]
– h(z)

(ρ – λu)(1 – ρλu)
ρ

z(γuz + αu)

= φu

(
1 –

λu
ρ

)
z(z – λu) – βu(1 – ρz)(z – λu)h(0) – h(λu)

(
1 –

λu
ρ

)
(γuλu + αu)z(1 – ρz)

I can write the above system of equations in terms of h(L) in matrix form
C(z)h(z) = d(z) where C(z) = (z – βu)(z – λu)(1 – λuz) – (ρ–λu)(1–ρλu)

ρ z(γuz +

αu) = λu
{
(βu – z)(z – ρ)

(
z – 1

ρ

)
– τεu

ρ z[αu + βu – (1 – γu)z]
}
. I can also write d(z) =

φu
(
1 – λu

ρ

)
z(z – λu) – βu(1 – ρz)(z – λu)h(0) – h(λu)

(
1 – λu

ρ

)
(γuλu + αu)z(1 – ρz). Note

that C(z) is a polynomial of degree 3 on z. Denote the inside roots of det C(z) as {ζ1, ζ2},
and the outside root as

{
ϑ–1

}
. Because agents cannot use future signals, the inside roots

have to be removed. Note that the number of free constants in d(z) is 2:
{
h(0)

}
and{

h̃(λu) = h(λu)
(
1 – λu

ρ

)
(γuλu + αu)

}
. With a unique solution, it has to be the case that

the number of outside roots is 2. By choosing the appropriate constants, the 2 inside
roots will be removed. Therefore, the 2 constants are solutions to d1(ζn) = 0 for {ζn}2n=1.
Using C(z) = –λu(z – ζ1)(z – ζ2)(z – ϑ–1), the Vieta properties to eliminate the inside roots,
and C(ϑ–1) = 0, I obtain at = h(L)vt =

(
1 – ϑ

ρ

)
φu

1–γu–ρ(αu+βu)
1

1–ϑLvt.

Proof of Corollary 1. Webegin by showing thatP(z) has two inside roots and one outside
root:

P(0) = β > 0

P(β) = –
σ2ε
ρσ2u

β2(1 – λχ)(δ – β) < 0

P(1) =
(1 – β)(1 – ρ)2

ρ
–

σ2ε
ρσ2u

β(1 – λχ)(δ – 1) > 0
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λuτεu
ρ

[
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1 – ρL
1 – ρλu

]
1
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1 – ρL
1 – λuL
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τε(1 – ρL)(L – λu)
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τuL(L – λu)

]

+
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1 – λuL

xit
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ϕ4(L)
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]

+
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[
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]

+

}
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ρ

1 – ρL
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=
{
ϕ4(L) – ϕ4(λu)

L – λu
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λu(L – λu)

–
ϕ5(L) – ϕ5(0)

λuL

}
λuτu
ρ

1 – ρL
1 – λuL

xit

=
λu
ρ

{
h(L)
L – λu

[
τu

τε(1 – ρL)
+
L – ρ
L

]
–
h(λu)
L – λu

[
τu

τε(1 – ρλu)
+
λu – ρ
λu

]
–
ρh(0)
λuL

}
1 – ρL
1 – λuL

xit

=
{
h(L)
L – λu
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1 –

λu
ρ

)
1 – ρλu
1 – ρL

+
λu(L – ρ)

ρL

]
–
h(0)
L

}
1 – ρL
1 – λuL

xit
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1 –

λu
ρ

)
1 – ρλu
1 – ρL

+
λu(L – ρ)
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]
–
h(0)
L

}
1 – ρL
1 – λuL

xit

+ γu
λuτεu
ρ
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1 – ρL
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]
1
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xit
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Removing the xit terms, and rearranging terms on the LHS and RHS

h(z)
{
1 – βu
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λu
ρ

)
1 – ρλu
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ρz
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– h(z)
(ρ – λu)(1 – ρλu)

ρ
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λu
ρ
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h(0) – h(λu)
(
1 –

λu
ρ

)
γuλu + αu

(1 – λuz)(z – λu)
(1 – ρz)

Multiplying both sides by z(z – λu)(1 – λuz),

h(z)
[
z(z – λu)(1 – λuz) – βu(z – λu)(1 – λuz)

]
– h(z)

(ρ – λu)(1 – ρλu)
ρ

z(γuz + αu)

= φu

(
1 –

λu
ρ

)
z(z – λu) – βu(1 – ρz)(z – λu)h(0) – h(λu)

(
1 –

λu
ρ

)
(γuλu + αu)z(1 – ρz)

I can write the above system of equations in terms of h(L) in matrix form
C(z)h(z) = d(z) where C(z) = (z – βu)(z – λu)(1 – λuz) – (ρ–λu)(1–ρλu)

ρ z(γuz +

αu) = λu
{
(βu – z)(z – ρ)

(
z – 1

ρ

)
– τεu

ρ z[αu + βu – (1 – γu)z]
}
. I can also write d(z) =

φu
(
1 – λu

ρ

)
z(z – λu) – βu(1 – ρz)(z – λu)h(0) – h(λu)

(
1 – λu

ρ

)
(γuλu + αu)z(1 – ρz). Note

that C(z) is a polynomial of degree 3 on z. Denote the inside roots of det C(z) as {ζ1, ζ2},
and the outside root as

{
ϑ–1

}
. Because agents cannot use future signals, the inside roots

have to be removed. Note that the number of free constants in d(z) is 2:
{
h(0)

}
and{

h̃(λu) = h(λu)
(
1 – λu

ρ

)
(γuλu + αu)

}
. With a unique solution, it has to be the case that

the number of outside roots is 2. By choosing the appropriate constants, the 2 inside
roots will be removed. Therefore, the 2 constants are solutions to d1(ζn) = 0 for {ζn}2n=1.
Using C(z) = –λu(z – ζ1)(z – ζ2)(z – ϑ–1), the Vieta properties to eliminate the inside roots,
and C(ϑ–1) = 0, I obtain at = h(L)vt =

(
1 – ϑ

ρ

)
φu

1–γu–ρ(αu+βu)
1

1–ϑLvt.

Proof of Corollary 1. Webegin by showing thatP(z) has two inside roots and one outside
root:

P(0) = β > 0

P(β) = –
σ2ε
ρσ2u

β2(1 – λχ)(δ – β) < 0

P(1) =
(1 – β)(1 – ρ)2

ρ
–

σ2ε
ρσ2u

β(1 – λχ)(δ – 1) > 0
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=
λu

ρ(L – λu)(1 – λuL)


(L – ρ)




3

k=0
L–k


 h(L) + (ρ – λu)




3

k=0
λ–ku


 h(λu)


 εt

=
(ρ – ϑ)(1 – ρϑ)λuψ

ρ2(1 – λuϑ)(1 – λuL)(1 – ϑL)
εt

+
(ρ – ϑ)


ρ(1 – λuϑ) – ϑ(ρ – λu)L


ψ

ρ2(1 – λuϑ)L(1 – λuL)(1 – ϑL)
εt

+
(ρ – ϑ)


ρλu(1 – λuϑ) + (ρ – λu)(1 – λuϑ)L – ϑ(ρ – λu)L2


ψ

ρ2λu(1 – λuϑ)L2(1 – λuL)(1 – ϑL)
εt

+
(ρ – ϑ)


(L2 + λuL + λ2u)(ρ + λuϑL) – (L + λu)[λuL + (L2 + λ2u)ρϑ]


ψ

ρ2λ2u(1 – λuϑ)L3(1 – λuL)(1 – ϑL)
εt

=
(ρ – ϑ)ψ

ρ2λ2u(1 – λuϑ)L3(1 – λuL)(1 – ϑ1L)
×


ρλ2u(1 – λuϑ) + λu(1 – λuϑ)[ρ – (1 – ρ)λu]L

+(1 – λuϑ)[ρ – (1 – ρ)λu(1 + λu)]L2 + [λ3u – ϑ(ρ – (1 – ρ)λu(1 + λu + λ2u))]L3

εt

=
(ρ – ϑ)ψξ0

ρ2λ2u(1 – λuϑ)
(1 – ξ1L)(1 – ξ2L)(1 – ξ3L)

L3(1 – λuL)(1 – ϑL)
εt

=
(ρ – ϑ)ψξ0

ρ2λ2u(1 – λuϑ)
(1 – ξ2L)(1 – ξ3L)

L3


ϑ – ξ1
ϑ – λu

1
1 – ϑL

–
λu – ξ1
ϑ – λu

1
1 – λuL


εt

=
(ρ – ϑ)ψξ0(ϑ – ξ1)

ρ2λ2u(1 – λuϑ)(ϑ – λu)
(1 – ξ2L)(1 – ξ3L)

L3(1 – ϑL)
εt

+
(ρ – ϑ)ψξ0(ξ1 – λu)
ρ2λ2u(1 – λuϑ)(ϑ – λu)

(1 – ξ2L)(1 – ξ3L)
L3(1 – λuL)

εt

= γ1
(1 – ξ2L)(1 – ξ3L)

L3(1 – ϑL)
εt + γ2

(1 – ξ2L)(1 – ξ3L)
L3(1 – λuL)

εt

= γ1
1 – (ξ2 + ξ3)L + ξ2ξ3L2

L3(1 – ϑL)
εt + γ2

1 – (ξ2 + ξ3)L + ξ2ξ3L2

L3(1 – λuL)
εt

= γ1

∞

k=0
ϑkεt+3–k – γ1(ξ2 + ξ3)

∞

k=0
ϑkεt+2–k + γ1ξ2ξ3

∞

k=0
ϑkεt+1–k

+ γ2
∞

k=0
λkuεt+3–k – γ2(ξ2 + ξ3)

∞

k=0
λkuεt+2–k + γ2ξ2ξ3

∞

k=0
λkuεt+1–k

= β1

∞

k=0
ϑkεt+3–k + β2

∞

k=0
ϑkεt+2–k + β3

∞

k=0
ϑkεt+1–k

+ β4
∞

k=0
λkuεt+3–k + β5

∞

k=0
λkuεt+2–k + β6

∞

k=0
λkuεt+1–k

where ψ = – 1
ν(1–ρδ) , ξ0 = ρλ2u(1 – λuϑ), –ξ0(ξ1 + ξ2 + ξ3) = λu(1 – λuϑ)[ρ – (1 – ρ)λu],

48

where the second condition is satisfied when λ < (1 +φτD)/(1 +φ) and δ > β [benchmark
calibration implies λ < 0.595, satisfied in all countries Kaplan et al], and the third
condition is satisfied when there is a sufficient level of information frictions, σ2ε

σ2u
<

(1–β)(1–ρ)2
β(1–λχ)(δ–1) . Notice that this condition always holds in the case δ = 1, irrespective from
the degree of information frictions. In our case, since δ > 1 generates compounding in
the Euler condition, a sufficiently larger degree of myopia is required.

Proof of Corollary 2. Note that P(ρ–1) = σ2ε
ρ2σ2u

β(1 – λχ)(1 – ρδ) > 0 and P(λ–1u ) =
– τεuρλu

[
1 – βλu – (1 – δλu)β(1 – λχ)

]
< 0, where both expressions are satisfied under

λ < (1 + φτD)/(1 + φ), δ < 1/ρ and β < δ. By continuity of P(z), there exists a root
between λu and ρ, such that λu < ϑ < ρ. It also implies that P(z) is decreasing in the
neighborhood of z = ϑ–1, a property that we use in the sequel to characterize com-
parative statics of ϑ. Taking the derivative, ∂P(z)∂λ = –λuτεuρ z

(
∂αu
∂λ + ∂γu

∂λ z
)
. Evaluated at

z = ϑ–1,

∂P(ϑ–1)
∂λ

= –
λuτεu
ρϑ

(
∂αu
∂λ

+
∂γu
∂λ

1
ϑ

)
= –

λuτεu
ρϑ

[
(1 – s)βφτD

λ2
+
β(1 +φ)

ϑ
(1 – ϑ)

]
< 0

where ∂αu
∂λ = (1–s)βφτD

λ2
– β(1 + φ) and ∂γu

∂λ = β(1 + φ). Knowing P(ϑ–1) = 0, making

use of the Implicit Function Theorem, ∂P(ϑ–1)
∂ϑ

∂ϑ
∂λ +

∂P(ϑ–1)
∂λ = 0, which implies ∂ϑ

∂λ =

–
∂P(ϑ–1)

∂λ
∂P(ϑ–1)

∂ϑ

. Combining this last result with the earlier observation that ∂P(ϑ
–1)

∂z < 0 in the

neighborhood of z = ϑ–1, we infer that ϑ is an increasing function of λ.
Similarly, we can write ∂P(z)

∂s = –λuτεuρ z∂αu∂s . Evaluated at z = ϑ–1, ∂P(ϑ–1)
∂s =

–λuτεuρϑ
∂αu
∂s = λuτεu

ρϑ β(χ – 1) > 0, where ∂αu
∂s = β(1 – χ). Combining the Implicit Func-

tion Theorem with the earlier observation that ∂P(ϑ–1)
∂z < 0 in the neighborhood of

z = ϑ–1, we infer that ϑ is a decreasing function of s.

Proof of Proposition 2. From the proof of proposition 1, I have the following objects:
πt+k = h(L)vt+k, E

c
tπt+k =

(ρ–λu)(1–ρλu)
ρ(L–λu)(1–λuL)

[
L1–kh(L) – 1–ρL

1–ρλuλ
1–k
u h(λu)

]
, and πt+k – E

c
tπt+k =

λu
ρ(L–λu)(1–λuL)

[
(L – ρ)L–kh(L) + (ρ – λu)λ–ku h(λu)

]
εt. The forecast error of annual infla-

tion is

πt+3,t – E
c
tπt+3,t = (πt – E

c
tπt) + (πt+1 – E

c
tπt+1) + (πt+2 – E

c
tπt+2) + (πt+3 – E

c
tπt+3)
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=
λu

ρ(L – λu)(1 – λuL)


(L – ρ)




3

k=0
L–k


 h(L) + (ρ – λu)




3

k=0
λ–ku


 h(λu)


 εt

=
(ρ – ϑ)(1 – ρϑ)λuψ

ρ2(1 – λuϑ)(1 – λuL)(1 – ϑL)
εt

+
(ρ – ϑ)


ρ(1 – λuϑ) – ϑ(ρ – λu)L


ψ

ρ2(1 – λuϑ)L(1 – λuL)(1 – ϑL)
εt

+
(ρ – ϑ)


ρλu(1 – λuϑ) + (ρ – λu)(1 – λuϑ)L – ϑ(ρ – λu)L2


ψ

ρ2λu(1 – λuϑ)L2(1 – λuL)(1 – ϑL)
εt

+
(ρ – ϑ)


(L2 + λuL + λ2u)(ρ + λuϑL) – (L + λu)[λuL + (L2 + λ2u)ρϑ]


ψ

ρ2λ2u(1 – λuϑ)L3(1 – λuL)(1 – ϑL)
εt

=
(ρ – ϑ)ψ

ρ2λ2u(1 – λuϑ)L3(1 – λuL)(1 – ϑ1L)
×


ρλ2u(1 – λuϑ) + λu(1 – λuϑ)[ρ – (1 – ρ)λu]L

+(1 – λuϑ)[ρ – (1 – ρ)λu(1 + λu)]L2 + [λ3u – ϑ(ρ – (1 – ρ)λu(1 + λu + λ2u))]L3

εt

=
(ρ – ϑ)ψξ0

ρ2λ2u(1 – λuϑ)
(1 – ξ1L)(1 – ξ2L)(1 – ξ3L)

L3(1 – λuL)(1 – ϑL)
εt

=
(ρ – ϑ)ψξ0

ρ2λ2u(1 – λuϑ)
(1 – ξ2L)(1 – ξ3L)

L3


ϑ – ξ1
ϑ – λu

1
1 – ϑL

–
λu – ξ1
ϑ – λu

1
1 – λuL


εt

=
(ρ – ϑ)ψξ0(ϑ – ξ1)

ρ2λ2u(1 – λuϑ)(ϑ – λu)
(1 – ξ2L)(1 – ξ3L)

L3(1 – ϑL)
εt

+
(ρ – ϑ)ψξ0(ξ1 – λu)
ρ2λ2u(1 – λuϑ)(ϑ – λu)

(1 – ξ2L)(1 – ξ3L)
L3(1 – λuL)

εt

= γ1
(1 – ξ2L)(1 – ξ3L)

L3(1 – ϑL)
εt + γ2

(1 – ξ2L)(1 – ξ3L)
L3(1 – λuL)

εt

= γ1
1 – (ξ2 + ξ3)L + ξ2ξ3L2

L3(1 – ϑL)
εt + γ2

1 – (ξ2 + ξ3)L + ξ2ξ3L2

L3(1 – λuL)
εt

= γ1

∞

k=0
ϑkεt+3–k – γ1(ξ2 + ξ3)

∞

k=0
ϑkεt+2–k + γ1ξ2ξ3

∞

k=0
ϑkεt+1–k

+ γ2
∞

k=0
λkuεt+3–k – γ2(ξ2 + ξ3)

∞

k=0
λkuεt+2–k + γ2ξ2ξ3

∞

k=0
λkuεt+1–k

= β1

∞

k=0
ϑkεt+3–k + β2

∞

k=0
ϑkεt+2–k + β3

∞

k=0
ϑkεt+1–k

+ β4
∞

k=0
λkuεt+3–k + β5

∞

k=0
λkuεt+2–k + β6

∞

k=0
λkuεt+1–k

where ψ = – 1
ν(1–ρδ) , ξ0 = ρλ2u(1 – λuϑ), –ξ0(ξ1 + ξ2 + ξ3) = λu(1 – λuϑ)[ρ – (1 – ρ)λu],
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ξ0(ξ1ξ2+ξ1ξ3+ξ2ξ3) = (1–λuϑ)[ρ–(1–ρ)λu(1+λu)], –ξ0ξ1ξ2ξ3 = λ3u–ϑ[ρ–(1–ρ)λu(1+λu+λ2u)],
γ1 =

(ρ–ϑ)ψξ0(ϑ–ξ1)
ρ2λ2u(1–λuϑ)(ϑ–λu)

, γ2 =
(ρ–ϑ)ψξ0(ξ1–λu)
ρ2λ2u(1–λuϑ)(ϑ–λu)

, β1 = γ1, β2 = –γ1(ξ2 + ξ3), β3 = γ1ξ2ξ3,
β4 = γ2, β5 = –γ2(ξ2 + ξ3), and β6 = γ2ξ2ξ3. Before computing the forecast revision
of annual inflation, notice that E

c
tπt+k – E

c
t–1πt+k =

(ρ–λu)h(λu)
ρλku

1
1–λuLεt. Therefore, the

forecast revision of annual inflation is

E
c
tπt+3,t – E

c
t–1πt+3,t = (E

c
tπt – E

c
t–1πt) + (E

c
tπt+1 – E

c
t–1πt+1) + (E

c
tπt+2 – E

c
t–1πt+2)

+ (Ectπt+3 – E
c
t–1πt+3)

=
(ρ – λu)h(λu)(1 + λ–1u + λ–2u + λ–3u )

ρ

∞∑

k=0
λkuεt–k = αu

∞∑

k=0
λkuεt–k

where αu =
(ρ–λu)(1+λu+λ2u+λ3u)

(ρ–ϑ)ψ
1–λuϑ

ρ2λ3u
. I now seek to compute the OLS coefficient. The

covariance is

C (forecast error, revision) =

[
β1αuϑ

3 + β2αuϑ2 + β3αuϑ
1 – λuϑ

+
β4αuλ

3
u + β5αuλ2u + β6αuλu

1 – λ2u

]
σ2ε

The variance is V (revision) = α2u
1–λ2u

σ2ε. Finally, the OLS coefficient is

βCG =
C (forecast error, revision)

V (revision)
=

1
αu

[
(β1ϑ3 + β2ϑ2 + β3ϑ)

1 – λ2u
1 – λuϑ

+ β4λ3u + β5λ2u + β6λu

]

=
1
αu

[
(ρ – ϑ)ψϑ(1 – λ2u)

ρ2λ2u(1 – λuϑ)2(ϑ – λu)
ξ0(ϑ – ξ1)(ϑ – ξ2)(ϑ – ξ3)

–
(ρ – ϑ)ψ

ρ2λu(1 – λuϑ)(ϑ – λu)
ξ0(λu – ξ1)(λu – ξ2)(λu – ξ3)

]

=
1
αu

[
(ρ – ϑ)ψλuϑ(1 – λ2u)(1 + ϑ)(1 + ϑ2)(1 – ρϑ)

ρ2(1 – λuϑ)2(ϑ – λu)

+
(ρ – ϑ)ψ(1 + λ2u){(ρ – λu)[ϑ(1 + λu) – λu(1 – λuϑ)] – ρλ2u(1 + λu)(1 – λuϑ)}

ρ2(1 – λuϑ)(ϑ – λu)

]

=
1
αu

(ρ – ϑ)ψ
ρ2(1 – λuϑ)(ϑ – λu)

[
λuϑ(1 – λ2u)(1 + ϑ)(1 + ϑ2)(1 – ρϑ)

1 – λuϑ

+ (1 + λ2u){(ρ – λu)[ϑ(1 + λu) – λu(1 – λuϑ)] – ρλ2u(1 + λu)(1 – λuϑ)}

]
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ξ0(ξ1ξ2+ξ1ξ3+ξ2ξ3) = (1–λuϑ)[ρ–(1–ρ)λu(1+λu)], –ξ0ξ1ξ2ξ3 = λ3u–ϑ[ρ–(1–ρ)λu(1+λu+λ2u)],
γ1 =

(ρ–ϑ)ψξ0(ϑ–ξ1)
ρ2λ2u(1–λuϑ)(ϑ–λu)

, γ2 =
(ρ–ϑ)ψξ0(ξ1–λu)
ρ2λ2u(1–λuϑ)(ϑ–λu)

, β1 = γ1, β2 = –γ1(ξ2 + ξ3), β3 = γ1ξ2ξ3,
β4 = γ2, β5 = –γ2(ξ2 + ξ3), and β6 = γ2ξ2ξ3. Before computing the forecast revision
of annual inflation, notice that E

c
tπt+k – E

c
t–1πt+k =

(ρ–λu)h(λu)
ρλku

1
1–λuLεt. Therefore, the

forecast revision of annual inflation is

E
c
tπt+3,t – E

c
t–1πt+3,t = (E

c
tπt – E

c
t–1πt) + (E

c
tπt+1 – E

c
t–1πt+1) + (E

c
tπt+2 – E

c
t–1πt+2)

+ (Ectπt+3 – E
c
t–1πt+3)

=
(ρ – λu)h(λu)(1 + λ–1u + λ–2u + λ–3u )

ρ

∞∑

k=0
λkuεt–k = αu

∞∑

k=0
λkuεt–k

where αu =
(ρ–λu)(1+λu+λ2u+λ3u)

(ρ–ϑ)ψ
1–λuϑ

ρ2λ3u
. I now seek to compute the OLS coefficient. The

covariance is

C (forecast error, revision) =

[
β1αuϑ

3 + β2αuϑ2 + β3αuϑ
1 – λuϑ

+
β4αuλ

3
u + β5αuλ2u + β6αuλu

1 – λ2u

]
σ2ε

The variance is V (revision) = α2u
1–λ2u

σ2ε. Finally, the OLS coefficient is

βCG =
C (forecast error, revision)

V (revision)
=

1
αu

[
(β1ϑ3 + β2ϑ2 + β3ϑ)

1 – λ2u
1 – λuϑ

+ β4λ3u + β5λ2u + β6λu

]

=
1
αu

[
(ρ – ϑ)ψϑ(1 – λ2u)

ρ2λ2u(1 – λuϑ)2(ϑ – λu)
ξ0(ϑ – ξ1)(ϑ – ξ2)(ϑ – ξ3)

–
(ρ – ϑ)ψ

ρ2λu(1 – λuϑ)(ϑ – λu)
ξ0(λu – ξ1)(λu – ξ2)(λu – ξ3)

]

=
1
αu

[
(ρ – ϑ)ψλuϑ(1 – λ2u)(1 + ϑ)(1 + ϑ2)(1 – ρϑ)

ρ2(1 – λuϑ)2(ϑ – λu)

+
(ρ – ϑ)ψ(1 + λ2u){(ρ – λu)[ϑ(1 + λu) – λu(1 – λuϑ)] – ρλ2u(1 + λu)(1 – λuϑ)}

ρ2(1 – λuϑ)(ϑ – λu)

]

=
1
αu

(ρ – ϑ)ψ
ρ2(1 – λuϑ)(ϑ – λu)

[
λuϑ(1 – λ2u)(1 + ϑ)(1 + ϑ2)(1 – ρϑ)

1 – λuϑ

+ (1 + λ2u){(ρ – λu)[ϑ(1 + λu) – λu(1 – λuϑ)] – ρλ2u(1 + λu)(1 – λuϑ)}

]
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=
λ3u

(ρ – λu)(1 + λu + λ2u + λ3u)(ϑ – λu)

[
λuϑ(1 – λ2u)(1 + ϑ)(1 + ϑ2)(1 – ρϑ)

1 – λuϑ

+ (1 + λ2u){(ρ – λu)[ϑ(1 + λu) – λu(1 – λuϑ)] – ρλ2u(1 + λu)(1 – λuϑ)}

]

Proof of Proposition 3. The aggregate outcome is

yt = ψ

(
1 –

ϑ

ρ

)
1

1 – ϑL
= ψ

(
1 –

ϑ

ρ

)
1

(1 – ϑL)(1 – ρL)
εt

= ψ

(
1 –

ϑ

ρ

)[
ρ

ρ – ϑ
1

1 – ρL
–

ϑ

ρ – ϑ
1

1 – ϑL

]
εt =

ψ

ρ

∞∑

k=0
(ρk+1 – ϑk+1)εt–k

The PE component is given by

PEt = –
β

σ
(1 – λ)

∞∑

k=0
βkEtrt+k = –

β

σ
(1 – λ)
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k=0
(βρ)kEtrt = –

β(1 – λ)
σ(1 – ρβ)
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β(1 – λ)
σ(1 – ρβ)
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1 –

λu
ρ
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1 – λuL
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1 –

λu
ρ
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1 –

λu
ρ
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ρ
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1 – ρL
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1 – λuL
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∂PEτ/∂εt
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ρσ(1–ρβ) (ρ
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ψ
ρ (ρτ+1 – ϑτ+1)
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β(1 – λ)
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ρτ+1 – λτ+1u
ρτ+1 – ϑτ+1

Proof of Proposition 4. I first prove (i). To show (10) captures the HANK beyond FIRE
under certain (ω f ,ωb), I rely on the Method for Undetermined Coefficients. Both
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ϑ yt–1 –
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1 –

ϑ

ρ
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rt = ωb yt–1 + δω f Et yt+1 –

1
ν
rt = ωb yt–1 + δω f Et

[
ϑ yt –

(
1 –

ϑ

ρ

)
rt+1

]
–
1
ν
rt

= ωb yt–1 + δω f ϑ yt – δω f ρ
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1 –

ϑ

ρ
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rt –

1
ν
rt
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= ωb yt–1 + δω f ϑ

[
ϑ yt–1 –

(
1 –

ϑ

ρ

)
rt
]
– δω f ρ

(
1 –

ϑ

ρ

)
rt –

1
ν
rt

= ωb yt–1 + δω f ϑ
2 yt–1 – δω f ϑ

(
1 –

ϑ

ρ

)
rt – δω f ρ

(
1 –

ϑ

ρ

)
rt –

1
ν
rt

=
(
ωb + δω f ϑ

2
)
yt–1 –

[(
1 –

ϑ

ρ

)
δω f (ρ + ϑ)
ν(1 – ρδ)

+
1
ν

]
rt

They are thus equivalent when (11) is satisfied.
I now move to (ii). Using the lag operator, I can factorize (10), Et

[
1
νrt

]
=

Et
[(

δω f L
–2 – L–1 +ωb

)
yt–1

]
= Et

[
δω f

(
L–1 – γ–11

) (
L–1 – γ–12

)
yt–1

]
, whereγ–11 andγ–12

are the roots of the polynomial Q(x) ≡ δω f x
2 – x +ωb. Dividing both sides by (L–1 –γ–12 ),

δω f Et[(L–1 – γ–11 ) yt–1] = Et

[
1
ν

1
L–1–γ–12

rt
]
= Et

[
– 1ν

γ2
1–γ2L–1

rt
]
. Hence, I can write the dy-

namics as yt = γ–11 yt–1 –
γ2

δω f ν

∑∞
k=0 γ

k
2Etrt+k = γ–11 yt–1 –

1
γ1ωbν

∑∞
k=0

(
δω f
γ1ωb

)k
Etrt+k,

where I have applied the Vieta properties. Therefore, the effect of a forward guidance

shock promised at time t in period τ is FGt,t+τ =
∂ yt

∂Etrt+τ = – 1
γ1ωbν

(
δω f
γ1ωb

)τ

, which is

decreasing in τ provided that γ1 ∈ (0, 1) is the only inside root, limτ→∞ FGt+τ = 0, and
the forward guidance puzzle is solved.

Proof of Proposition 5. The proof is identical to the proof of Proposition 1, modulo the
replacement of σu for σϵ. In the public information case, the individual action is given
by ait = h(L)zt = h(L)(vt + ϵt). The policy function is given by h(z) = –

(
1 – ϑ̃

ρ

)
1

ν(1–ρδ)
1

1–ϑ̃L
,

and hence I have at = hg(L)(vt + ϵt) = –
(
1 – ϑ̃

ρ

)
1

ν(1–ρδ)
1

1–ϑ̃L
(vt + ϵt).

Proof of Proposition 6. The best response of agent l in group g is specified as follows

(A10) al gt = φgEl gtvt + βgEl gtaigt+1 +
2∑

j=1
γgjEl gtajt +

2∑

j=1
αgjEl gtajt+1

where a–gt is the aggregate action of the other group at time t. Parameters {βg}, {γgk},
{αgk} help parameterize PE and GE considerations. Notice that GE effects run not only
within groups but also across groups (the interaction of the two blocks of the NKmodel).
Parameters {φg} capture the direct exposure of group g to the exogenous shock. Iterating
forward, al gt = φg

∑∞
k=0 β

k
gEl gtvt+k +

∑2
j=1 γgjEl gtajt + (βgγgj + αgj)

∑∞
k=0 β

k
gEl gtaj,t+k+1.
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The aggregate action for group g is

agt = φg

∞∑

k=0
βkgEgtvt+k +

2∑

j=1
γgjEgtajt + (βgγgj + αgj)

∞∑

k=0
βkgEgtaj,t+k+1(A11)

Let at = (agt) be a column vector collecting the aggregate actions of all groups (e.g.,
the vector of aggregate consumption and aggregate inflation), letφ = (φg) be a column
vector containing the value of φg across groups, let β = diag(βg) be a 2 × 2 diagonal
matrix of discount factors, with off-diagonal elements equal to 0, let γ be a 2× 2 matrix
collecting the (contemporaneous) interaction parameters γgj, let α = (αgk) be a 2× 2
matrix collecting the (future) interaction parameters αgj, and finally let δ ≡ β + α,

at =

[
a1t
a2t

]
, φ =

[
φ1

φ2

]
, β =

[
β1 0
0 β2

]
, γ =

[
γ11 γ12

γ21 γ22

]
, α =

[
α11 α12

α21 α22

]

Notice that (A11) is equivalent to (4) and (15), respectively, if a1t = yt, a2t = πt, vt = vt,
E1t(·) = E

c
t (·), E2t(·) = E f t(·) and the following parametric restrictions are satisfied:

φ1 = –
β(1–λ)

σ ,β1 = β,γ11 = 1–β
[
1 – λχ + ϕ y

σ (1 – λ)
]
,γ12 = –β(1–λ)

ϕπ
σ ,α11 = β[δ(1–λχ)–1],

α12 =
β
σ (1 – λ), φ2 = 0, β2 = βθ, γ21 = κθ, γ22 = 1 – θ, and α21 = α22 = 0.

I now turn to solve the expectation terms. I canwrite the fundamental representation
of the signal process as a system containing (17) and (18), which admits the following
state-space representation

Zt = FZt–1 +Φsl gt, xl gt = HZt +Ψgsl gt(A12)

with F = ρ, Φ =
[
σε 0

]
, Zt = vt, sl gt =

[
εvt ul gt

]⊺
, H = 1, and Ψg =

[
0 σgu

]
. It is

convenient to rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2ε
,

τgu ≡ 1
σ2gu

, and τg =
τgu
τε
. The signal system can be written as

xl gt =
σε

1 – ρL
εvt + σguul gt =

[
τ
– 12
ε

1–ρL τ
– 12
gu

] [
εvt

ul gt

]
= Mg(L)sl gt, sl gt ∼ N(0, I)(A13)

The Wold theorem states that there exists another representation of the signal
process (A13), xl gt = Bg(L)wl gt such that Bg(z) is invertible andwl gt ∼ (0,Vg) is white
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noise. Hence, I can write the following equivalence:

(A14) xl gt = Mg(L)sl gt = Bg(L)wl gt

In the Wold representation of xl gt, observing {xl gt} is equivalent to observing {wl gt},
and {xtl g} and {w

t
l g} contain the same information. Furthermore, note that theWold rep-

resentation has the property that both processes share the autocovariance generating
function, ρgxx(z) = Mg(z)M⊺

g(z–1) = Bg(z)VgB
⊺
g(z–1). Given the state-space representation

of the signal process (A12), optimal expectations of the exogenous fundamental take
the form of a Kalman filter El gtvt = λgEit–1vt–1 + Kgxl gt, where λg = (I – KgH)F, and Kg
is given by

Kg = PgH⊺V–1g(A15)

Pg = F[Pg – PgH⊺V–1g HPg]F +ΦΦ⊺(A16)

I still need to find the unknowns Bg(z) and Vg. Propositions 13.1-13.4 in Hamilton
(1994) provide us with these objects. Unknowns Bg(z) and Vg satisfy Bg(z) = I + H(I –
Fz)–1FKg and Vg = HPgH⊺ +ΨgΨ⊺

g . I can write (A16) as

P2g + Pg[(1 – ρ2)σ2gu – σ2ε] – σ2εσ2gu = 0(A17)

from which I can infer that Pg is a scalar. Denote kg = P–1g and rewrite (A17) as kg =
τε
2

{
1 – ρ2 – τg ±

√[
τg – (1 – ρ2)

]2 + 4τg
}
.

I also need to find Kg. Now that I have found Pg in terms of model primitives,
I can obtain Kg using condition (A15), Kg = 1

1+kgσ2gu
. I can finally write λg as λg =

kgσ2guρ
1+kgσ2gu

= 1
2

[
1
ρ + ρ +

τg
ρ ±

√(
1
ρ + ρ +

τg
ρ

)2
– 4

]
. One can show that one of the roots λg,[1,2]

lies inside the unit circle, and the other lies outside as long as ρ ∈ (0, 1), which guarantees
that the Kalman expectation process is stationary and unique. I set λg to the root that
lies inside the unit circle (the one with the ‘–’ sign). Notice that I can also write Vg
in terms of λg, Vg = k–1 + σ2gu = ρ

λgτgu
, where I have used the identity kg = λgτgu

ρ–λg .

Finally, I can obtain Bg(z) = 1 + ρz
(1–ρz)(1+kσ2gu)

= 1–λgz
1–ρz and therefore one can verify that

Bg(z)VgB⊺g(z–1) = Mg(z)M⊺
g(z–1) =⇒ (ρ – λg)(1 – ρλg) = λgτg.

Let us now move to the forecast of endogenous variables. Consider a variable f t =
A(L)sl gt. Applying theWiener-Hopf prediction filter, I can obtain the forecast as El gt f t =
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noise. Hence, I can write the following equivalence:
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and {xtl g} and {w

t
l g} contain the same information. Furthermore, note that theWold rep-

resentation has the property that both processes share the autocovariance generating
function, ρgxx(z) = Mg(z)M⊺

g(z–1) = Bg(z)VgB
⊺
g(z–1). Given the state-space representation

of the signal process (A12), optimal expectations of the exogenous fundamental take
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Kg = PgH⊺V–1g(A15)

Pg = F[Pg – PgH⊺V–1g HPg]F +ΦΦ⊺(A16)
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(1994) provide us with these objects. Unknowns Bg(z) and Vg satisfy Bg(z) = I + H(I –
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g . I can write (A16) as
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from which I can infer that Pg is a scalar. Denote kg = P–1g and rewrite (A17) as kg =
τε
2

{
1 – ρ2 – τg ±

√[
τg – (1 – ρ2)

]2 + 4τg
}
.

I also need to find Kg. Now that I have found Pg in terms of model primitives,
I can obtain Kg using condition (A15), Kg = 1

1+kgσ2gu
. I can finally write λg as λg =

kgσ2guρ
1+kgσ2gu

= 1
2

[
1
ρ + ρ +

τg
ρ ±

√(
1
ρ + ρ +

τg
ρ

)2
– 4

]
. One can show that one of the roots λg,[1,2]

lies inside the unit circle, and the other lies outside as long as ρ ∈ (0, 1), which guarantees
that the Kalman expectation process is stationary and unique. I set λg to the root that
lies inside the unit circle (the one with the ‘–’ sign). Notice that I can also write Vg
in terms of λg, Vg = k–1 + σ2gu = ρ

λgτgu
, where I have used the identity kg = λgτgu

ρ–λg .

Finally, I can obtain Bg(z) = 1 + ρz
(1–ρz)(1+kσ2gu)

= 1–λgz
1–ρz and therefore one can verify that

Bg(z)VgB⊺g(z–1) = Mg(z)M⊺
g(z–1) =⇒ (ρ – λg)(1 – ρλg) = λgτg.

Let us now move to the forecast of endogenous variables. Consider a variable f t =
A(L)sl gt. Applying theWiener-Hopf prediction filter, I can obtain the forecast as El gt f t =
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=
{[

hg(L)
τε(1 – ρL)(L – λg)

]

+
+
[
hg(L)(L – ρ)
τguL(L – λg)

]

+

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
{[

ϕ4(L)
L – λg

]

+
+
[

ϕ5(L)
L(L – λg)

]

+

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
{
ϕ4(L) – ϕ4(λg)

L – λg
+
ϕ5(L) – ϕ5(λg)

λg(L – λg)
–
ϕ5(L) – ϕ5(0)

λgL

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
λg
ρ

{
hg(L)
L – λg

[
τgu

τε(1 – ρL)
+
L – ρ
L

]
–
hg(λg)
L – λg

[
τgu

τε(1 – ρλg)
+
λg – ρ
λg

]
–
ρhg(0)
λgL

}
1 – ρL
1 – λgL

xl gt

=
{
hg(L)
L – λg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρL

+
λg(L – ρ)

ρL

]
–
hg(0)
L

}
1 – ρL
1 – λgL

xl gt

= G4g(L)xl gt, ϕ4(z) =
hg(z)

τε(1 – ρz)
, ϕ5(z) =

hg(z)(z – ρ)
τgu

(A21)

Inserting our obtained expressions into (A10),

hg(L)xl gt = φgG1g(L)xl gt + βgG4g(L)xl gt +
n∑

k=1
γgkG3gk(L)xl gt +

n∑

k=1
αgkG2gk(L)xl gt

hg(L)xl gt = φg

(
1 –

λg
ρ

)
1

1 – λgL
xl gt + βg

{
hg(L)
L – λg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρL

+
λg(L – ρ)

ρL

]
–
hg(0)
L

}
1 – ρL
1 – λgL

xl gt

+
2∑

k=1
γgk

λgτg
ρ

[
hk(L)L – hk(λg)λg

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt

+
2∑

k=1
αgk

λgτg
ρ

[
hk(L) – hk(λg)

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt

Removing the xl gt terms, and rearranging terms on the LHS and RHS

hg(z)
{
1 – βg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρz

+
λg(z – ρ)

ρz

]
1 – ρz

(1 – λgz)(L – λg)

}

–
2∑

k=1
hk(z)

(ρ – λg)(1 – ρλg)
ρ

γgkz + αgk
(1 – λgz)(z – λg)

= φg

(
1 –

λg
ρ

)
1

1 – λgz
– βg

1 – ρz
z(1 – λgz)

hg(0) –
2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
γgkλg + αgk

(1 – λgz)(z – λg)
(1 – ρz)
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[
A(L)M⊺(L–1)B(L–1)–1

]
+ V

–1B(L)–1xl gt, where [·]+ denotes the annihilator operator.
I need to find the A(z) polynomial for each of the forecasted variables. Let us start

from the exogenous fundamental vt to verify that the Kalman and Wiener-Hopf filters

result in the same forecast. I can write the fundamental as vt =
[
τ
– 12
ε

1–ρL 0

]
sit = Av(L)sit.

Let me nowmove to the endogenous variables. Guess that agent i× g’s policy function
satisfies al gt = hg(L)xl gt. The aggregate outcome in group g can then be expressed

as agt =
∫
al gt di =

∫
hg(L)xl gt di = hg(L)

σε
1–ρLεt =

[
hg(L) τ

– 12
ε

1–ρL 0

]
sl 1t = Ag(L)sl gt. Sim-

ilarly, the own and average future actions can be written as ag,t+1 =
Ag(L)
L sl gt and

aigt+1 = aig,t+1 = hg(L)xig,t+1 =
[
τ
– 12
ε

hg(L)
L(1–ρL) τ

– 12
gu

hg(L)
L

]
sl gt = Aig(L)sl gt. I now obtain the

forecasts,

El gtvt =
[
Av(L)M⊺

g(L–1)Bg(L–1)–1
]
+
V–1g Bg(L)–1xl gt =

[
L

(1 – ρL)(L – λg)

]

+

λτg
ρ

1 – ρL
1 – λgL

xl gt

=
[
ϕ1(L)
L – λg

]

+

λgτg
ρ

1 – ρL
1 – λgL

xl gt =
ϕ1(L) – ϕ1(λg)

L – λg
λgτg
ρ

1 – ρL
1 – λgL

xl gt, ϕ1(z) =
z

1 – ρz

=
λgτg

ρ(1 – ρλg)
1

1 – λgL
xl gt =

(
1 –

λg
ρ

)
1

1 – λgL
xl gt = G1g(L)xl gt

(A18)

El gtak,t+1 =
[
Ak(L)
L

M⊺
g(L–1)Bg(L–1)–1

]

+
V–1g Bg(L)–1xl gt =

[
hk(L)

(1 – ρL)(L – λg)

]

+

λgτg
ρ

1 – ρL
1 – λgL

xl gt

=
[
ϕ2(L)
L – λg

]

+

λgτg
ρ

1 – ρL
1 – λgL

xl gt =
ϕ2(L) – ϕ2(λg)

L – λg
λgτgu
ρτε

1 – ρL
1 – λgL

xl gt, ϕ2(z) =
hk(z)
1 – ρz

=
λgτg
ρ

[
hk(L) – hk(λg)

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt = G2gk(L)xl gt

(A19)

El gtakt =
[
Ak(L)M

⊺
g(L–1)Bg(L–1)–1

]
+
V–1g Bg(L)–1xl gt =

[
hk(L)L

(1 – ρL)(L – λg)

]

+

λgτg
ρ

1 – ρL
1 – λgL

xl gt

=
[
ϕ3(L)
L – λg

]

+

λgτg
ρ

1 – ρL
1 – λgL

xl gt =
ϕ3(L) – ϕ3(λg)

L – λg
λgτgu
ρτε

1 – ρL
1 – λgL

xl gt, ϕ3(z) =
hk(z)z
1 – ρz

=
λgτg
ρ

[
hk(L)L – hk(λg)λg

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt = G3gk(L)xl gt

(A20)

El gtal g,t+1 =
[
Aig(L)M

⊺
g(L–1)Bg(L–1)–1

]
+
V–1g Bg(L)–1xl gt

=
[

hg(L)
τε(1 – ρL)(L – λg)

+
hg(L)(L – ρ)
τguL(L – λg)

]

+

λgτgu
ρ

1 – ρL
1 – λgL

xl gt
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=
{[

hg(L)
τε(1 – ρL)(L – λg)

]

+
+
[
hg(L)(L – ρ)
τguL(L – λg)

]

+

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
{[

ϕ4(L)
L – λg

]

+
+
[

ϕ5(L)
L(L – λg)

]

+

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
{
ϕ4(L) – ϕ4(λg)

L – λg
+
ϕ5(L) – ϕ5(λg)

λg(L – λg)
–
ϕ5(L) – ϕ5(0)

λgL

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
λg
ρ

{
hg(L)
L – λg

[
τgu

τε(1 – ρL)
+
L – ρ
L

]
–
hg(λg)
L – λg

[
τgu

τε(1 – ρλg)
+
λg – ρ
λg

]
–
ρhg(0)
λgL

}
1 – ρL
1 – λgL

xl gt

=
{
hg(L)
L – λg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρL

+
λg(L – ρ)

ρL

]
–
hg(0)
L

}
1 – ρL
1 – λgL

xl gt

= G4g(L)xl gt, ϕ4(z) =
hg(z)

τε(1 – ρz)
, ϕ5(z) =

hg(z)(z – ρ)
τgu

(A21)

Inserting our obtained expressions into (A10),

hg(L)xl gt = φgG1g(L)xl gt + βgG4g(L)xl gt +
n∑

k=1
γgkG3gk(L)xl gt +

n∑

k=1
αgkG2gk(L)xl gt

hg(L)xl gt = φg

(
1 –

λg
ρ

)
1

1 – λgL
xl gt + βg

{
hg(L)
L – λg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρL

+
λg(L – ρ)

ρL

]
–
hg(0)
L

}
1 – ρL
1 – λgL

xl gt

+
2∑

k=1
γgk

λgτg
ρ

[
hk(L)L – hk(λg)λg

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt

+
2∑

k=1
αgk

λgτg
ρ

[
hk(L) – hk(λg)

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt

Removing the xl gt terms, and rearranging terms on the LHS and RHS

hg(z)
{
1 – βg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρz

+
λg(z – ρ)

ρz

]
1 – ρz

(1 – λgz)(L – λg)

}

–
2∑

k=1
hk(z)

(ρ – λg)(1 – ρλg)
ρ

γgkz + αgk
(1 – λgz)(z – λg)

= φg

(
1 –

λg
ρ

)
1

1 – λgz
– βg

1 – ρz
z(1 – λgz)

hg(0) –
2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
γgkλg + αgk

(1 – λgz)(z – λg)
(1 – ρz)
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Multiplying both sides by z(z – λg)(1 – λgz),

hg(z)
[
z(z – λg)(1 – λgz) – βg(z – λg)(1 – λgz)

]
–

2∑

k=1
hk(z)

(ρ – λg)(1 – ρλg)
ρ

z(γgkz + αgk)

= φg

(
1 –

λg
ρ

)
z(z – λg) – βg(1 – ρz)(z – λg)hg(0) –

2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
(γgkλg + αgk)z(1 – ρz)

I can write the above system of equations in terms of h(L) in matrix form

C(z)h(z) = d(z)(A22)

where

C(z) ≡ diag
{
λg

}[
(β – Iz) diag

{(
z –

1
ρ

)
(z – ρ)

}
– (β – Iz)z diag

{
τg
ρ

}
– z diag

{
τg
ρ

}
(zγ + α)

]

That is, I can write C(z) =

[
C11(z) C12(z)
C21(z) C22(z)

]
, where

C11(z) = λ1

[
(β1 – z)

(
z –

1
ρ

)
(z – ρ) +

τ1
ρ
z
[
z(1 – γ11) – δ11

]]
, C12(z) = –λ1z

τ1
ρ
(zγ12 + δ12)

C22(z) = λ2

[
(β2 – z)

(
z –

1
ρ

)
(z – ρ) +

τ2
ρ
z
[
z(1 – γ22) – δ22

]]
, C21(z) = –λ2z

τ2
ρ
(zγ21 + δ21)

I can also write d(z) =

[
d1[z; h1(·)]
d2[z; h2(·)]

]
, where

dg(z) = φg

(
1 –

λg
ρ

)
z(z – λg) – βg(1 – ρz)(z – λg)hg(0) –

2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
(γgkλg + αgk)z(1 – ρz)

From (A22), the solution to the policy function is given by h(z) = C(z)–1d(z) =
adj C(z)
det C(z)d(z). Hence, I need to obtain det C(z). Note that the degree of det C(z) is a poly-
nomial of degree 6 on z. Denote the inside roots of det C(z) as {ζ1, ζ2, ζ3, ζ4}, and the
outside roots as

{
ϑ–11 , ϑ

–1
2
}
. Because agents cannot use future signals, the inside roots

have to be removed. Note that the number of free constants in d(z) is 4:
{
hg(0)

}
and{

h̃(λg) =
∑2
k=1 hk(λg)

(
1 – λg

ρ

)
(γgkλg + αgk)

}
for each g ∈ {c, f }. With a unique solution,
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=
{[

hg(L)
τε(1 – ρL)(L – λg)

]

+
+
[
hg(L)(L – ρ)
τguL(L – λg)

]

+

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
{[

ϕ4(L)
L – λg

]

+
+
[

ϕ5(L)
L(L – λg)

]

+

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
{
ϕ4(L) – ϕ4(λg)

L – λg
+
ϕ5(L) – ϕ5(λg)

λg(L – λg)
–
ϕ5(L) – ϕ5(0)

λgL

}
λgτgu
ρ

1 – ρL
1 – λgL

xl gt

=
λg
ρ

{
hg(L)
L – λg

[
τgu

τε(1 – ρL)
+
L – ρ
L

]
–
hg(λg)
L – λg

[
τgu

τε(1 – ρλg)
+
λg – ρ
λg

]
–
ρhg(0)
λgL

}
1 – ρL
1 – λgL

xl gt

=
{
hg(L)
L – λg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρL

+
λg(L – ρ)

ρL

]
–
hg(0)
L

}
1 – ρL
1 – λgL

xl gt

= G4g(L)xl gt, ϕ4(z) =
hg(z)

τε(1 – ρz)
, ϕ5(z) =

hg(z)(z – ρ)
τgu

(A21)

Inserting our obtained expressions into (A10),

hg(L)xl gt = φgG1g(L)xl gt + βgG4g(L)xl gt +
n∑

k=1
γgkG3gk(L)xl gt +

n∑

k=1
αgkG2gk(L)xl gt

hg(L)xl gt = φg

(
1 –

λg
ρ

)
1

1 – λgL
xl gt + βg

{
hg(L)
L – λg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρL

+
λg(L – ρ)

ρL

]
–
hg(0)
L

}
1 – ρL
1 – λgL

xl gt

+
2∑

k=1
γgk

λgτg
ρ

[
hk(L)L – hk(λg)λg

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt

+
2∑

k=1
αgk

λgτg
ρ

[
hk(L) – hk(λg)

1 – ρL
1 – ρλg

]
1

(1 – λgL)(L – λg)
xl gt

Removing the xl gt terms, and rearranging terms on the LHS and RHS

hg(z)
{
1 – βg

[(
1 –

λg
ρ

)
1 – ρλg
1 – ρz

+
λg(z – ρ)

ρz

]
1 – ρz

(1 – λgz)(L – λg)

}

–
2∑

k=1
hk(z)

(ρ – λg)(1 – ρλg)
ρ

γgkz + αgk
(1 – λgz)(z – λg)

= φg

(
1 –

λg
ρ

)
1

1 – λgz
– βg

1 – ρz
z(1 – λgz)

hg(0) –
2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
γgkλg + αgk

(1 – λgz)(z – λg)
(1 – ρz)

55

Multiplying both sides by z(z – λg)(1 – λgz),

hg(z)
[
z(z – λg)(1 – λgz) – βg(z – λg)(1 – λgz)

]
–

2∑

k=1
hk(z)

(ρ – λg)(1 – ρλg)
ρ

z(γgkz + αgk)

= φg

(
1 –

λg
ρ

)
z(z – λg) – βg(1 – ρz)(z – λg)hg(0) –

2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
(γgkλg + αgk)z(1 – ρz)

I can write the above system of equations in terms of h(L) in matrix form

C(z)h(z) = d(z)(A22)

where

C(z) ≡ diag
{
λg

}[
(β – Iz) diag

{(
z –

1
ρ

)
(z – ρ)

}
– (β – Iz)z diag

{
τg
ρ

}
– z diag

{
τg
ρ

}
(zγ + α)

]

That is, I can write C(z) =

[
C11(z) C12(z)
C21(z) C22(z)

]
, where

C11(z) = λ1

[
(β1 – z)

(
z –

1
ρ

)
(z – ρ) +

τ1
ρ
z
[
z(1 – γ11) – δ11

]]
, C12(z) = –λ1z

τ1
ρ
(zγ12 + δ12)

C22(z) = λ2

[
(β2 – z)

(
z –

1
ρ

)
(z – ρ) +

τ2
ρ
z
[
z(1 – γ22) – δ22

]]
, C21(z) = –λ2z

τ2
ρ
(zγ21 + δ21)

I can also write d(z) =

[
d1[z; h1(·)]
d2[z; h2(·)]

]
, where

dg(z) = φg

(
1 –

λg
ρ

)
z(z – λg) – βg(1 – ρz)(z – λg)hg(0) –

2∑

k=1
hk(λg)

(
1 –

λg
ρ

)
(γgkλg + αgk)z(1 – ρz)

From (A22), the solution to the policy function is given by h(z) = C(z)–1d(z) =
adj C(z)
det C(z)d(z). Hence, I need to obtain det C(z). Note that the degree of det C(z) is a poly-
nomial of degree 6 on z. Denote the inside roots of det C(z) as {ζ1, ζ2, ζ3, ζ4}, and the
outside roots as

{
ϑ–11 , ϑ

–1
2
}
. Because agents cannot use future signals, the inside roots

have to be removed. Note that the number of free constants in d(z) is 4:
{
hg(0)

}
and{

h̃(λg) =
∑2
k=1 hk(λg)

(
1 – λg

ρ

)
(γgkλg + αgk)

}
for each g ∈ {c, f }. With a unique solution,
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From (A22), the solution to the policy function is given by h(z) = C(z)–1d(z) =
adj C(z)
det C(z)d(z). Hence, I need to obtain det C(z). Note that the degree of det C(z) is a poly-
nomial of degree 6 on z. Denote the inside roots of det C(z) as {ζ1, ζ2, ζ3, ζ4}, and the
outside roots as

{
ϑ–11 , ϑ

–1
2
}
. Because agents cannot use future signals, the inside roots

have to be removed. Note that the number of free constants in d(z) is 4:
{
hg(0)

}
and{

h̃(λg) =
∑2
k=1 hk(λg)

(
1 – λg

ρ

)
(γgkλg + αgk)

}
for each g ∈ {c, f }. With a unique solution,
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it has to be the case that the number of outside roots is 2. By Cramer’s rule, hg(L) is
given by

h1(z) =

det

[
d1(z) C12(z)
d2(z) C22(z)

]

det C(z)
, h2(z) =

det

[
C11(z) d1(z)
C21(z) d2(z)

]

det C(z)

which are the policy function for groups 1 (consumers) and 2 (firms). The degree of
the numerator is 5, as the highest degree of dg(z) is 1 degree less than that of C(z). By
choosing the appropriate constants

{
h1(0), h̃(λ1), h2(0), h̃(λ2)

}
, the 4 inside roots will

be removed. Therefore, the 4 constants are solutions to the following system of linear
equations

det

[
d1(ζn) C12(ζn)
d2(ζn) C22(ζn)

]
= 0, for {ζn}4n=1

After removing the inside roots in the denominator, the degree of the numerator is 1 and
the degree of the denominator is 2. The above determinants can be written as a system
of 4 equations and 4 unknowns (our free constants). Once I have set the appropriate

free constants the policy functions will be hg(z) =
ψ̃g1+ψ̃g2z

(1–ϑ1z)(1–ϑ2z)
, and hence I have

agt = hg(L)vt =
ψ̃g1 + ψ̃g2z

(1 – ϑ1z)(1 – ϑ2z)
vt =

2∑

j=1
ψgj

(
1 –

ϑj
ρ

)
1

1 – ϑjL
vt =

2∑

j=1
ψgjϑ̃jt

I can write

at =

[
a1t
a2t

]
= Qϑ̃t =

[
ψ11 ψ12

ψ21 ψ22

][
ϑ̃1t

ϑ̃2t

]
=

[
ψ11ϑ̃1t +ψ12ϑ̃2t
ψ21ϑ̃1t +ψ22ϑ̃2t

]

Notice that I can write ϑ̃gt(1–ϑgL) =
(
1 – ϑg

ρ

)
vt =⇒ ϑ̃gt = ϑgϑ̃g,t–1 +

(
1 – ϑg

ρ

)
vt, which I

can write as a system as ϑ̃t = Λϑ̃t–1 + Γvt, whereΛ =

[
ϑ1 0
0 ϑ2

]
, Γ =

[
1 – ϑ1

ρ

1 – ϑ2
ρ

]
. Hence, I can

write at = Qθ̃t = Q(Λθ̃t–1+Γvt) = QΛθ̃t–1+QΓvt = QΛQ–1at–1+QΓvt = Aat–1+Bvt. Finally, I
need to show that (20) hold. First, notice that in the standard FIRE framework, there is no
information friction,ϑ1 = ϑ2 = 0. Therefore, the dynamics followat = AFIREat–1+BFIREvt
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ρ
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ρ
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. Hence, I can

write at = Qθ̃t = Q(Λθ̃t–1+Γvt) = QΛθ̃t–1+QΓvt = QΛQ–1at–1+QΓvt = Aat–1+Bvt. Finally, I
need to show that (20) hold. First, notice that in the standard FIRE framework, there is no
information friction,ϑ1 = ϑ2 = 0. Therefore, the dynamics followat = AFIREat–1+BFIREvt
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which are the policy function for groups 1 (consumers) and 2 (firms). The degree of
the numerator is 5, as the highest degree of dg(z) is 1 degree less than that of C(z). By
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h1(0), h̃(λ1), h2(0), h̃(λ2)

}
, the 4 inside roots will

be removed. Therefore, the 4 constants are solutions to the following system of linear
equations

det

[
d1(ζn) C12(ζn)
d2(ζn) C22(ζn)

]
= 0, for {ζn}4n=1

After removing the inside roots in the denominator, the degree of the numerator is 1 and
the degree of the denominator is 2. The above determinants can be written as a system
of 4 equations and 4 unknowns (our free constants). Once I have set the appropriate

free constants the policy functions will be hg(z) =
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, and hence I have
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vt =
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][
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=
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]

Notice that I can write ϑ̃gt(1–ϑgL) =
(
1 – ϑg

ρ

)
vt =⇒ ϑ̃gt = ϑgϑ̃g,t–1 +

(
1 – ϑg

ρ

)
vt, which I

can write as a system as ϑ̃t = Λϑ̃t–1 + Γvt, whereΛ =

[
ϑ1 0
0 ϑ2

]
, Γ =

[
1 – ϑ1

ρ
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]
. Hence, I can

write at = Qθ̃t = Q(Λθ̃t–1+Γvt) = QΛθ̃t–1+QΓvt = QΛQ–1at–1+QΓvt = Aat–1+Bvt. Finally, I
need to show that (20) hold. First, notice that in the standard FIRE framework, there is no
information friction,ϑ1 = ϑ2 = 0. Therefore, the dynamics followat = AFIREat–1+BFIREvt
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= 0, for {ζn}4n=1

After removing the inside roots in the denominator, the degree of the numerator is 1 and
the degree of the denominator is 2. The above determinants can be written as a system
of 4 equations and 4 unknowns (our free constants). Once I have set the appropriate

free constants the policy functions will be hg(z) =
ψ̃g1+ψ̃g2z
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, and hence I have

agt = hg(L)vt =
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= Qϑ̃t =
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][
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]
=
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Notice that I can write ϑ̃gt(1–ϑgL) =
(
1 – ϑg

ρ

)
vt =⇒ ϑ̃gt = ϑgϑ̃g,t–1 +

(
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ρ

)
vt, which I

can write as a system as ϑ̃t = Λϑ̃t–1 + Γvt, whereΛ =

[
ϑ1 0
0 ϑ2
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, Γ =
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. Hence, I can
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need to show that (20) hold. First, notice that in the standard FIRE framework, there is no
information friction,ϑ1 = ϑ2 = 0. Therefore, the dynamics followat = AFIREat–1+BFIREvt
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where AFIRE =


0 0
0 0


, BFIRE =


ψ11 +ψ12
ψ21 +ψ22


Under the standard FIRE case, dynamics

are given by (28). To find the solution dynamics under FIRE, I proceed with a guess and
verify approach. Assume that at = Dvt. Using the method of undetermined coefficients
Dvt = φvt + δEtDvt+1 = φvt + δDρvt =⇒ D = φ + δDρ. Hence, it must be that
D = (I – δρ)–1φ. Notice that, for consistency, BFIRE = D. As a result, even if I cannot
find the analytical form of the individual (ψ11,ψ12,ψ21,ψ22), I know that conditions
(20) hold.

Proof of Proposition 7. From the proof of proposition 6, I have the following objects:
πt+k = h2(L)vt+k, E

c
tπt+k =

(ρ–λ1)(1–ρλ1)
ρ(L–λ1)(1–λ1L)


L1–kh2(L) –

1–ρL
1–ρλ1λ

1–k
1 h2(λ1)


, and πt+k –E

c
tπt+k =

λ1
ρ(L–λ1)(1–λ1L)


(L – ρ)L–kh2(L) + (ρ – λ1)λ–k1 h2(λ1)


εt. The forecast error of annual infla-

tion is

πt+3,3 – E
c
tπt+3,t = (πt – E

c
tπt) + (πt+1 – E

c
tπt+1) + (πt+2 – E

c
tπt+2) + (πt+3 – E

c
tπt+3)

=
λ1

ρ(L – λ1)(1 – λ1L)


(L – ρ)




3

k=0
L–k


 h2(L) + (ρ – λ1)




3

k=0
λ–k1


 h2(λ1)


 εt

=
2
g=1

(ρ – ϑg)(1 – ρϑg)λ1ψ2g
ρ2(1 – λ1ϑg)(1 – λ1L)(1 – ϑgL)

εt

+
2
g=1

(ρ – ϑg)

ρ(1 – λ1ϑg) – ϑg(ρ – λ1)L


ψ2g

ρ2(1 – λ1ϑg)L(1 – λ1L)(1 – ϑgL)
εt

+
2
g=1

(ρ – ϑg)

ρλ1(1 – λ1ϑg) + (ρ – λ1)(1 – λ1ϑg)L – ϑg(ρ – λ1)L2


ψ2g

ρ2λ1(1 – λ1ϑg)L2(1 – λ1L)(1 – ϑgL)
εt

+
2
g=1

(ρ – ϑg)

(L2 + λ1L + λ21 )(ρ + λ1ϑgL) – (L + λ1)[λ1L + (L

2 + λ21 )ρϑg]

ψ2g

ρ2λ21 (1 – λ1ϑg)L3(1 – λ1L)(1 – ϑgL)
εt

=
2
g=1

(ρ – ϑg)ψ2g
ρ2λ21 (1 – λ1ϑg)L3(1 – λ1L)(1 – ϑ1L)

×

ρλ21 (1 – λ1ϑg) + λ1(1 – λ1ϑg)[ρ – (1 – ρ)λ1]L

+(1 – λ1ϑg)[ρ – (1 – ρ)λ1(1 + λ1)]L2 + [λ31 – ϑg(ρ – (1 – ρ)λ1(1 + λ1 + λ
2
1 ))]L

3

εt

=
2
g=1

(ρ – ϑg)ψ2gξ0g
ρ2λ21 (1 – λ1ϑg)

(1 – ξ1gL)(1 – ξ2gL)(1 – ξ3gL)
L3(1 – λ1L)(1 – ϑgL)

εt
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
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are given by (28). To find the solution dynamics under FIRE, I proceed with a guess and
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D = (I – δρ)–1φ. Notice that, for consistency, BFIRE = D. As a result, even if I cannot
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εt
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ρ2λ1(1 – λ1ϑg)L2(1 – λ1L)(1 – ϑgL)
εt

+
2
g=1

(ρ – ϑg)

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2 + λ21 )ρϑg]

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×
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verify approach. Assume that at = Dvt. Using the method of undetermined coefficients
Dvt = φvt + δEtDvt+1 = φvt + δDρvt =⇒ D = φ + δDρ. Hence, it must be that
D = (I – δρ)–1φ. Notice that, for consistency, BFIRE = D. As a result, even if I cannot
find the analytical form of the individual (ψ11,ψ12,ψ21,ψ22), I know that conditions
(20) hold.

Proof of Proposition 7. From the proof of proposition 6, I have the following objects:
πt+k = h2(L)vt+k, E

c
tπt+k =

(ρ–λ1)(1–ρλ1)
ρ(L–λ1)(1–λ1L)


L1–kh2(L) –

1–ρL
1–ρλ1λ

1–k
1 h2(λ1)


, and πt+k –E

c
tπt+k =

λ1
ρ(L–λ1)(1–λ1L)


(L – ρ)L–kh2(L) + (ρ – λ1)λ–k1 h2(λ1)


εt. The forecast error of annual infla-

tion is

πt+3,3 – E
c
tπt+3,t = (πt – E

c
tπt) + (πt+1 – E

c
tπt+1) + (πt+2 – E

c
tπt+2) + (πt+3 – E

c
tπt+3)

=
λ1

ρ(L – λ1)(1 – λ1L)


(L – ρ)




3

k=0
L–k


 h2(L) + (ρ – λ1)




3

k=0
λ–k1


 h2(λ1)


 εt

=
2
g=1

(ρ – ϑg)(1 – ρϑg)λ1ψ2g
ρ2(1 – λ1ϑg)(1 – λ1L)(1 – ϑgL)

εt

+
2
g=1

(ρ – ϑg)

ρ(1 – λ1ϑg) – ϑg(ρ – λ1)L


ψ2g

ρ2(1 – λ1ϑg)L(1 – λ1L)(1 – ϑgL)
εt

+
2
g=1

(ρ – ϑg)

ρλ1(1 – λ1ϑg) + (ρ – λ1)(1 – λ1ϑg)L – ϑg(ρ – λ1)L2


ψ2g

ρ2λ1(1 – λ1ϑg)L2(1 – λ1L)(1 – ϑgL)
εt

+
2
g=1

(ρ – ϑg)

(L2 + λ1L + λ21 )(ρ + λ1ϑgL) – (L + λ1)[λ1L + (L

2 + λ21 )ρϑg]

ψ2g

ρ2λ21 (1 – λ1ϑg)L3(1 – λ1L)(1 – ϑgL)
εt

=
2
g=1

(ρ – ϑg)ψ2g
ρ2λ21 (1 – λ1ϑg)L3(1 – λ1L)(1 – ϑ1L)

×

ρλ21 (1 – λ1ϑg) + λ1(1 – λ1ϑg)[ρ – (1 – ρ)λ1]L

+(1 – λ1ϑg)[ρ – (1 – ρ)λ1(1 + λ1)]L2 + [λ31 – ϑg(ρ – (1 – ρ)λ1(1 + λ1 + λ
2
1 ))]L

3

εt

=
2
g=1

(ρ – ϑg)ψ2gξ0g
ρ2λ21 (1 – λ1ϑg)

(1 – ξ1gL)(1 – ξ2gL)(1 – ξ3gL)
L3(1 – λ1L)(1 – ϑgL)

εt
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=
2
g=1

(ρ – ϑg)ψ2gξ0g
ρ2λ21 (1 – λ1ϑg)

(1 – ξ2gL)(1 – ξ3gL)
L3


ϑg – ξ1g
ϑg – λ1

1
1 – ϑgL

–
λ1 – ξ1g
ϑg – λ1

1
1 – λ1L


εt

=
2
g=1

(ρ – ϑg)ψ2gξ0g(ϑg – ξ1g)
ρ2λ21 (1 – λ1ϑg)(ϑg – λ1)

(1 – ξ2gL)(1 – ξ3gL)
L3(1 – ϑgL)

εt

+
2
g=1

(ρ – ϑg)ψ2gξ0g(ξ1g – λ1)
ρ2λ21 (1 – λ1ϑg)(ϑg – λ1)

(1 – ξ2gL)(1 – ξ3gL)
L3(1 – λ1L)

εt

=
2
g=1

γ1g
(1 – ξ2gL)(1 – ξ3gL)

L3(1 – ϑgL)
εt +

2
g=1

γ2g
(1 – ξ2gL)(1 – ξ3gL)

L3(1 – λ1L)
εt

=
2
g=1

γ1g
1 – (ξ2g + ξ3g)L + ξ2gξ3gL2

L3(1 – ϑgL)
εt +

2
g=1

γ2g
1 – (ξ2g + ξ3g)L + ξ2gξ3gL2

L3(1 – λ1L)
εt

=
2
g=1


γ1g

∞

k=0
ϑkgεt+3–k – γ1g(ξ2g + ξ3g)

∞

k=0
ϑkgεt+2–k + γ1gξ2gξ3g

∞

k=0
ϑkgεt+1–k




+ (γ21 + γ22)
∞

k=0
λk1εt+3–k – [γ21(ξ21 + ξ31) + γ22(ξ22 + ξ32)]

∞

k=0
λk1εt+2–k

+ (γ21ξ21ξ31 + γ22ξ22ξ32)
∞

k=0
λk1εt+1–k

=
2
g=1


β1g

∞

k=0
ϑkgεt+3–k + β2g

∞

k=0
ϑkgεt+2–k + β3g

∞

k=0
ϑkgεt+1–k




+ β4
∞

k=0
λk1εt+3–k + β5

∞

k=0
λk1εt+2–k + β6

∞

k=0
λk1εt+1–k

whereξ0g = ρλ21 (1–λ1ϑg), –ξ0g(ξ1g+ξ2g+ξ3g) = λ1(1–λ1ϑg)[ρ–(1–ρ)λ1],ξ0g(ξ1gξ2g+ξ1gξ3g+
ξ2gξ3g) = (1 – λ1ϑg)[ρ – (1 – ρ)λ1(1 + λ1)], –ξ0gξ1gξ2gξ3g = λ31 – ϑg[ρ – (1 – ρ)λ1(1 + λ1 + λ

2
1 )],

γ1g =
(ρ–ϑg)ψ2gξ0g(ϑg–ξ1g)
ρ2λ21 (1–λ1ϑg)(ϑg–λ1)

, γ2g =
(ρ–ϑg)ψ2gξ0g(ξ1g–λ1)
ρ2λ21 (1–λ1ϑg)(ϑg–λ1)

, β1g = γ1g, β2g = –γ1g(ξ2g + ξ3g),
β3g = γ1gξ2gξ3g, β4 = γ21 + γ22, β5 = –[γ21(ξ21 + ξ31) + γ22(ξ22 + ξ32)], and β6 =
γ21ξ21ξ31 +γ22ξ22ξ32. Before computing the forecast revision of annual inflation, notice
that E

c
tπt+k – E

c
t–1πt+k =

(ρ–λ1)h2(λ1)
ρλk1

1
1–λ1Lεt. Therefore, the forecast revision of annual

inflation is

E
c
tπt+3,t – E

c
t–1πt+3,t = (E

c
tπt – E

c
t–1πt) + (E

c
tπt+1 – E

c
t–1πt+1) + (E

c
tπt+2 – E

c
t–1πt+2) + (E

c
tπt+3 – E

c
t–1πt+3)
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=
2
g=1

(ρ – ϑg)ψ2gξ0g
ρ2λ21 (1 – λ1ϑg)

(1 – ξ2gL)(1 – ξ3gL)
L3


ϑg – ξ1g
ϑg – λ1

1
1 – ϑgL

–
λ1 – ξ1g
ϑg – λ1

1
1 – λ1L


εt

=
2
g=1

(ρ – ϑg)ψ2gξ0g(ϑg – ξ1g)
ρ2λ21 (1 – λ1ϑg)(ϑg – λ1)

(1 – ξ2gL)(1 – ξ3gL)
L3(1 – ϑgL)

εt

+
2
g=1

(ρ – ϑg)ψ2gξ0g(ξ1g – λ1)
ρ2λ21 (1 – λ1ϑg)(ϑg – λ1)

(1 – ξ2gL)(1 – ξ3gL)
L3(1 – λ1L)

εt

=
2
g=1

γ1g
(1 – ξ2gL)(1 – ξ3gL)

L3(1 – ϑgL)
εt +

2
g=1

γ2g
(1 – ξ2gL)(1 – ξ3gL)

L3(1 – λ1L)
εt

=
2
g=1

γ1g
1 – (ξ2g + ξ3g)L + ξ2gξ3gL2

L3(1 – ϑgL)
εt +

2
g=1

γ2g
1 – (ξ2g + ξ3g)L + ξ2gξ3gL2

L3(1 – λ1L)
εt

=
2
g=1


γ1g

∞

k=0
ϑkgεt+3–k – γ1g(ξ2g + ξ3g)

∞

k=0
ϑkgεt+2–k + γ1gξ2gξ3g

∞

k=0
ϑkgεt+1–k




+ (γ21 + γ22)
∞

k=0
λk1εt+3–k – [γ21(ξ21 + ξ31) + γ22(ξ22 + ξ32)]

∞

k=0
λk1εt+2–k

+ (γ21ξ21ξ31 + γ22ξ22ξ32)
∞

k=0
λk1εt+1–k

=
2
g=1



β1g

∞

k=0
ϑkgεt+3–k + β2g

∞

k=0
ϑkgεt+2–k + β3g

∞

k=0
ϑkgεt+1–k





+ β4
∞

k=0
λk1εt+3–k + β5

∞

k=0
λk1εt+2–k + β6

∞

k=0
λk1εt+1–k

whereξ0g = ρλ21 (1–λ1ϑg), –ξ0g(ξ1g+ξ2g+ξ3g) = λ1(1–λ1ϑg)[ρ–(1–ρ)λ1],ξ0g(ξ1gξ2g+ξ1gξ3g+
ξ2gξ3g) = (1 – λ1ϑg)[ρ – (1 – ρ)λ1(1 + λ1)], –ξ0gξ1gξ2gξ3g = λ31 – ϑg[ρ – (1 – ρ)λ1(1 + λ1 + λ

2
1 )],

γ1g =
(ρ–ϑg)ψ2gξ0g(ϑg–ξ1g)
ρ2λ21 (1–λ1ϑg)(ϑg–λ1)

, γ2g =
(ρ–ϑg)ψ2gξ0g(ξ1g–λ1)
ρ2λ21 (1–λ1ϑg)(ϑg–λ1)

, β1g = γ1g, β2g = –γ1g(ξ2g + ξ3g),
β3g = γ1gξ2gξ3g, β4 = γ21 + γ22, β5 = –[γ21(ξ21 + ξ31) + γ22(ξ22 + ξ32)], and β6 =
γ21ξ21ξ31 +γ22ξ22ξ32. Before computing the forecast revision of annual inflation, notice
that E

c
tπt+k – E

c
t–1πt+k =

(ρ–λ1)h2(λ1)
ρλk1

1
1–λ1Lεt. Therefore, the forecast revision of annual

inflation is

E
c
tπt+3,t – E

c
t–1πt+3,t = (E

c
tπt – E

c
t–1πt) + (E

c
tπt+1 – E

c
t–1πt+1) + (E

c
tπt+2 – E

c
t–1πt+2) + (E

c
tπt+3 – E

c
t–1πt+3)
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=
(ρ – λ1)h2(λ1)(1 + λ–11 + λ–21 + λ–31 )

ρ

∞

k=0
λk1εt–k = α

∞

k=0
λk1εt–k

where α =
(ρ–λ1)(1+λ1+λ21+λ

3
1 )
2

g=1ψ2g
ρ–ϑg
1–λ1ϑg

ρ2λ31
. I now seek to compute the OLS coefficient.

The covariance is

C (forecast error, revision) =




2
g=1

β1gαϑ
3
g + β2gαϑ2g + β3gαϑg

1 – λ1ϑg
+
β4αλ

3
1 + β5αλ

2
1 + β6αλ1

1 – λ21


σ2ε

The variance is V (revision) = α2

1–λ22
σ2ε. Finally, the OLS coefficient is

βCG =
C (forecast error, revision)

V (revision)
=
1
α




2
g=1

(β1gϑ3g + β2gϑ2g + β3gϑg)
1 – λ21
1 – λ1ϑg

+ β4λ31 + β5λ
2
1 + β6λ1




=
1
α




2
g=1

(ρ – ϑg)ψ2gϑg(1 – λ21 )
ρ2λ21 (1 – λ1ϑg)2(ϑg – λ1)

ξ0g(ϑg – ξ1g)(ϑg – ξ2g)(ϑg – ξ3g)

–
2
g=1

(ρ – ϑg)ψ2g
ρ2λ1(1 – λ1ϑg)(ϑg – λ1)

ξ0g(λ1 – ξ1g)(λ1 – ξ2g)(λ1 – ξ3g)




=
1
α




2
g=1

(ρ – ϑg)ψ2gλ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ
2
g)(1 – ρϑg)

ρ2(1 – λ1ϑg)2(ϑg – λ1)

+
2
g=1

(ρ – ϑg)ψ2g(1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}

ρ2(1 – λ1ϑg)(ϑg – λ1)




=
1
α

2
g=1

(ρ – ϑg)ψ2g
ρ2(1 – λ1ϑg)(ϑg – λ1)


λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg

+ (1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}



=
λ31

(ρ – λ1)(1 + λ1 + λ21 + λ
3
1)
2
k=1ψ2g

ρ–ϑk
1–λ1ϑk

2
g=1

(ρ – ϑg)ψ2g
(1 – λ1ϑg)(ϑg – λ1)

×


λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg
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=
2
g=1

(ρ – ϑg)ψ2gξ0g
ρ2λ21 (1 – λ1ϑg)

(1 – ξ2gL)(1 – ξ3gL)
L3


ϑg – ξ1g
ϑg – λ1

1
1 – ϑgL

–
λ1 – ξ1g
ϑg – λ1

1
1 – λ1L


εt

=
2
g=1

(ρ – ϑg)ψ2gξ0g(ϑg – ξ1g)
ρ2λ21 (1 – λ1ϑg)(ϑg – λ1)

(1 – ξ2gL)(1 – ξ3gL)
L3(1 – ϑgL)

εt

+
2
g=1

(ρ – ϑg)ψ2gξ0g(ξ1g – λ1)
ρ2λ21 (1 – λ1ϑg)(ϑg – λ1)

(1 – ξ2gL)(1 – ξ3gL)
L3(1 – λ1L)

εt

=
2
g=1

γ1g
(1 – ξ2gL)(1 – ξ3gL)

L3(1 – ϑgL)
εt +

2
g=1

γ2g
(1 – ξ2gL)(1 – ξ3gL)

L3(1 – λ1L)
εt

=
2
g=1

γ1g
1 – (ξ2g + ξ3g)L + ξ2gξ3gL2

L3(1 – ϑgL)
εt +

2
g=1

γ2g
1 – (ξ2g + ξ3g)L + ξ2gξ3gL2

L3(1 – λ1L)
εt

=
2
g=1


γ1g

∞

k=0
ϑkgεt+3–k – γ1g(ξ2g + ξ3g)

∞

k=0
ϑkgεt+2–k + γ1gξ2gξ3g

∞

k=0
ϑkgεt+1–k




+ (γ21 + γ22)
∞

k=0
λk1εt+3–k – [γ21(ξ21 + ξ31) + γ22(ξ22 + ξ32)]

∞

k=0
λk1εt+2–k

+ (γ21ξ21ξ31 + γ22ξ22ξ32)
∞

k=0
λk1εt+1–k

=
2
g=1



β1g

∞

k=0
ϑkgεt+3–k + β2g

∞

k=0
ϑkgεt+2–k + β3g

∞

k=0
ϑkgεt+1–k





+ β4
∞

k=0
λk1εt+3–k + β5

∞

k=0
λk1εt+2–k + β6

∞

k=0
λk1εt+1–k

whereξ0g = ρλ21 (1–λ1ϑg), –ξ0g(ξ1g+ξ2g+ξ3g) = λ1(1–λ1ϑg)[ρ–(1–ρ)λ1],ξ0g(ξ1gξ2g+ξ1gξ3g+
ξ2gξ3g) = (1 – λ1ϑg)[ρ – (1 – ρ)λ1(1 + λ1)], –ξ0gξ1gξ2gξ3g = λ31 – ϑg[ρ – (1 – ρ)λ1(1 + λ1 + λ

2
1 )],

γ1g =
(ρ–ϑg)ψ2gξ0g(ϑg–ξ1g)
ρ2λ21 (1–λ1ϑg)(ϑg–λ1)

, γ2g =
(ρ–ϑg)ψ2gξ0g(ξ1g–λ1)
ρ2λ21 (1–λ1ϑg)(ϑg–λ1)

, β1g = γ1g, β2g = –γ1g(ξ2g + ξ3g),
β3g = γ1gξ2gξ3g, β4 = γ21 + γ22, β5 = –[γ21(ξ21 + ξ31) + γ22(ξ22 + ξ32)], and β6 =
γ21ξ21ξ31 +γ22ξ22ξ32. Before computing the forecast revision of annual inflation, notice
that E

c
tπt+k – E

c
t–1πt+k =

(ρ–λ1)h2(λ1)
ρλk1

1
1–λ1Lεt. Therefore, the forecast revision of annual

inflation is

E
c
tπt+3,t – E

c
t–1πt+3,t = (E

c
tπt – E

c
t–1πt) + (E

c
tπt+1 – E

c
t–1πt+1) + (E

c
tπt+2 – E

c
t–1πt+2) + (E

c
tπt+3 – E

c
t–1πt+3)
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=
(ρ – λ1)h2(λ1)(1 + λ–11 + λ–21 + λ–31 )

ρ

∞

k=0
λk1εt–k = α

∞

k=0
λk1εt–k

where α =
(ρ–λ1)(1+λ1+λ21+λ

3
1 )
2

g=1ψ2g
ρ–ϑg
1–λ1ϑg

ρ2λ31
. I now seek to compute the OLS coefficient.

The covariance is

C (forecast error, revision) =




2
g=1

β1gαϑ
3
g + β2gαϑ2g + β3gαϑg

1 – λ1ϑg
+
β4αλ

3
1 + β5αλ

2
1 + β6αλ1

1 – λ21


σ2ε

The variance is V (revision) = α2

1–λ22
σ2ε. Finally, the OLS coefficient is

βCG =
C (forecast error, revision)

V (revision)
=
1
α




2
g=1

(β1gϑ3g + β2gϑ2g + β3gϑg)
1 – λ21
1 – λ1ϑg

+ β4λ31 + β5λ
2
1 + β6λ1




=
1
α




2
g=1

(ρ – ϑg)ψ2gϑg(1 – λ21 )
ρ2λ21 (1 – λ1ϑg)2(ϑg – λ1)

ξ0g(ϑg – ξ1g)(ϑg – ξ2g)(ϑg – ξ3g)

–
2
g=1

(ρ – ϑg)ψ2g
ρ2λ1(1 – λ1ϑg)(ϑg – λ1)

ξ0g(λ1 – ξ1g)(λ1 – ξ2g)(λ1 – ξ3g)




=
1
α




2
g=1

(ρ – ϑg)ψ2gλ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ
2
g)(1 – ρϑg)

ρ2(1 – λ1ϑg)2(ϑg – λ1)

+
2
g=1

(ρ – ϑg)ψ2g(1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}

ρ2(1 – λ1ϑg)(ϑg – λ1)




=
1
α

2
g=1

(ρ – ϑg)ψ2g
ρ2(1 – λ1ϑg)(ϑg – λ1)


λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg

+ (1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}



=
λ31

(ρ – λ1)(1 + λ1 + λ21 + λ
3
1)
2
k=1ψ2g

ρ–ϑk
1–λ1ϑk

2
g=1

(ρ – ϑg)ψ2g
(1 – λ1ϑg)(ϑg – λ1)

×


λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg
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+
λ1


ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)



ρ(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1εt–k



Hence, I have

GEt = [1 – β(1 – λχ)]Et yt + (δ – β)(1 – λχ)β
∞

k=0
βkEt yt+k+1

= [1 – β(1 – λχ)]
2

j=1
ψ1j




∞

k=0
ρk –

ϑ2j (ρ – λ1)(1 – ρλ1)

ρ2(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj +

λ21 (ρ – ϑj)(1 – ρϑj)
ρ2(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1


 εt–k

+ (δ – β)(1 – λχ)β
2

j=1
ψ1j




ρ

1 – ρβ

∞

k=0
ρk –

ϑ3j (ρ – λ1)(1 – ρλ1)

ρ2(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj

+
λ1(ρ – ϑj)


ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)



ρ2(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1


 εt–k

=


δ1

∞

k=0
ρk + δ2

∞

k=0
λk1 +

2

j=1
δ3j

∞

k=0
ϑkj


 εt–k

Therefore, the PE share µτ is given by

µτ = 1 –
∂GEτ/∂εt
∂TEτ/∂εt

= 1 –
δ1ρ

τ + δ2λτ1 +
2
j=1 δ3jϑ

τ
j

2
g=1

ψ1g
ρ (ρτ+1 – ϑτ+1g )

=
ρ
2

g=1ψ1g – δ1

ρτ – ρδ2λτ1 –

2
g=1(ψ1gϑg + δ3j)ϑτg

ρ
2
g=1ψ1gρ

τ –
2
g=1ψ1gϑgϑ

τ
g

Proof of Proposition 9. (i) Recall that equilibrium dynamics satisfy (28). I need to find
the conditions under which the equilibrium process is stationary. This sums up to
having all the eigenvalues in the matrix δ–1 outside the unit circle. This restriction is
satisfied if

det δ–1 > 1(A23)

det δ–1 – tr δ–1 > –1(A24)

det δ–1 + tr δ–1 > –1(A25)

Introducing the respective values in (A23)-(A25), I obtain (22)-(24).
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=
(ρ – λ1)h2(λ1)(1 + λ–11 + λ–21 + λ–31 )

ρ

∞

k=0
λk1εt–k = α

∞

k=0
λk1εt–k

where α =
(ρ–λ1)(1+λ1+λ21+λ

3
1 )
2

g=1ψ2g
ρ–ϑg
1–λ1ϑg

ρ2λ31
. I now seek to compute the OLS coefficient.

The covariance is

C (forecast error, revision) =




2
g=1

β1gαϑ
3
g + β2gαϑ2g + β3gαϑg

1 – λ1ϑg
+
β4αλ

3
1 + β5αλ

2
1 + β6αλ1

1 – λ21


σ2ε

The variance is V (revision) = α2

1–λ22
σ2ε. Finally, the OLS coefficient is

βCG =
C (forecast error, revision)

V (revision)
=
1
α




2
g=1

(β1gϑ3g + β2gϑ2g + β3gϑg)
1 – λ21
1 – λ1ϑg

+ β4λ31 + β5λ
2
1 + β6λ1




=
1
α




2
g=1

(ρ – ϑg)ψ2gϑg(1 – λ21 )
ρ2λ21 (1 – λ1ϑg)2(ϑg – λ1)

ξ0g(ϑg – ξ1g)(ϑg – ξ2g)(ϑg – ξ3g)

–
2
g=1

(ρ – ϑg)ψ2g
ρ2λ1(1 – λ1ϑg)(ϑg – λ1)

ξ0g(λ1 – ξ1g)(λ1 – ξ2g)(λ1 – ξ3g)




=
1
α




2
g=1

(ρ – ϑg)ψ2gλ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ
2
g)(1 – ρϑg)

ρ2(1 – λ1ϑg)2(ϑg – λ1)

+
2
g=1

(ρ – ϑg)ψ2g(1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}

ρ2(1 – λ1ϑg)(ϑg – λ1)




=
1
α

2
g=1

(ρ – ϑg)ψ2g
ρ2(1 – λ1ϑg)(ϑg – λ1)


λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg

+ (1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}



=
λ31

(ρ – λ1)(1 + λ1 + λ21 + λ
3
1)
2
k=1ψ2g

ρ–ϑk
1–λ1ϑk

2
g=1

(ρ – ϑg)ψ2g
(1 – λ1ϑg)(ϑg – λ1)

×


λ1ϑg(1 – λ21 )(1 + ϑg)(1 + ϑ

2
g)(1 – ρϑg)

1 – λ1ϑg
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+ (1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}



Proof of Proposition 8. The aggregate outcome is

yt =
2
g=1

ψ1g


1 –

ϑg
ρ


1

1 – ϑgL
=

2
g=1

ψ1g


1 –

ϑg
ρ


1

(1 – ϑgL)(1 – ρL)
εt

=
2
g=1

ψ1g


1 –

ϑg
ρ


ρ

ρ – ϑg
1

1 – ρL
–

ϑg
ρ – ϑg

1
1 – ϑgL


εt =

2
g=1

ψ1g
ρ

∞

k=0
(ρk+1 – ϑk+1g )εt–k

TheGE component is given byGEt = [1–β(1–λχ)]Et yt+(δ–β)(1–λχ)β
∞
k=0 β

kEt yt+k+1
where

E
c
t yt =

2

j=1
ψ1j


1 –

ϑj
ρ


E
c
t


1

1 – ϑjL
vt



=
2

j=1
ψ1j


1 –

ϑj
ρ





τ
– 12
ε

(1–ϑjL)(1–ρL)
0


τ
– 12
ε

1–ρL–1

τ
– 12
1


 1 – ρL–1

1 – λ1L–1



+

λ1τ1
ρ

1
1 – λ1L

εt

=
2

j=1
ψ1j


1 –

ϑj
ρ


ρ

ρ – ϑj

∞

k=0
ρkεt–k –

ϑ2j (ρ – λ1)(1 – ρλ1)

ρ(ρ – ϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj εt–k

+
λ21 (1 – ρϑj)

ρ(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1εt–k



∞

k=0
βkE

c
t yt+k+1 = E

c
t
yt

L – β
=

2

j=1
ψ1j


1 –

ϑj
ρ


E
c
t


1

(L – β)(1 – ϑjL)
vt



=
2

j=1
ψ1j


1 –

ϑj
ρ





τ
– 12
ε

(L–β)(1–ϑjL)(1–ρL)
0


τ
– 12
ε

1–ρL–1

τ
– 12
1


 1 – ρL–1

1 – λ1L–1



+

λ1τ1
ρ

1
1 – λ1L

εt

=
2

j=1
ψ1j


1 –

ϑj
ρ


ρ2

(1 – ρβ)(ρ – ϑj)

∞

k=0
ρkεt–k

–
ϑ3j (ρ – λ1)(1 – ρλ1)

ρ(ρ – ϑj)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj εt–k
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+ (1 + λ21 ){(ρ – λ1)[ϑg(1 + λ1) – λ1(1 – λ1ϑg)] – ρλ
2
1 (1 + λ1)(1 – λ1ϑg)}



Proof of Proposition 8. The aggregate outcome is

yt =
2
g=1

ψ1g


1 –

ϑg
ρ


1

1 – ϑgL
=

2
g=1

ψ1g


1 –

ϑg
ρ


1

(1 – ϑgL)(1 – ρL)
εt

=
2
g=1

ψ1g


1 –

ϑg
ρ


ρ

ρ – ϑg
1

1 – ρL
–

ϑg
ρ – ϑg

1
1 – ϑgL


εt =

2
g=1

ψ1g
ρ

∞

k=0
(ρk+1 – ϑk+1g )εt–k

TheGE component is given byGEt = [1–β(1–λχ)]Et yt+(δ–β)(1–λχ)β
∞
k=0 β

kEt yt+k+1
where

E
c
t yt =

2

j=1
ψ1j


1 –

ϑj
ρ


E
c
t


1

1 – ϑjL
vt



=
2

j=1
ψ1j


1 –

ϑj
ρ





τ
– 12
ε

(1–ϑjL)(1–ρL)
0


τ
– 12
ε

1–ρL–1

τ
– 12
1


 1 – ρL–1

1 – λ1L–1



+

λ1τ1
ρ

1
1 – λ1L

εt

=
2

j=1
ψ1j


1 –

ϑj
ρ


ρ

ρ – ϑj

∞

k=0
ρkεt–k –

ϑ2j (ρ – λ1)(1 – ρλ1)

ρ(ρ – ϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj εt–k

+
λ21 (1 – ρϑj)

ρ(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1εt–k



∞

k=0
βkE

c
t yt+k+1 = E

c
t
yt

L – β
=

2

j=1
ψ1j


1 –

ϑj
ρ


E
c
t


1

(L – β)(1 – ϑjL)
vt



=
2

j=1
ψ1j


1 –

ϑj
ρ





τ
– 12
ε

(L–β)(1–ϑjL)(1–ρL)
0


τ
– 12
ε

1–ρL–1

τ
– 12
1


 1 – ρL–1

1 – λ1L–1



+

λ1τ1
ρ

1
1 – λ1L

εt

=
2

j=1
ψ1j


1 –

ϑj
ρ


ρ2

(1 – ρβ)(ρ – ϑj)

∞

k=0
ρkεt–k

–
ϑ3j (ρ – λ1)(1 – ρλ1)

ρ(ρ – ϑj)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj εt–k
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+
λ1


ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)



ρ(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1εt–k



Hence, I have

GEt = [1 – β(1 – λχ)]Et yt + (δ – β)(1 – λχ)β
∞

k=0
βkEt yt+k+1

= [1 – β(1 – λχ)]
2

j=1
ψ1j





∞

k=0
ρk –

ϑ2j (ρ – λ1)(1 – ρλ1)

ρ2(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj +

λ21 (ρ – ϑj)(1 – ρϑj)
ρ2(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1



 εt–k

+ (δ – β)(1 – λχ)β
2

j=1
ψ1j





ρ

1 – ρβ

∞

k=0
ρk –

ϑ3j (ρ – λ1)(1 – ρλ1)

ρ2(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj

+
λ1(ρ – ϑj)


ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)



ρ2(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1



 εt–k

=


δ1

∞

k=0
ρk + δ2

∞

k=0
λk1 +

2

j=1
δ3j

∞

k=0
ϑkj


 εt–k

Therefore, the PE share µτ is given by

µτ = 1 –
∂GEτ/∂εt
∂TEτ/∂εt

= 1 –
δ1ρ

τ + δ2λτ1 +
2
j=1 δ3jϑ

τ
j

2
g=1

ψ1g
ρ (ρτ+1 – ϑτ+1g )

=
ρ
2

g=1ψ1g – δ1

ρτ – ρδ2λτ1 –

2
g=1(ψ1gϑg + δ3j)ϑτg

ρ
2
g=1ψ1gρ

τ –
2
g=1ψ1gϑgϑ

τ
g

Proof of Proposition 9. (i) Recall that equilibrium dynamics satisfy (28). I need to find
the conditions under which the equilibrium process is stationary. This sums up to
having all the eigenvalues in the matrix δ–1 outside the unit circle. This restriction is
satisfied if

det δ–1 > 1(A23)

det δ–1 – tr δ–1 > –1(A24)

det δ–1 + tr δ–1 > –1(A25)

Introducing the respective values in (A23)-(A25), I obtain (22)-(24).
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(ii) Recall the equilibrium dynamics described by Proposition 6. I need to find the
conditions under which the equilibrium process is stationary. This sums up to having
all the eigenvalues in matrix A inside the unit circle. This restriction is satisfied if

detA < 1(A26)

detA – trA > –1(A27)

detA + trA > –1(A28)

Notice that trA = ϑ1 + ϑ2, where ϑ1 and ϑ2 are the two roots of the characteristic polyno-
mial of A, and det A = ϑ1ϑ2. Therefore, the above conditions can be translated to

ϑ1ϑ2 < 1

(ϑ1 – 1)(ϑ2 – 1) > 0

(ϑ1 + 1)(ϑ2 + 1) > 0

Notice that such a system can only be satisfied if both roots are inside the unit circle.
Introducing the respective values in (A26)-(A28), I obtain (25)-(27).

Proof of Proposition 10. I first prove (i). Guess an ad-hoc system of dynamics, such that

xt =ωbxt–1 + δω f Etxt+1 +φvt(A29)

for some arbitrary 2× 2 matrices (ωb,ω f ). To show that the ad-hoc model presented
above captures our HANK beyond FIRE under certain (ω f ,ωb), I rely on the Method
for Undetermined Coefficients. Both dynamics are observationally equivalent if

Axt–1 + Bvt = φvt + δω f Etxt+1 +ωbxt–1 = φvt + δω f Et(Axt + Bvt+1) +ωbxt–1

= φvt + δω f (Axt + BEtvt+1) +ωbxt–1 = φvt + δω f (Axt + Bρvt) +ωbxt–1

= φvt + δω f [A(Axt–1 + Bvt) + Bρvt] +ωbxt–1

=
[
δω f AA +ωb

]
xt–1 +

[
φ + δω f (A + ρ)B

]
vt

They are thus equivalent when (30) is satisfied. Now that I have the system dynamics
(A29), I just need to multiply the system by Ã to back out the DIS curve, which I can
write as (31).
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+
λ1


ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)



ρ(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1εt–k



Hence, I have

GEt = [1 – β(1 – λχ)]Et yt + (δ – β)(1 – λχ)β
∞

k=0
βkEt yt+k+1

= [1 – β(1 – λχ)]
2

j=1
ψ1j





∞

k=0
ρk –

ϑ2j (ρ – λ1)(1 – ρλ1)

ρ2(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj +

λ21 (ρ – ϑj)(1 – ρϑj)
ρ2(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1



 εt–k

+ (δ – β)(1 – λχ)β
2

j=1
ψ1j





ρ

1 – ρβ

∞

k=0
ρk –

ϑ3j (ρ – λ1)(1 – ρλ1)

ρ2(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
ϑkj

+
λ1(ρ – ϑj)


ρλ1(1 – βϑj) + λ1ϑj(1 – ρλ1) – ρϑj(1 – ρβλ1ϑj)



ρ2(1 – ρβ)(1 – βϑj)(ϑj – λ1)(1 – ϑjλ1)

∞

k=0
λk1



 εt–k

=


δ1

∞

k=0
ρk + δ2

∞

k=0
λk1 +

2

j=1
δ3j

∞

k=0
ϑkj


 εt–k

Therefore, the PE share µτ is given by

µτ = 1 –
∂GEτ/∂εt
∂TEτ/∂εt

= 1 –
δ1ρ

τ + δ2λτ1 +
2
j=1 δ3jϑ

τ
j

2
g=1

ψ1g
ρ (ρτ+1 – ϑτ+1g )

=
ρ
2

g=1ψ1g – δ1

ρτ – ρδ2λτ1 –

2
g=1(ψ1gϑg + δ3j)ϑτg

ρ
2
g=1ψ1gρ

τ –
2
g=1ψ1gϑgϑ

τ
g

Proof of Proposition 9. (i) Recall that equilibrium dynamics satisfy (28). I need to find
the conditions under which the equilibrium process is stationary. This sums up to
having all the eigenvalues in the matrix δ–1 outside the unit circle. This restriction is
satisfied if

det δ–1 > 1(A23)

det δ–1 – tr δ–1 > –1(A24)

det δ–1 + tr δ–1 > –1(A25)

Introducing the respective values in (A23)-(A25), I obtain (22)-(24).
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(ii) Recall the equilibrium dynamics described by Proposition 6. I need to find the
conditions under which the equilibrium process is stationary. This sums up to having
all the eigenvalues in matrix A inside the unit circle. This restriction is satisfied if

detA < 1(A26)

detA – trA > –1(A27)

detA + trA > –1(A28)

Notice that trA = ϑ1 + ϑ2, where ϑ1 and ϑ2 are the two roots of the characteristic polyno-
mial of A, and det A = ϑ1ϑ2. Therefore, the above conditions can be translated to

ϑ1ϑ2 < 1

(ϑ1 – 1)(ϑ2 – 1) > 0

(ϑ1 + 1)(ϑ2 + 1) > 0

Notice that such a system can only be satisfied if both roots are inside the unit circle.
Introducing the respective values in (A26)-(A28), I obtain (25)-(27).

Proof of Proposition 10. I first prove (i). Guess an ad-hoc system of dynamics, such that

xt =ωbxt–1 + δω f Etxt+1 +φvt(A29)

for some arbitrary 2× 2 matrices (ωb,ω f ). To show that the ad-hoc model presented
above captures our HANK beyond FIRE under certain (ω f ,ωb), I rely on the Method
for Undetermined Coefficients. Both dynamics are observationally equivalent if

Axt–1 + Bvt = φvt + δω f Etxt+1 +ωbxt–1 = φvt + δω f Et(Axt + Bvt+1) +ωbxt–1

= φvt + δω f (Axt + BEtvt+1) +ωbxt–1 = φvt + δω f (Axt + Bρvt) +ωbxt–1

= φvt + δω f [A(Axt–1 + Bvt) + Bρvt] +ωbxt–1

=
[
δω f AA +ωb

]
xt–1 +

[
φ + δω f (A + ρ)B

]
vt

They are thus equivalent when (30) is satisfied. Now that I have the system dynamics
(A29), I just need to multiply the system by Ã to back out the DIS curve, which I can
write as (31).
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I now move to (ii). Using the lag operator, I can factorize (32)

Et


1
ν
+ω f π


rt –ωbππt–1


= Et


ω f yL

–2 – L–1 +ωb y


yt–1



= Et

ω f y


L–1 – γ–11


L–1 – γ–12


yt–1



where γ–11 and γ–12 are the roots of the polynomial P(x) ≡ ω f yx
2 – x +ωb y. Dividing

both sides by (L–1 – γ–12 )

ω f yEt[(L
–1 – γ–11 ) yt–1] = Et


1
ν
+ω f π


1

L–1 – γ–12
rt –ωbπ

1
L–1 – γ–12

πt–1



= Et


–

1
ν
+ω f π


γ2

1 – γ2L–1
rt +ωbπ

γ2
1 – γ2L–1

πt–1



Hence, I can write the dynamics as

yt = γ–11 yt–1 +
γ2ωbπ
ω f y

(πt–1 + γ2πt) –
γ2
ω f y


1
ν
+ω f π +ωbπγ

2
2

 ∞

k=0
γk2Etrt+k

= γ–11 yt–1 +
ωbπ

γ1ωb y


πt–1 +

ω f y
γ1ωb y

πt


–

1
γ1ωb y


 1
ν
+ω f π +ωbπ

ω2
f y

γ21ω
2
b y




∞

k=0


ω f y
γ1ωb y

k
Etrt+k

where I have applied the Vieta properties. Therefore, the effect of a forward guidance
shock promised at time t in period τ is

FGt,t+τ =
∂ yt

∂Etrt+τ
= –

1
γ1ωb y


 1
ν
+ω f π +ωbπ

ω2
f y

γ21ω
2
b y





ω f y
γ1ωb y

τ

which is decreasing in τ provided that γ1 ∈ (0, 1) is the only inside root, limτ→∞ FGt+τ =
0, and the forward guidance puzzle is solved.

Proof of Proposition 11. The proof is identical to the proof of Proposition 6, modulo the
replacement of σg for σϵ. In the public information case, the individual action is given
by al gt = hg(L)zt = hg(L)(vt + ϵt). The policy function of an agent in group g is given

by hg(z) =
ψg1+ψg2z

(1–θ1z)(1–θ2z)
, and hence I have agt = hg(L)(vt + ϵt) =

ψg1+ψg2z
(1–θ1z)(1–θ2z)

(vt + ϵt) =
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where I have applied the Vieta properties. Therefore, the effect of a forward guidance
shock promised at time t in period τ is

FGt,t+τ =
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which is decreasing in τ provided that γ1 ∈ (0, 1) is the only inside root, limτ→∞ FGt+τ =
0, and the forward guidance puzzle is solved.

Proof of Proposition 11. The proof is identical to the proof of Proposition 6, modulo the
replacement of σg for σϵ. In the public information case, the individual action is given
by al gt = hg(L)zt = hg(L)(vt + ϵt). The policy function of an agent in group g is given

by hg(z) =
ψg1+ψg2z

(1–θ1z)(1–θ2z)
, and hence I have agt = hg(L)(vt + ϵt) =
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ψg1

1 – θ1

ρ


1

1–θ1L(vt + ϵt) +ψg2

1 – θ2

ρ


1

1–θ2L(vt + ϵt) = ψg1θ1t +ψg2θ2t. I can write

at =


a1t
a2t


= Qθt =


ψ11 ψ12

ψ21 ψ22

θ1t
θ2t


=


ψ11θ1t +ψ12θ2t
ψ21θ1t +ψ22θ2t



Notice that I canwrite θgt(1–θgL) =

1 – θg

ρ


(vt+ϵt) =⇒ θgt = θgθg,t–1+


1 – θg

ρ


(vt+ϵt),

which I can write as a system as θt = Λθt–1 + Γ (vt +ϵt), whereΛ =


θ1 0
0 θ2


, Γ =


1 – θ1

ρ

1 – θ2
ρ


.

Hence, I can write at = Qθt = Q[Λθt–1 + Γ (vt + ϵt)] = QΛθt–1 + QΓ (vt + ϵt) = QΛQ–1at–1 +
QΓ (vt + ϵt) = Aat–1 + Bvt + Bϵt.

Proof of Proposition 12. This proof mimics the proof of Proposition 6 and extends it
to allow for a public signal. In this case the fundamental representation of the signal
process as a system containing (17), (18) and (33), which admits the state-space repre-
sentation Zt = FZt–1 +Φsl gt and Xgt = HZt +Ψgsl gt, with F = ρ,Φ =


0 0 σε


, Zt = vt,

sl gt =

ϵt ul gt εvt

⊺
, H =


1 0
0 1


, and Ψg =


σϵ 0 0
0 σg 0


and Xgt =


zt xl gt

⊺
. It is

convenient to rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2ε
,

τg ≡ 1
σ2g
, and τϵ = 1

σ2ϵ
. The signal system can be written as

Xgt =


τ

– 12
ϵ 0 τ

– 12
ε

1–ρL

0 τ
– 12
g

τ
– 12
ε

1–ρL




εt
ul gt


= Mg(L)sl gt, sl gt ∼ N(0, I)

Denote λg as the inside root of det[Mg(L)M′
g(L)], which is given by

λg = 1
2


1
ρ + ρ +

τg+τϵ
ρτε

–


1
ρ + ρ +

τg+τϵ
ρτε

2
– 4


. I can also write V–1g =

τgτϵ
ρτε(τg+τϵ)



ρτg+λgτϵ

τg
λg – ρ

λg – ρ
λgτg+ρτϵ

τϵ


 and Bg(L)–1 = 1

1–λgL


1 –

λgτg+ρτϵ
τg+τϵ L τg(λg–ρ)

τg+τϵ L
τϵ(λg–ρ)
τg+τϵ L 1 – ρτg+λgτϵ

τg+τϵ L


.

Let us nowmove to the forecasting part. Denote agent i in group g policy function
al gt = hg1(L)zt + hg2(L)xl gt. The aggregate outcome in group g can then be expressed as
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I now move to (ii). Using the lag operator, I can factorize (32)
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where I have applied the Vieta properties. Therefore, the effect of a forward guidance
shock promised at time t in period τ is
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b y
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which is decreasing in τ provided that γ1 ∈ (0, 1) is the only inside root, limτ→∞ FGt+τ =
0, and the forward guidance puzzle is solved.

Proof of Proposition 11. The proof is identical to the proof of Proposition 6, modulo the
replacement of σg for σϵ. In the public information case, the individual action is given
by al gt = hg(L)zt = hg(L)(vt + ϵt). The policy function of an agent in group g is given

by hg(z) =
ψg1+ψg2z

(1–θ1z)(1–θ2z)
, and hence I have agt = hg(L)(vt + ϵt) =
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(1–θ1z)(1–θ2z)

(vt + ϵt) =
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Let us nowmove to the forecasting part. Denote agent i in group g policy function
al gt = hg1(L)zt + hg2(L)xl gt. The aggregate outcome in group g can then be expressed as
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follows

agt =
∫
al gt di =

∫
hg1(L)zt + hg2(L)xl gt di

=
∫
hg1(L)

(
σε

1 – ρL
εt + σϵϵt

)
+ hg2(L)

(
σε

1 – ρL
εt + σgul gt

)
di

= [hg1(L) + hg2(L)]
σε

1 – ρL
εt + hg1(L)σϵϵt

Hence, the forecasts are

El gtvt =
λg

ρτε(1 – λgρ)
1

1 – λgL

[
τϵ τg

] [ zt
xl gt

]

El gtakt+1 =
[hk1(L)
Lτε + hk2(L)

λgτϵ
(L–λg)(1–λgL)ρτ2ε

hk2(L)
λgτg

(L–λg)(1–λgL)ρτ2ε

] [ zt
xl gt

]
–

–
λg(1 – ρL)hk2(λg)

(L – λg)(1 – λgL)ρ(1 – ρλg)τ2ε

[
τϵ τg

] [ zt
xl gt

]
–

–
λghk1(0)

(1 – λgL)(1 – ρλg)τ2ε

[ (1–λgL)τg+(1–ρL)τϵ
L(ρ–λg)

–τg
] [ zt
xl gt

]

El gtakt =
[hk1(L)

τε
+ hk2(L)

Lλgτϵ
(L–λg)(1–λgL)ρτ2ε

hk2(L)
Lλgτg

(L–λg)(1–λgL)ρτ2ε

] [ zt
xl gt

]
–

–
λ2g(1 – ρL)hk2(λg)

(L – λg)(1 – λgL)ρ(1 – ρλg)τ2ε

[
τϵ τg

] [ zt
xl gt

]

El gt
(
aigt+1 – agt+1

)
=

λghg2(L)
(L – λg)(1 – λgL)ρτ2ε

[
–τϵ

(L–ρ)(1–ρL)λgτg+(L–λg)(1–λgL)ρτϵ
L(ρ–λg)(1–ρλg)

] [ zt
xl gt

]
–

–
λg(1 – ρL)hg2(λg)

(L – λg)(1 – λgL)ρ(1 – ρλg)τ2ε

[
–τϵ τg

] [ zt
xl gt

]
–

–
λghg2(0)

(1 – λgL)(1 – ρλg)τ2ε

[
–τϵ

(1–ρL)τg+(1–λgL)τϵ
L(ρ–λg)

] [ zt
xl gt

]

Introducing the expectations just calculated into the best response (A10), and rear-
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ranging terms,


hg1(L)


1 –

βg
Lτε


–

2

k=1

hk1(L)
τε


γgk +

αgk
L


–

2

k=1

hk2(L)λgτϵ
(L – λg)(1 – λgL)ρτ2ε


γgkL + αgk


,

hg2(L)

1 –

βg
Lτε


–

2

k=1

hk2(L)λgτg
(L – λg)(1 – λgL)ρτ2ε


γgkL + αgk


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xl gt


=

=


φgλgτϵ

ρτε(1 – ρλg)(1 – λgL)
– hg1(0)

βgλg[(1 – λgL)τg + (1 – ρL)τϵ]
(1 – λgL)(1 – ρλg)τ2εL(ρ – λg)

+ hg2(0)
βgλgτϵ

(1 – λgL)(1 – ρλg)τ2ε
–

–
2

k=1
hk1(0)

αgkλg[(1 – λgL)τg + (1 – ρL)τϵ]
(1 – λgL)(1 – ρλg)τ2εL(ρ – λg)

–
2

k=1
hk2(λg)

λg(1 – ρL)τϵ
(L – λg)(1 – λgL)ρ(1 – ρλg)τ2ε

(αgk + λgγgk),

φgλgτg
ρτε(1 – ρλg)(1 – λgL)

+ hg1(0)
βgλgτg

(1 – λgL)(1 – ρλg)τ2ε
– hg2(0)

βgλg[(1 – ρL)τg + (1 – λgL)τϵ]
(1 – λgL)(1 – ρλg)τ2εL(ρ – λg)

+

+
2

k=1
hk1(0)

αgkλgτg

(1 – λgL)(1 – ρλg)τ2ε
–

2

k=1
hk2(λg)

λg(1 – ρL)τg
(L – λg)(1 – λgL)ρ(1 – ρλg)τ2ε

(αgk + λgγgk)


zt
xl gt



I can write the above system of equations in terms of h(L) in matrix form

C(L)h(L) = d[L; h(λ), h(0)](A30)

where

C(L) =




C11(L) C12(L) C13(L) C14(L)
C21(L) C22(L) C23(L) C24(L)
C31(L) C32(L) C33(L) C34(L)
C41(L) C42(L) C43(L) C44(L)



, h(L) =




h11(L)
h12(L)
h21(L)
h22(L)



, d[L; h(λ), h(0)] =




d1(L)
d2(L)
d3(L)
d4(L)




where C11(L) = 1 –
β1+α11
Lτε – γ11

τε
, C12(L) = –

λ1τϵ(α11+γ11L)
(L–λ1)(1–λ1L)ρτ2ε

, C13(L) = –
γ12
τε

– α12
Lτε , C14(L) =

– λ1τϵ(α12+γ12L)
(L–λ1)(1–λ1L)ρτ2ε

, C21(L) = 0, C22(L) = 1 – β1
Lτε –

λ1τ1(α11+γ11L)
(L–λ1)(1–λ1L)ρτ2ε

, C23(L) = 0, C24(L) =

– λ1τ1(α12+γ12L)
(L–λ1)(1–λ1L)ρτ2ε

, C31(L) = –
γ21
τε

– α21
Lτε , C32(L) = –

λ2τϵ(α21+γ21L)
(L–λ2)(1–λ2L)ρτ2ε

, C33(L) = 1 –
β2+α22
Lτε – γ22

τε
,

C34(L) = – λ2τϵ(α22+γ22L)
(L–λ2)(1–λ2L)ρτ2ε

, C41(L) = 0, C42(L) = – λ2τ2(α21+γ21L)
(L–λ2)(1–λ2L)ρτ2ε

, C43(L) = 0, C44(L) =

1 – β2
Lτε –

λ2τ2(α22+γ22L)
(L–λ2)(1–λ2L)ρτ2ε

, and

d1(L) =
φ1λ1τϵ

ρτε(1 – ρλ1)(1 – λ1L)
– h11(0)

(β1 + α11)λ1[(1 – λ1L)τ1 + (1 – ρL)τϵ]
(1 – λ1L)(1 – ρλ1)τ2εL(ρ – λ1)

+

67



BANCO DE ESPAÑA 67 DOCUMENTO DE TRABAJO N.º 2418

Cramer’s rule, h11(L) is given by

h11(L) =

det




d1(L) C12(L) C13(L) C14(L)
d2(L) C22(L) C23(L) C24(L)
d3(L) C32(L) C33(L) C34(L)
d4(L) C42(L) C43(L) C44(L)




det C(L)

and similarly with the rest of policy functions. The degree of the numerator is 7, as the
highest degree of Dg(L) is 1 degree less than that of C(L). By choosing the appropriate
constants


h11(0), h12(0), h21(0), h22(0), h(λ1), h(λ2)


, the 6 inside roots will be removed.

Therefore, the 6 constants are solutions to the following system of linear equations

det




d1(ζi) C12(ζi) C13(ζi) C14(ζi)
d2(ζi) C22(ζi) C23(ζi) C24(ζi)
d3(ζi) C32(ζi) C33(ζi) C34(ζi)
d4(ζi) C42(ζi) C43(ζi) C44(ζi)



= 0

for i = 1, 2, ..., 6. After removing the inside roots in the denominator, the degree of the
numerator is 1 and the degree of the denominator is 2. The policy functions will be

hg1(L) =
ψg1,1 + ψg2,1L

(1 – ϑ1L)(1 – ϑ2L)
, hg2(L) =

ψg1,2 + ψg2,2L
(1 – ϑ1L)(1 – ϑ2L)

and hence I have

agt = [hg1(L) + hg2(L)]vt + hg1(L)ϵt =
(ψg1,1 + ψg1,2) + (ψg2,1 + ψg2,2)L

(1 – ϑ1L)(1 – ϑ2L)
vt +

ψg1,2 + ψg2,2L
(1 – ϑ1L)(1 – ϑ2L)

ϵt

=


j=1
ψgj


1 –

ϑj
ρ


1

1 – ϑjL
vt +

2

j=1
ϕgj


1 –

ϑj
ρ


1

1 – ϑjL
ϵt = ψg1ϑv1t +ψg2ϑv2t + ϕg1ϑϵ1t + ϕg2ϑϵ2t

I can write at =


a1t
a2t


= Qvϑvt + Quϑϵt =


ψ11 ψ12

ψ21 ψ22

ϑv1t
ϑv2t


+


ϕ11 ϕ12

ϕ21 ϕ22

ϑϵ1t
ϑϵ2t


. Notice

that I can write ϑxt = Λϑxt–1 + Γxt = (I – ΛL)–1Γxt for x ∈ {v, ϵ}, where Λ =


ϑ1 0
0 ϑ2


,
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+ h12(0)
β1λ1τϵ

(1 – λ1L)(1 – ρλ1)τ2ε
– h21(0)

α12λ1[(1 – λ1L)τ1 + (1 – ρL)τϵ]
(1 – λ1L)(1 – ρλ1)τ2εL(ρ – λ1)

–

– [h12(λ1)(α11 + λ1γ11) + h22(λ1)(α12 + λ1γ12)]
λ1(1 – ρL)τϵ

(L – λ1)(1 – λ1L)ρτ2ε(1 – ρλ1)

d2(L) =
φ1λ1τ1

ρτε(1 – ρλ1)(1 – λ1L)
+ h11(0)

(β1 + α11)λ1τ1
(1 – λ1L)(1 – ρλ1)τ2ε

–

– h12(0)
β1λ1[(1 – ρL)τ1 + (1 – λ1L)τϵ]
(1 – λ1L)(1 – ρλ1)τ2εL(ρ – λ1)

+ h21(0)
α12λ1τ1

(1 – λ1L)(1 – ρλ1)τ2ε
–

– [h12(λ1)(α11 + λ1γ11) + h22(λ1)(α12 + λ1γ12)]
λ1(1 – ρL)τ1

(L – λ1)(1 – λ1L)ρτ2ε(1 – ρλ1)

d3(L) =
φ2λ2τϵ

ρτε(1 – ρλ2)(1 – λ2L)
– h11(0)

α21λ2[(1 – λ2L)τ2 + (1 – ρL)τϵ]
(1 – λ2L)(1 – ρλ2)τ2εL(ρ – λ2)

–

– h21(0)
(β2 + α22)λ2[(1 – λ2L)τ2 + (1 – ρL)τϵ]

(1 – λ2L)(1 – ρλ2)τ2εL(ρ – λ2)
+ h22(0)

β2λ2τϵ
(1 – λ2L)(1 – ρλ2)τ2ε

–

– [h12(λ2)(α21 + λ2γ21) + h22(λ2)(α22 + λ12γ22)]
λ2(1 – ρL)τϵ

(L – λ2)(1 – λ2L)ρτ2ε(1 – ρλ2)

d4(L) =
φ2λ2τ2

ρτε(1 – ρλ2)(1 – λ2L)
+ h11(0)

α21λ2τ2
(1 – λ2L)(1 – ρλ2)τ2ε

+ h21(0)
(β2 + α22)λ2τ2

(1 – λ2L)(1 – ρλ2)τ2ε
–

– h22(0)
β2λ2[(1 – ρL)τ2 + (1 – λ2L)τϵ]
(1 – λ2L)(1 – ρλ2)τ2εL(ρ – λ2)

–

– [h12(λ2)(α21 + λ2γ21) + h22(λ2)(α22 + λ12γ22)]
λ2(1 – ρL)τ2

(L – λ2)(1 – λ2L)ρτ2ε(1 – ρλ2)

From (A30), the solution to thepolicy function is givenbyh(L) = C(L)–1d(L) = adj C(L)
det C(L)d(L).

Hence, I need to obtain det C(L). Note that the degree of det C(L) is a polynomial of
degree 8 on L. Denote the inside roots of det C(L) as {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, and the outside
roots as

{
ϑ–11 , ϑ

–1
2
}
. Because agents cannot use future signals, the inside roots have to

be removed. Note that the number of free constants in d(L) is 6:
{
h11(0), h12(0), h21(0), h22(0), h12(λ1)(α11 + λ1γ11) + h22(λ1)(α12 + λ1γ12)︸ ︷︷ ︸

h(λ1)

,

h12(λ2)(α21 + λ2γ21) + h22(λ2)(α22 + λ2γ22)︸ ︷︷ ︸
h(λ2)

}

For a unique solution, it has to be the case that the number of outside roots is 2. By
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Cramer’s rule, h11(L) is given by

h11(L) =

det




d1(L) C12(L) C13(L) C14(L)
d2(L) C22(L) C23(L) C24(L)
d3(L) C32(L) C33(L) C34(L)
d4(L) C42(L) C43(L) C44(L)




det C(L)

and similarly with the rest of policy functions. The degree of the numerator is 7, as the
highest degree of Dg(L) is 1 degree less than that of C(L). By choosing the appropriate
constants


h11(0), h12(0), h21(0), h22(0), h(λ1), h(λ2)


, the 6 inside roots will be removed.

Therefore, the 6 constants are solutions to the following system of linear equations

det




d1(ζi) C12(ζi) C13(ζi) C14(ζi)
d2(ζi) C22(ζi) C23(ζi) C24(ζi)
d3(ζi) C32(ζi) C33(ζi) C34(ζi)
d4(ζi) C42(ζi) C43(ζi) C44(ζi)



= 0

for i = 1, 2, ..., 6. After removing the inside roots in the denominator, the degree of the
numerator is 1 and the degree of the denominator is 2. The policy functions will be

hg1(L) =
ψg1,1 + ψg2,1L

(1 – ϑ1L)(1 – ϑ2L)
, hg2(L) =

ψg1,2 + ψg2,2L
(1 – ϑ1L)(1 – ϑ2L)

and hence I have

agt = [hg1(L) + hg2(L)]vt + hg1(L)ϵt =
(ψg1,1 + ψg1,2) + (ψg2,1 + ψg2,2)L

(1 – ϑ1L)(1 – ϑ2L)
vt +

ψg1,2 + ψg2,2L
(1 – ϑ1L)(1 – ϑ2L)

ϵt

=


j=1
ψgj


1 –

ϑj
ρ


1

1 – ϑjL
vt +

2

j=1
ϕgj


1 –

ϑj
ρ


1

1 – ϑjL
ϵt = ψg1ϑv1t +ψg2ϑv2t + ϕg1ϑϵ1t + ϕg2ϑϵ2t

I can write at =


a1t
a2t


= Qvϑvt + Quϑϵt =


ψ11 ψ12

ψ21 ψ22

ϑv1t
ϑv2t


+


ϕ11 ϕ12

ϕ21 ϕ22

ϑϵ1t
ϑϵ2t


. Notice

that I can write ϑxt = Λϑxt–1 + Γxt = (I – ΛL)–1Γxt for x ∈ {v, ϵ}, where Λ =


ϑ1 0
0 ϑ2


,
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Γ =

[
1 – ϑ1

ρ

1 – ϑ2
ρ

]
. Hence, I canwrite at = Qv(I–ΛL)–1Γvt +Qu(I–ΛL)–1Γϵt = Qv

∑∞
k=0Λ

kΓvt–k+

Qu
∑∞
k=0Λ

kΓut–k.

Appendix B. Model Derivation

Households. An unconstrained agent i ∈ S chooses consumption, asset holdings,
and leisure solving the standard intertemporal problem: maxEi0

∑∞
t=0 β

tU
(
CSit,N

S
it

)
,

subject to the sequence of constraints:

Bit +Ωi,t+1Vt ≤ Zit +Ωit (Vt + PtDt) +WtNSit – PtC
S
it(A31)

where CSit,N
S
it are consumption and hours worked, Bit is the nominal value at end of

period t of a portfolio of all state-contingent assets held, except for shares in firms.
Likewise for Zit, beginning of period wealth. Vt is average market value at time t of
shares,Dt their real dividend payoff andΩit are share holdings. The absence of arbitrage
implies that there exists a stochastic discount factor Qi,t,t+1 such that the price at t of
a portfolio with an uncertain payoff at t + 1 is (for state-contingent assets and shares
respectively, for an agent i who participates in those markets):

(A32) Bit = Eit

[
Qi,t,t+1Zi,t+1

Pt
Pt+1

]
and 1 = Eit

[
Qi,t,t+1

(
Pt
Pt+1

Vt+1
Vt

+
Pt
Vt
Dt+1

)]

which iterated forward gives the fundamental pricing equation: 1 =
Eit

[
Pt
Vt

∑∞
k=1 Qi,t,t+kDt+k

]
. The riskless gross short-term real interest rate Rt is a

solution to 1 = Eit
(
RtQi,t,t+1

)
. Note that for nominal assets, the nominal inter-

est rate satisfies 1 = Eit
(
Pt
Pt+1 ItQi,t,t+1

)
. Substituting the no-arbitrage conditions

(A32) into the wealth dynamics equation (A31) gives the flow budget constraint.
Together with the usual no-borrowing limit for each state, and anticipating that
in equilibrium all agents will hold a constant fraction of the shares (there is no
trade in shares) Ωi, whose integral across agents is 1, this implies the usual in-
tertemporal budget constraint Eit

[
Pt
Pt+1Qi,t,t+1Xi,t+1

]
≤ Eit

[
Xit +WtNSit – PtC

S
it

]
, where
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Γ =

[
1 – ϑ1

ρ

1 – ϑ2
ρ

]
. Hence, I canwrite at = Qv(I–ΛL)–1Γvt +Qu(I–ΛL)–1Γϵt = Qv

∑∞
k=0Λ

kΓvt–k+

Qu
∑∞
k=0Λ

kΓut–k.

Appendix B. Model Derivation

Households. An unconstrained agent i ∈ S chooses consumption, asset holdings,
and leisure solving the standard intertemporal problem: maxEi0

∑∞
t=0 β

tU
(
CSit,N

S
it

)
,

subject to the sequence of constraints:

Bit +Ωi,t+1Vt ≤ Zit +Ωit (Vt + PtDt) +WtNSit – PtC
S
it(A31)

where CSit,N
S
it are consumption and hours worked, Bit is the nominal value at end of

period t of a portfolio of all state-contingent assets held, except for shares in firms.
Likewise for Zit, beginning of period wealth. Vt is average market value at time t of
shares,Dt their real dividend payoff andΩit are share holdings. The absence of arbitrage
implies that there exists a stochastic discount factor Qi,t,t+1 such that the price at t of
a portfolio with an uncertain payoff at t + 1 is (for state-contingent assets and shares
respectively, for an agent i who participates in those markets):

(A32) Bit = Eit

[
Qi,t,t+1Zi,t+1

Pt
Pt+1

]
and 1 = Eit

[
Qi,t,t+1

(
Pt
Pt+1

Vt+1
Vt

+
Pt
Vt
Dt+1

)]

which iterated forward gives the fundamental pricing equation: 1 =
Eit

[
Pt
Vt

∑∞
k=1 Qi,t,t+kDt+k

]
. The riskless gross short-term real interest rate Rt is a

solution to 1 = Eit
(
RtQi,t,t+1

)
. Note that for nominal assets, the nominal inter-

est rate satisfies 1 = Eit
(
Pt
Pt+1 ItQi,t,t+1

)
. Substituting the no-arbitrage conditions

(A32) into the wealth dynamics equation (A31) gives the flow budget constraint.
Together with the usual no-borrowing limit for each state, and anticipating that
in equilibrium all agents will hold a constant fraction of the shares (there is no
trade in shares) Ωi, whose integral across agents is 1, this implies the usual in-
tertemporal budget constraint Eit

[
Pt
Pt+1Qi,t,t+1Xi,t+1

]
≤ Eit

[
Xit +WtNSit – PtC

S
it

]
, where
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EitXit = Eit

Zit +Ωi (Vt + PtDt)


= Eit


Zit +Ωi

∞
k=0 PtQi,t,t+kDt+k


and

Eit

∞

k=0
Qi,t,t+kC

S
i,t+k ≤ Eit


Xit
Pt

+
∞

k=0
Qi,t,t+k

Wt+k
Pt+k

NSi,t+k


 = Eit

∞

k=0
Qi,t,t+kY

S
i,t+k(A33)

with YSi,t+k = ΩiDt+k +
Wt+k
Pt+k

NSi,t+k is the income of agent i. Maximizing utility subject to
this constraint gives the first-order necessary and sufficient conditions at each date

and in each state, β
UC


Ci,t+1



UC(Ct)
= Qi,t,t+1, along with (A33) holding with equality (or flow

budget constraint holding with equality and transversality conditions ruling out Ponzi
games be satisfied: limk→∞ Eit


Qi,t,t+kZi,t+k


= limk→∞ Eit


Qi,t,t+kVt+k


= 0


. Using

(A33) and the functional form of the utility function the short-term nominal interest

ratemust obey 1 = βEit


Rt

UC

CSi,t+1



UC

CSit



. Denote by small letter log deviations from steady-

state, except for rates of return (where they denote absolute deviations). Notice that

Qt,t+k = βk
UC


CSi,t+k



UC

CSit

 and in steady state: Qk = βk. Thus I have qi,t,t+k = ln
QSi,t,t+k
QSik

=

ln
UC


CSi,t+k



UC

CSit

 = –σ

cSi,t+k – c

S
it


where qi,t,t+k = qi,t,t+1 + qi,t+1,t+2 + . . . + qi,t+k–1,t+k. Using

the stochastic discount factor notation, I can write the unconstrained Euler condition
as 1

σq
S
t,t+1 = c

S
it – sEitc

S
i,t+1 – (1 – s)Eitc

H
i,t+1. Iterating forward the above condition,

cSit = s
kEitc

S
t+k –

k–1

j=0


1
σ

Eitq
S
t,t+1 + (1 – s)Eitc

H
i,t+j


(A34)

Using the definition of the stochastic discount factor, I can write 1
σq

S
t,t+k = c

S
it – sEitc

S
i,t+1 –

(1 – s)EitcHi,t+1 + c
S
i,t+1 – sEitc

S
i,t+2 – (1 – s)Eitc

H
i,t+2 + · · · + c

S
i,t+k–1 – sEitc

S
i,t+k – (1 – s)Eitc

H
i,t+k,

and I can thus write 1
σEitq

S
t,t+k = c

S
it + (1 – s)Eit

k
j=1(c

S
i,t+k – c

H
i,t+k).

Log-linearizing the intertemporal budget constraint around a steady state with no
shocks nor information frictions, zero profits, and no inequality,CS = CH,

∞
k=0 β

kcSit+k =∞
k=0 β

k ySi,t+k. Adding σ–1Eitq
S
t,t+k on each side,

∞
k=0 β

kE

1
σq

S
t,t+k + c

S
it+k


=

∞
k=0 β

kEit

1
σq

S
t,t+k + y

S
it+k


. Using the iterated Euler condition (A34), the LHS is

reduced to 1
1–βc

S
it +

1–s
1–β

∞
k=1 β

kEit(cSi,t+k – c
H
i,t+k) =

1
σ

∞
k=0 β

kEitq
S
t,t+k +

∞
k=0 β
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with YSi,t+k = ΩiDt+k +
Wt+k
Pt+k

NSi,t+k is the income of agent i. Maximizing utility subject to
this constraint gives the first-order necessary and sufficient conditions at each date

and in each state, β
UC


Ci,t+1



UC(Ct)
= Qi,t,t+1, along with (A33) holding with equality (or flow

budget constraint holding with equality and transversality conditions ruling out Ponzi
games be satisfied: limk→∞ Eit
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(A33) and the functional form of the utility function the short-term nominal interest
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
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Using the definition of the stochastic discount factor, I can write 1
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with YSi,t+k = ΩiDt+k +
Wt+k
Pt+k

NSi,t+k is the income of agent i. Maximizing utility subject to
this constraint gives the first-order necessary and sufficient conditions at each date

and in each state, β
UC


Ci,t+1



UC(Ct)
= Qi,t,t+1, along with (A33) holding with equality (or flow

budget constraint holding with equality and transversality conditions ruling out Ponzi
games be satisfied: limk→∞ Eit
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. Using

(A33) and the functional form of the utility function the short-term nominal interest
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state, except for rates of return (where they denote absolute deviations). Notice that
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where qi,t,t+k = qi,t,t+1 + qi,t+1,t+2 + . . . + qi,t+k–1,t+k. Using

the stochastic discount factor notation, I can write the unconstrained Euler condition
as 1

σq
S
t,t+1 = c

S
it – sEitc

S
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H
i,t+1. Iterating forward the above condition,

cSit = s
kEitc

S
t+k –

k–1

j=0


1
σ

Eitq
S
t,t+1 + (1 – s)Eitc

H
i,t+j


(A34)

Using the definition of the stochastic discount factor, I can write 1
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k
j=1(c
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i,t+k).

Log-linearizing the intertemporal budget constraint around a steady state with no
shocks nor information frictions, zero profits, and no inequality,CS = CH,
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k=0 β
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k=0 β

k ySi,t+k. Adding σ–1Eitq
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t,t+k on each side,
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S
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
=

∞
k=0 β
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
1
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S
t,t+k + y

S
it+k


. Using the iterated Euler condition (A34), the LHS is
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1–βc

S
it +

1–s
1–β
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k=1 β

kEit(cSi,t+k – c
H
i,t+k) =

1
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S
t,t+k +
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S
it+k.

I can also write
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S
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kk–1
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1–β

∞
k=0 β

kEitrt+k Hence,

71



BANCO DE ESPAÑA 70 DOCUMENTO DE TRABAJO N.º 2418

I can write the consumption policy function as

(A35) cSit = –(1 – s)
∞∑

k=1
βkEit(c

S
i,t+k – c

H
i,t+k) –

β

σ

∞∑

k=0
βkEitrt+k + (1 – β)

∞∑

k=0
βkEit y

S
it+k

I assume that the government implements an optimal steady-state subsidy such that
there are zero profits and perfect consumption insurance in steady state, τS = (ϵ – 1)–1,
and that the government implements a redistribution scheme by taxing profits, τD.
Log-linearizing the budget constraints

cSit = wt + n
S
it +

1 – τD
1 – λ

et = ySit(A36)

cHit = wt + n
H
it +

τD
λ
et = yHit(A37)

Using the intratemporal labor supply conditions

Eitw
r
t = σcSit +φn

S
it(A38)

Eitw
r
t = σcHit +φn

H
it(A39)

Combining (A36)-(A39), I can write cSit = 1+φ
φ+σEitwt +

φ
φ+σ

1–τD
1–λ Eitet and cHit =

1+φ
φ+σEitwt +

φ
φ+σ

τD
λ Eitet. Hence, I can rewrite the consumption function (A35)

as cSit = –(1 – s)
∑∞
k=1 β

k
[

φ
φ+σ

(
1–τD
1–λ – τD

λ

)
Eitet+k

]
– β

σ

∑∞
k=0 β

kEitrt+k + (1 –

β)
∑∞
k=0 β

kEit
[
1+φ
φ+σEitwt+k +

φ
φ+σ

1–τD
1–λ Eitet+k

]
. Aggregating across i ∈ S agents, I

can write cSt = –(1 – s)
∑∞
k=1 β

k
[

φ
φ+σ

(
1–τD
1–λ – τD

λ

)
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]
– β

σ

∑∞
k=0 β

kEtrt+k + (1 –

β)
∑∞
k=0 β

kEit
[
1+φ
φ+σEtwt+k +

φ
φ+σ

1–τD
1–λ Etet+k

]
.

Denote aggregate consumption and aggregate labor supply for the unconstrained
household as CSt =

∫
CSit di, NSt =

∫
NSit di and aggregate consumption and aggregate

labor supply for the constrained household given by CHt =
∫
CHit di, NHt =

∫
NHit di.

Equilibrium in the goods market requires that consumption of unconstrained and
constrained households equals total consumption Ct = λCHt + (1–λ)CSt . Since I consider a
closed economy without investment and government spending, the resource constraint
is Yt = Ct. Equilibrium in the labor market requires Nt = λNHt + (1 – λ)NSt . With uniform
steady-state hours by normalization (NS = NH = N), and the fiscal policy inducing
CS = CH = C, the above log-linearized market clearing conditions yields

yt = ct = λcHt + (1 – λ)cSt(A40)
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with YSi,t+k = ΩiDt+k +
Wt+k
Pt+k

NSi,t+k is the income of agent i. Maximizing utility subject to
this constraint gives the first-order necessary and sufficient conditions at each date

and in each state, β
UC


Ci,t+1



UC(Ct)
= Qi,t,t+1, along with (A33) holding with equality (or flow

budget constraint holding with equality and transversality conditions ruling out Ponzi
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state, except for rates of return (where they denote absolute deviations). Notice that
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=
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where qi,t,t+k = qi,t,t+1 + qi,t+1,t+2 + . . . + qi,t+k–1,t+k. Using

the stochastic discount factor notation, I can write the unconstrained Euler condition
as 1
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Using the definition of the stochastic discount factor, I can write 1
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Log-linearizing the intertemporal budget constraint around a steady state with no
shocks nor information frictions, zero profits, and no inequality,CS = CH,
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with YSi,t+k = ΩiDt+k +
Wt+k
Pt+k

NSi,t+k is the income of agent i. Maximizing utility subject to
this constraint gives the first-order necessary and sufficient conditions at each date

and in each state, β
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
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

UC(Ct)
= Qi,t,t+1, along with (A33) holding with equality (or flow
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games be satisfied: limk→∞ Eit
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where qi,t,t+k = qi,t,t+1 + qi,t+1,t+2 + . . . + qi,t+k–1,t+k. Using
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Using the definition of the stochastic discount factor, I can write 1
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Log-linearizing the intertemporal budget constraint around a steady state with no
shocks nor information frictions, zero profits, and no inequality,CS = CH,
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I can write the consumption policy function as

(A35) cSit = –(1 – s)
∞∑

k=1
βkEit(c

S
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H
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σ
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S
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I assume that the government implements an optimal steady-state subsidy such that
there are zero profits and perfect consumption insurance in steady state, τS = (ϵ – 1)–1,
and that the government implements a redistribution scheme by taxing profits, τD.
Log-linearizing the budget constraints

cSit = wt + n
S
it +

1 – τD
1 – λ

et = ySit(A36)

cHit = wt + n
H
it +

τD
λ
et = yHit(A37)

Using the intratemporal labor supply conditions

Eitw
r
t = σcSit +φn

S
it(A38)

Eitw
r
t = σcHit +φn

H
it(A39)

Combining (A36)-(A39), I can write cSit = 1+φ
φ+σEitwt +

φ
φ+σ

1–τD
1–λ Eitet and cHit =
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φ
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τD
λ Eitet. Hence, I can rewrite the consumption function (A35)
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∑∞
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.

Denote aggregate consumption and aggregate labor supply for the unconstrained
household as CSt =

∫
CSit di, NSt =

∫
NSit di and aggregate consumption and aggregate

labor supply for the constrained household given by CHt =
∫
CHit di, NHt =

∫
NHit di.

Equilibrium in the goods market requires that consumption of unconstrained and
constrained households equals total consumption Ct = λCHt + (1–λ)CSt . Since I consider a
closed economy without investment and government spending, the resource constraint
is Yt = Ct. Equilibrium in the labor market requires Nt = λNHt + (1 – λ)NSt . With uniform
steady-state hours by normalization (NS = NH = N), and the fiscal policy inducing
CS = CH = C, the above log-linearized market clearing conditions yields

yt = ct = λcHt + (1 – λ)cSt(A40)
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nt = λnHt + (1 – λ)nSt(A41)

Finally, because the final good sector is competitive and observes all relevant prices
pjt, I have pt =

∫
pjt dj, yt =

∫
yjt dj =

∫
njt dj, yt = nt =

∫
nit di and yt = ct =∫

cit di. Combining the (expectation augmented) optimal labor supply condition of
unconstrainedhouseholds (A38) and that of constrainedhouseholds (A39), and the labor
and goods market clearing conditions (A40)-(A41), I can write E

c
twt = σE

c
t ct + φE

c
tnt =

(φ + σ)Ect yt, where I have used the aggregate market clearing condition in the goods
and labor sectors. As is common in NK models without nominal wage rigidities, profits
are countercyclical. This results in dividends (and transfers received by firms) being
countercyclical. Using the fact that et = –wt, I can write cHt = 1

φ+σ

[
1 +φ

(
1 – τD

λ

)]
E
c
twt =[

1 +φ
(
1 – τD

λ

)]
E
c
t yt = χE

c
t yt. Hence, I can finally write the aggregate consumption

function as
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H
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c
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c
t yt + (δ – β)(1 – λχ)
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(A42)

Finally, notice that this is implied by the following beauty-contest game for a representa-
tive household i, cit = –

β
σ (1– λ)Eitrt + [1–β(1– λχ)]Eit yt +β[δ(1– λχ) – 1]Etct+1 +βEitci,t+1,

is equivalent to (A42) provided that limT→∞ βTEitci,t+T , which is broadly assumed in
the literature given β < 1.

Firms. The firms’ FOC is
∑∞
k=0 θ

kEjt[Λt,t+kYj,t+k|t
1

Pt+k
(P∗jt – MΨj,t+k|t)] = 0, where

Ψj,t+k|t ≡ C′t+k(Yj,t+j|t) denotes the (nominal) marginal cost for firm j, and M = ϵ
ϵ–1.

Log-linearizing around the zero inflation steady-state, I obtain the familiar price-setting
rule

(A43) p∗jt = (1 – βθ)
∞∑

k=0
(βθ)kEjt

(
ψj,t+k|t + µ

)

where ψj,t+k|t = logΨj,t+k|t and µ = logM.
Market clearing in the goods market implies that Yjt = Cjt =

∫
Ih
Cijt di for each

j good/firm. Aggregating across firms, I obtain the aggregate market clearing con-
dition: since assets are in zero net supply and there is no capital, investment, gov-
ernment consumption, or net exports, production equals consumption,

∫
I f
Yjt dj =
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I can write the consumption policy function as
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I assume that the government implements an optimal steady-state subsidy such that
there are zero profits and perfect consumption insurance in steady state, τS = (ϵ – 1)–1,
and that the government implements a redistribution scheme by taxing profits, τD.
Log-linearizing the budget constraints
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Using the intratemporal labor supply conditions
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Combining (A36)-(A39), I can write cSit = 1+φ
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Denote aggregate consumption and aggregate labor supply for the unconstrained
household as CSt =

∫
CSit di, NSt =

∫
NSit di and aggregate consumption and aggregate

labor supply for the constrained household given by CHt =
∫
CHit di, NHt =

∫
NHit di.

Equilibrium in the goods market requires that consumption of unconstrained and
constrained households equals total consumption Ct = λCHt + (1–λ)CSt . Since I consider a
closed economy without investment and government spending, the resource constraint
is Yt = Ct. Equilibrium in the labor market requires Nt = λNHt + (1 – λ)NSt . With uniform
steady-state hours by normalization (NS = NH = N), and the fiscal policy inducing
CS = CH = C, the above log-linearized market clearing conditions yields

yt = ct = λcHt + (1 – λ)cSt(A40)
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nt = λnHt + (1 – λ)nSt(A41)

Finally, because the final good sector is competitive and observes all relevant prices
pjt, I have pt =

∫
pjt dj, yt =

∫
yjt dj =

∫
njt dj, yt = nt =

∫
nit di and yt = ct =∫

cit di. Combining the (expectation augmented) optimal labor supply condition of
unconstrainedhouseholds (A38) and that of constrainedhouseholds (A39), and the labor
and goods market clearing conditions (A40)-(A41), I can write E

c
twt = σE

c
t ct + φE

c
tnt =

(φ + σ)Ect yt, where I have used the aggregate market clearing condition in the goods
and labor sectors. As is common in NK models without nominal wage rigidities, profits
are countercyclical. This results in dividends (and transfers received by firms) being
countercyclical. Using the fact that et = –wt, I can write cHt = 1

φ+σ

[
1 +φ

(
1 – τD
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)]
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t yt. Hence, I can finally write the aggregate consumption

function as
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Finally, notice that this is implied by the following beauty-contest game for a representa-
tive household i, cit = –

β
σ (1– λ)Eitrt + [1–β(1– λχ)]Eit yt +β[δ(1– λχ) – 1]Etct+1 +βEitci,t+1,

is equivalent to (A42) provided that limT→∞ βTEitci,t+T , which is broadly assumed in
the literature given β < 1.

Firms. The firms’ FOC is
∑∞
k=0 θ

kEjt[Λt,t+kYj,t+k|t
1

Pt+k
(P∗jt – MΨj,t+k|t)] = 0, where

Ψj,t+k|t ≡ C′t+k(Yj,t+j|t) denotes the (nominal) marginal cost for firm j, and M = ϵ
ϵ–1.

Log-linearizing around the zero inflation steady-state, I obtain the familiar price-setting
rule

(A43) p∗jt = (1 – βθ)
∞∑

k=0
(βθ)kEjt

(
ψj,t+k|t + µ

)

where ψj,t+k|t = logΨj,t+k|t and µ = logM.
Market clearing in the goods market implies that Yjt = Cjt =

∫
Ih
Cijt di for each

j good/firm. Aggregating across firms, I obtain the aggregate market clearing con-
dition: since assets are in zero net supply and there is no capital, investment, gov-
ernment consumption, or net exports, production equals consumption,

∫
I f
Yjt dj =

73
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nt = λnHt + (1 – λ)nSt(A41)

Finally, because the final good sector is competitive and observes all relevant prices
pjt, I have pt =

∫
pjt dj, yt =

∫
yjt dj =

∫
njt dj, yt = nt =

∫
nit di and yt = ct =∫

cit di. Combining the (expectation augmented) optimal labor supply condition of
unconstrainedhouseholds (A38) and that of constrainedhouseholds (A39), and the labor
and goods market clearing conditions (A40)-(A41), I can write E

c
twt = σE

c
t ct + φE

c
tnt =

(φ + σ)Ect yt, where I have used the aggregate market clearing condition in the goods
and labor sectors. As is common in NK models without nominal wage rigidities, profits
are countercyclical. This results in dividends (and transfers received by firms) being
countercyclical. Using the fact that et = –wt, I can write cHt = 1
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(A42)

Finally, notice that this is implied by the following beauty-contest game for a representa-
tive household i, cit = –

β
σ (1– λ)Eitrt + [1–β(1– λχ)]Eit yt +β[δ(1– λχ) – 1]Etct+1 +βEitci,t+1,

is equivalent to (A42) provided that limT→∞ βTEitci,t+T , which is broadly assumed in
the literature given β < 1.

Firms. The firms’ FOC is
∑∞
k=0 θ

kEjt[Λt,t+kYj,t+k|t
1

Pt+k
(P∗jt – MΨj,t+k|t)] = 0, where

Ψj,t+k|t ≡ C′t+k(Yj,t+j|t) denotes the (nominal) marginal cost for firm j, and M = ϵ
ϵ–1.

Log-linearizing around the zero inflation steady-state, I obtain the familiar price-setting
rule

(A43) p∗jt = (1 – βθ)
∞∑

k=0
(βθ)kEjt

(
ψj,t+k|t + µ

)

where ψj,t+k|t = logΨj,t+k|t and µ = logM.
Market clearing in the goods market implies that Yjt = Cjt =

∫
Ih
Cijt di for each

j good/firm. Aggregating across firms, I obtain the aggregate market clearing con-
dition: since assets are in zero net supply and there is no capital, investment, gov-
ernment consumption, or net exports, production equals consumption,

∫
I f
Yjt dj =
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
Ih


I f
Cijt dj di =⇒ Yt = Ct.

Aggregate employment is given by the sum of employment across firms and must
meet the aggregate labor supply, Nt =


Ih
Nit di =


I f
Njt dj. Using the production func-

tion and consumption demand, together with goods market clearing, Nt =

I f
Yjt dj =

Yt

I f

Pjt
Pt

–ϵ
dj. Log-linearizing the above expression yields to nt = yt.

The (log) marginal cost for firm j at time t + k|t is ψj,t+k|t = wt+k –mpnj,t+k|t
= wt+k, where mpnj,t+k|t and nj,t+k|t denote (log) marginal product of labor and (log)
employment in period t + k for a firm that last reset its price at time t, respectively. Let
ψt ≡


I f

ψjt denote the (log) average marginal cost. I can then write ψt = wt. Thus, the
following relation holds

ψj,t+k|t = ψt+k(A44)

Introducing (A44) into (A43), I can rewrite the firm price-setting condition as p∗jt =

(1–βθ)
∞
k=0(βθ)

kEjt
�
pt+k – µ̂t+k


, where µ̂ = µt –µ is the deviation between the average

and desired markups, where µt = –(ψt – pt).
Suppose that firms observe the aggregate prices up to period t – 1, pt–1, then I can

restate the above condition as p∗jt – pt–1 = –(1–βθ)
∞
k=0(βθ)

kEjtµ̂t+k +
∞
k=0(βθ)

kEjtπt+k.
Define the firm-specific inflation rate as πjt = (1 – θ)( p∗jt – pt–1). Then I can write the
above expression as

πjt = –(1 – θ)(1 – βθ)
∞

k=0
(βθ)kEjtµ̂t+k + (1 – θ)

∞

k=0
(βθ)kEjtπt+k

= (1 – θ)Ejt[πt – (1 – βθ)µ̂t] + βθEjt


(1 – θ)

∞

k=0
(βθ)k[πt+1+k – (1 – βθ)µ̂t+1+k]




= (1 – θ)Ejt[πt – (1 – βθ)µ̂t] + βθEjt


(1 – θ)

∞

k=0
(βθ)kEj,t+1[πt+1+k – (1 – βθ)µ̂t+1+k]




= –(1 – θ)(1 – βθ)Ejtµ̂t + (1 – θ)Ejtπt + βθEjtπj,t+1

(A45)

where πt =

I f

πjt dj.
Note that I can write the deviation between average and desired markups as µt =

pt – ψt = pt – wt = –(σ yt + φnt) = – (σ +φ) yt. As in the benchmark model, under
flexible prices (θ = 0) the average markup is constant and equal to the desired µ.
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Consider the natural level of output, ynt as the equilibrium level under flexible prices
and full-information rational expectations. Rewriting the above condition under the
natural equilibrium, µ = – (σ +φ) ynt , which I can write as y

n
t = ψ y, where ψ y = – µ

σ+φ .
Therefore, I can write µ̂t = – (σ +φ) yt where ỹt = yt – ynt is defined as the output gap.
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