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Abstract

We develop models that take point forecasts from the Survey of Professional Forecasters 

(SPF) as inputs and produce estimates of survey-consistent term structures of 

expectations and uncertainty at arbitrary forecast horizons. Our models combine fixed-

horizon and fixed-event forecasts, accommodating time-varying horizons and availability 

of survey data, as well as potential inefficiencies in survey forecasts. The estimated term 

structures of SPF-consistent expectations are comparable in quality to the published, 

widely used short-horizon forecasts. Our estimates of time-varying forecast uncertainty 

reflect historical variations in realised errors of SPF point forecasts and generate fan 

charts with reliable coverage rates.

Keywords: term structure of expectations, uncertainty, survey forecasts, fan charts.

JEL classification: E37, C53.



Resumen

El presente trabajo desarrolla modelos que utilizan como insumos los pronósticos 

puntuales de la encuesta Survey of Professional Forecasters (SPF) para hacer 

estimaciones temporales de las expectativas y la incertidumbre coherentes con la 

encuesta, para horizontes de proyecciones arbitrarias. Nuestros modelos combinan 

previsiones de horizonte fijo y evento fijo, acomodando horizontes de tiempo variables y 

disponibilidad de datos de la encuesta, así como posibles ineficiencias en los pronósticos 

de esta. Las estructuras temporales estimadas de expectativas congruentes con la SPF 

son comparables, en calidad, a los pronósticos de corto plazo publicados y ampliamente 

utilizados. Estas estimaciones de la incertidumbre, de los pronósticos variables en el 

tiempo, reflejan variaciones históricas de los errores detectados en los pronósticos 

puntuales de la SPF, y generan fan charts con tasas de cobertura fiables.

Palabras clave: estructura temporal de expectativas, incertidumbre, pronósticos de 

encuestas, fan charts.

Códigos JEL: E37, C53.



BANCO DE ESPAÑA 7 DOCUMENTO DE TRABAJO N.º 2429 

1 Introduction

Both economic policymaking and forecasting research commonly use the macroeconomic pro-

jections of professional forecasters. Such forecasts with long histories include the (US) Survey

of Professional Forecasters (SPF), Blue Chip Consensus, and Consensus Economics, as well as

Federal Reserve forecasts published in the Tealbook or Greenbook and the Federal Open Market

Committee’s (FOMC) Summary of Economic Projections (SEP). Typically, the availability of such

forecasts is uneven across forecast horizons. For example, the SPF includes both (1) fixed-horizon

quarterly point forecasts, at shorter horizons, and (2) fixed-event annual forecasts (i.e., forecasts

of a given event, in this case an economic outcome in a specific calendar year, made at different

points in time before the event (Nordhaus, 1987)), available at longer horizons. Forecasters, pol-

icy analysts, and researchers regularly consider forecast uncertainty; many central banks (e.g., the

Federal Reserve and the European Central Bank) publish estimates of forecast uncertainty.

In this paper, we develop models that take published survey point forecasts as inputs and pro-

duce estimates of a longer, more complete term structure (across horizons) of survey-consistent

point forecasts, along with a term structure of forecast uncertainty. Our applications use the SPF,

and our methods can exactly replicate its quarterly forecasts at short horizons while interpolating

through the longer-horizon forecasts from the SPF’s annual predictions. Our estimates of fore-

cast uncertainty reflect dispersion in past errors from the SPF’s point forecasts, with time-varying

uncertainty captured through stochastic volatility (SV).1

Matching the term structure of SPF forecasts with predictions from a simple time series model

of the outcome variable typically requires measurement error, but that is not the case in our mod-

els.2 Specifically, we assume that, beyond a given horizon, forecasts are equal to a drifting mean,

while forecasts up to that horizon follow a flexible moving-average structure that can match arbi-

trary term structures of expectations. Nevertheless, to avoid excessively volatile imputation that

1As surveyed in Clark and Mertens (2023), many studies have found that allowing for time-varying conditional
variances improves the fit and forecasting performance of time series models.

2For examples of matching survey data with relatively coarse time series models, see Aruoba (2020), Crump et al.
(2023), Kozicki and Tinsley (2012), and Patton and Timmermann (2011).

1

can arise from small inconsistencies between quarterly and annual SPF predictions, we model

annual forecasts with fat-tailed measurement errors that are a priori close to zero.

Our approach extends Clark et al. (2020) (hereafter, CMM) in a few directions. First, we model

an SPF-consistent term structure of quarterly expectations that extends arbitrarily far beyond the

four quarters covered in CMM. Second, our inference on expectations beyond the near term is

informed by the SPF’s fixed-event (annual) forecasts that extend up to three years ahead. Doing so

requires handling the so-called ragged edge of the SPF, whose quarterly publication leads to sys-

tematic variations in the fixed-event horizons of annual forecasts. Third, we develop a generalized

model that allows for bias (both conditional and unconditional) in the SPF. Time-varying bias in

SPF forecasts and other departures from full rationality have been highlighted in studies including

Bianchi et al. (2022), Coibion and Gorodnichenko (2015), and Farmer et al. (2024). We provide a

rich and flexible model of the joint dynamics between outcomes and expectational data provided

by the SPF.

Practically speaking, what might one do with a more complete term structure of expectations

and uncertainty? As one application, our approach can be used to produce SPF-consistent fan

charts patterned after those from the FOMC’s SEP, which report calendar-year forecasts of Q4/Q4

growth rates of GDP and prices and the Q4 level of the unemployment rate. The width of the un-

certainty bands in these SEP fan charts is two times the historical root mean square errors (RMSEs)

obtained using a few different forecasts computed over 20-year rolling windows, as developed in

Reifschneider and Tulip (2019). To illustrate, from a forecast origin of 2024Q1 Figure 1 provides

SEP-style fan charts with SPF-consistent calendar-year forecasts of GDP growth, CPI inflation,

and the unemployment rate. The fan charts are generated from our estimates of predictive densi-

ties that are conditioned on the SPF. For the figure, we then transform draws from these predictive

densities into calendar-year predictions for 2024-2027 that match the data conventions of the SEP.

The fan charts include a point forecast and a 68 percent forecast uncertainty band. For compari-

son, the charts also include the corresponding projections (red dotted lines) from the March 2024

SEP. The SPF-consistent point forecasts show GDP growth remaining near 2 percent for the next
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can arise from small inconsistencies between quarterly and annual SPF predictions, we model
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Our approach extends Clark et al. (2020) (hereafter, CMM) in a few directions. First, we model

an SPF-consistent term structure of quarterly expectations that extends arbitrarily far beyond the

four quarters covered in CMM. Second, our inference on expectations beyond the near term is

informed by the SPF’s fixed-event (annual) forecasts that extend up to three years ahead. Doing so

requires handling the so-called ragged edge of the SPF, whose quarterly publication leads to sys-

tematic variations in the fixed-event horizons of annual forecasts. Third, we develop a generalized

model that allows for bias (both conditional and unconditional) in the SPF. Time-varying bias in

SPF forecasts and other departures from full rationality have been highlighted in studies including

Bianchi et al. (2022), Coibion and Gorodnichenko (2015), and Farmer et al. (2024). We provide a

rich and flexible model of the joint dynamics between outcomes and expectational data provided
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2

few years, with unemployment near 4 percent. The SPF forecasts have CPI inflation slowing from

2024 to 2025 and changing little in 2026 and 2027. The SEP’s point forecasts are similar, although

the SEP includes a further reduction in inflation in 2026. But, in terms of forecast uncertainty, the

SPF-consistent and SEP fan charts differ more materially: While the 68 percent forecast interval

for the SPF is reasonably wide, the SEP’s is notably wider (in keeping with a broader historical

pattern that we document later in the paper).

Figure 1: Fan charts and SEP (2024Q1)
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Notes: Model-based annual predictions, with 68% predictive intervals, from our model (“CGM”)
and the FOMC’s SEP per 2024Q1. The predictions are calendar-year forecasts of Q4/Q4 growth
rates of GDP and prices and the Q4 level of the unemployment rate. Since the forecast origin is
early in the year, the SEP extends only two years out. For inflation, Panel (c) compares model-
based densities for CPI against the SEP’s forecasts for PCE inflation. The version of the model
used to generate these figures treats SPF forecasts as martingales.

In the body of this paper, we flesh out the approach that underlies this example. We first show

that our baseline model yields SPF-consistent quarterly real-time forecasts of GDP growth, unem-

ployment, and inflation that match the published fixed-horizon quarterly forecasts from the SPF

and interpolate through the annual fixed-event point forecasts. The model’s estimates of forecast

uncertainty vary over time, temporarily rising around recessions, and generally rise with the fore-

cast horizon. Our second set of results addresses the quality of the extended SPF forecasts obtained

from our models (both the baseline specification that treats SPF forecasts as rational and the gen-

eralized model that allows departures from full rationality), applying a variety of metrics to out-of-

sample forecasts. Our estimates indicate that the generalized model captures reasonably well the

3

few years, with unemployment near 4 percent. The SPF forecasts have CPI inflation slowing from

2024 to 2025 and changing little in 2026 and 2027. The SEP’s point forecasts are similar, although

the SEP includes a further reduction in inflation in 2026. But, in terms of forecast uncertainty, the

SPF-consistent and SEP fan charts differ more materially: While the 68 percent forecast interval

for the SPF is reasonably wide, the SEP’s is notably wider (in keeping with a broader historical

pattern that we document later in the paper).

Figure 1: Fan charts and SEP (2024Q1)

(a) Real GDP growth

2024 2025 2026 2027
-1

0

1

2

3

4

5

CGM

SEP

(b) Unemployment rate

2024 2025 2026 2027
0

1

2

3

4

5

6

(c) Inflation

2024 2025 2026 2027
0

0.5

1

1.5

2

2.5

3

3.5

4

Notes: Model-based annual predictions, with 68% predictive intervals, from our model (“CGM”)
and the FOMC’s SEP per 2024Q1. The predictions are calendar-year forecasts of Q4/Q4 growth
rates of GDP and prices and the Q4 level of the unemployment rate. Since the forecast origin is
early in the year, the SEP extends only two years out. For inflation, Panel (c) compares model-
based densities for CPI against the SEP’s forecasts for PCE inflation. The version of the model
used to generate these figures treats SPF forecasts as martingales.

In the body of this paper, we flesh out the approach that underlies this example. We first show

that our baseline model yields SPF-consistent quarterly real-time forecasts of GDP growth, unem-

ployment, and inflation that match the published fixed-horizon quarterly forecasts from the SPF

and interpolate through the annual fixed-event point forecasts. The model’s estimates of forecast

uncertainty vary over time, temporarily rising around recessions, and generally rise with the fore-

cast horizon. Our second set of results addresses the quality of the extended SPF forecasts obtained

from our models (both the baseline specification that treats SPF forecasts as rational and the gen-

eralized model that allows departures from full rationality), applying a variety of metrics to out-of-

sample forecasts. Our estimates indicate that the generalized model captures reasonably well the

3



BANCO DE ESPAÑA 9 DOCUMENTO DE TRABAJO N.º 2429 

few years, with unemployment near 4 percent. The SPF forecasts have CPI inflation slowing from

2024 to 2025 and changing little in 2026 and 2027. The SEP’s point forecasts are similar, although

the SEP includes a further reduction in inflation in 2026. But, in terms of forecast uncertainty, the

SPF-consistent and SEP fan charts differ more materially: While the 68 percent forecast interval

for the SPF is reasonably wide, the SEP’s is notably wider (in keeping with a broader historical

pattern that we document later in the paper).

Figure 1: Fan charts and SEP (2024Q1)

(a) Real GDP growth

2024 2025 2026 2027
-1

0

1

2

3

4

5

CGM

SEP

(b) Unemployment rate

2024 2025 2026 2027
0

1

2

3

4

5

6

(c) Inflation

2024 2025 2026 2027
0

0.5

1

1.5

2

2.5

3

3.5

4

Notes: Model-based annual predictions, with 68% predictive intervals, from our model (“CGM”)
and the FOMC’s SEP per 2024Q1. The predictions are calendar-year forecasts of Q4/Q4 growth
rates of GDP and prices and the Q4 level of the unemployment rate. Since the forecast origin is
early in the year, the SEP extends only two years out. For inflation, Panel (c) compares model-
based densities for CPI against the SEP’s forecasts for PCE inflation. The version of the model
used to generate these figures treats SPF forecasts as martingales.

In the body of this paper, we flesh out the approach that underlies this example. We first show

that our baseline model yields SPF-consistent quarterly real-time forecasts of GDP growth, unem-

ployment, and inflation that match the published fixed-horizon quarterly forecasts from the SPF

and interpolate through the annual fixed-event point forecasts. The model’s estimates of forecast

uncertainty vary over time, temporarily rising around recessions, and generally rise with the fore-

cast horizon. Our second set of results addresses the quality of the extended SPF forecasts obtained

from our models (both the baseline specification that treats SPF forecasts as rational and the gen-

eralized model that allows departures from full rationality), applying a variety of metrics to out-of-

sample forecasts. Our estimates indicate that the generalized model captures reasonably well the

3

empirical extent of non-rationality emphasized by Coibion and Gorodnichenko (2015) and subse-

quent studies. Nonetheless, the SPF forecasts obtained from our restricted baseline model and the

generalized version perform comparably in various metrics of forecast quality. More specifically,

our estimated forecasts for the SPF at forecast origin t are efficient predictions of the forecasts pub-

lished in the SPF at origin t + 1. Out to forecast horizons as long as 16 quarters ahead, quarterly

forecasts from the baseline model and its generalization are similar in point and density accuracy.

The two models also perform comparably in unconditional coverage rates, yielding forecast con-

fidence bands that are reasonably accurate, but not perfect. Tests of the uniformity of probability

integral transforms indicate that our estimated predictive densities of SPF forecasts are correctly

calibrated. Together, we take these results as evidence that the quality of our SPF-consistent es-

timated forecasts is comparable to the quality of the published short-horizon forecasts, which are

widely seen as useful in research and practice.

The paper proceeds as follows. Section 2 provides an overview of the related literature on

survey forecasts not covered above or in subsequent sections. Section 3 describes the SPF forecasts

and data used. Section 4 presents our models and briefly describes estimation. Section 5 provides

results. Section 6 concludes. A supplementary online appendix provides additional results.

2 Related Literature

Over the course of our analysis, we will consider the rationality, calibration, and accuracy of the

term structure of SPF-consistent forecasts. A long literature has examined the same properties

of published fixed-event and fixed-horizon survey forecasts. More specifically, some studies have

examined whether professional forecasts display properties consistent with optimal (typically, un-

der quadratic loss) forecasts and rational expectations. In one example, Patton and Timmermann

(2012) develop new rationality tests based on rationality restrictions taking the form of bounds on

second moments of the data across forecast horizons and apply them to forecasts from the Federal

Reserve’s Greenbook. As regards accuracy, focusing on inflation forecasts, Ang et al. (2007) find
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empirical extent of non-rationality emphasized by Coibion and Gorodnichenko (2015) and subse-

quent studies. Nonetheless, the SPF forecasts obtained from our restricted baseline model and the

generalized version perform comparably in various metrics of forecast quality. More specifically,

our estimated forecasts for the SPF at forecast origin t are efficient predictions of the forecasts pub-

lished in the SPF at origin t + 1. Out to forecast horizons as long as 16 quarters ahead, quarterly

forecasts from the baseline model and its generalization are similar in point and density accuracy.

The two models also perform comparably in unconditional coverage rates, yielding forecast con-

fidence bands that are reasonably accurate, but not perfect. Tests of the uniformity of probability

integral transforms indicate that our estimated predictive densities of SPF forecasts are correctly

calibrated. Together, we take these results as evidence that the quality of our SPF-consistent es-

timated forecasts is comparable to the quality of the published short-horizon forecasts, which are

widely seen as useful in research and practice.

The paper proceeds as follows. Section 2 provides an overview of the related literature on

survey forecasts not covered above or in subsequent sections. Section 3 describes the SPF forecasts

and data used. Section 4 presents our models and briefly describes estimation. Section 5 provides

results. Section 6 concludes. A supplementary online appendix provides additional results.

2 Related Literature

Over the course of our analysis, we will consider the rationality, calibration, and accuracy of the

term structure of SPF-consistent forecasts. A long literature has examined the same properties

of published fixed-event and fixed-horizon survey forecasts. More specifically, some studies have

examined whether professional forecasts display properties consistent with optimal (typically, un-

der quadratic loss) forecasts and rational expectations. In one example, Patton and Timmermann

(2012) develop new rationality tests based on rationality restrictions taking the form of bounds on

second moments of the data across forecast horizons and apply them to forecasts from the Federal

Reserve’s Greenbook. As regards accuracy, focusing on inflation forecasts, Ang et al. (2007) find

4

survey forecasts hard to beat by a battery of forecasting methods.

While we focus on professional forecasts in and of themselves, another long literature has

sought to use professional forecasts to improve forecasts from time series models. Faust and

Wright (2009) use professional forecasts as jumping-off points for models to improve the accuracy

of forecasts from time series models. Wright (2013) shows that the forecast accuracy of a Bayesian

vector autoregression (VAR) can be improved by using long-run survey forecasts as priors on the

model’s steady states. Banbura et al. (2021), Ganics and Odendahl (2021), and Krüger et al. (2017)

improve forecasts from Bayesian VARs through entropic tilting toward survey-based nowcasts or

forecasts. Frey and Mokinski (2016) instead add survey-based nowcasts as endogenous variables

in Bayesian VARs, using priors so that the dynamics of the survey forecasts inform the parameter

estimates of the dynamics of the actual data. In a similar vein, Doh and Smith (2022) develop

priors that align a VAR’s (a priori) forecasts with survey predictions.

While our approach uses SPF forecasts as the only inputs to obtain a term structure of fore-

casts and uncertainty, a number of other studies have estimated term structures of survey fore-

casts by using a time series model for yt that generates forecasts Etyt+h and assuming that ob-

served survey forecasts are equal to model-implied forecasts plus a measurement error, Ftyt+h =

Etyt+h + noiset+h. This approach is employed by studies such as Aruoba (2020), Crump et al.

(2023), Grishchenko et al. (2019), Kozicki and Tinsley (2012), and Mertens and Nason (2020).

Crucially, in applications such as these, the use of measurement error is necessary, as it serves as

fitting error in matching term structures of a tightly parameterized model to the SPF data. In our

application, we attach measurement error to annual SPF forecasts out of concern about (small)

inconsistencies in the SPF data; while our model can perfectly replicate the SPF without measure-

ment error, its presence avoids excessively volatile imputations.

Potential drawbacks of this approach that features a time series model of the data include the

attribution of part of the observed term structure of survey expectations to measurement error and

the imposition of a (typically low-order) time series model on the term structure of “true” expec-

tations (Etyt+h). For some applications, such an approach might provide a potentially beneficial

5
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casts by using a time series model for yt that generates forecasts Etyt+h and assuming that ob-

served survey forecasts are equal to model-implied forecasts plus a measurement error, Ftyt+h =
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tations (Etyt+h). For some applications, such an approach might provide a potentially beneficial
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form of shrinkage. In addition, the approach can be used to pool surveys from different sources

to extract a common set of underlying expectations. However, the measurement error approach

comes at the cost of discarding part of the survey respondents’ judgment and broader modeling.

Instead, as explained below, one of our models aims to fit model-implied forecasts to survey fore-

casts, Ftyt+h = Etyt+h, and our more general model sees differences between forecasts from the

SPF and the model as bias (and thus predictable forecast errors, instead of measurement error).

Complementing our work on a rich term structure of forecast uncertainty several years into the

future, many other studies have used the fixed-event forecasts of professionals to examine forecast

uncertainty and its variation over time. For example, with data on fixed-event forecasts from

Consensus Economics, Patton and Timmermann (2011) use an unobserved components model to

examine the predictability of growth and inflation across different forecast horizons and measure

average forecast uncertainty by mean square forecast errors.

3 Data

Because the availability of forecasts in the SPF informs aspects of our model, we detail the data in

this section before taking up the model in Section 4. We examine quarterly and annual forecasts

from the SPF for a basic set of major macroeconomic aggregates commonly included in research

on the forecasting performance of models such as VARs or dynamic stochastic general equilib-

rium models: real GDP growth (RGDP), the unemployment rate (UNRATE), and inflation in the

GDP price index (PGDP) and consumer price index (CPI).3 The SPF forecasts are widely studied,

publicly available, and the longest time series of forecasts for a range of variables.

We obtained the SPF forecasts from the Federal Reserve Bank of Philadelphia’s Real-Time

Data Research Center. In all cases, we form the point forecasts using the average over all SPF re-

sponses. Reflecting the data available, our estimation samples start with 1969Q1 for GDP growth,

unemployment, and GDP inflation and 1981Q4 for CPI inflation; the last forecast origin for which

3We use “GDP” and “GDP price index” to refer to output and price series, even though, in our real-time data, the
measures are based on GNP and a fixed-weight deflator for some of the sample.
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we evaluate out-of-sample forecasts is 2023Q4, and we also discuss fan charts conditioned on the

2024Q1 SPF. At each forecast origin, the available fixed-horizon point forecasts typically span

five quarters, from the current quarter through the next four quarters. Since 1981Q3, the SPF has

included fixed-event point forecasts for the current and next calendar year. In 2005Q3, the forecast

horizon for CPI inflation was extended to include annual forecasts for one additional year, i.e., cov-

ering up to two calendar years ahead, and in 2009Q2, the forecast horizon was similarly extended

for GDP growth and unemployment to extend up to three years ahead.

Given the fixed-event nature of the SPF’s calendar-year forecasts, the number of quarters until

the end of the longest-horizon forecast varies over the course of a year. For example, the 2021Q4

SPF included fixed-event annual forecasts of growth and unemployment for the current year and the

next three, so that the last annual forecast extends 12 quarters ahead (the annual forecast reported

for 2024 includes 2024Q4, 12 quarters beyond the 2021Q4 forecast origin). In the 2022Q1 SPF,

the last annual forecast for 2025 includes 2025Q4, 15 quarters beyond the forecast origin. These

variations in the SPF’s effective forecast horizon are also known as the “ragged edge.” Our methods

allow us to consistently construct fixed-horizon term structures that, at every quarterly forecast

origin, extend arbitrarily far beyond the ragged edge.

The SPF uses certain conventions in its forecasts that we incorporate in the measurement speci-

fication of our model, as described further in Section 4. In terms of the SPF data we use, predictions

for the unemployment rate are expressed directly as quarterly and annual-average levels (depend-

ing on the forecast horizon), which can be mapped directly into our model. Similarly, for CPI

inflation, the forecasts are reported as percentage changes in quarterly and Q4/Q4 index levels that

are used as such in our model. However, for GDP and its price index, the SPF data files provide

forecasts in levels, which we convert into growth rates. Specifically, depending on the forecast

horizon, point forecasts pertain to quarterly or annual-average levels, which we convert to growth

rates based on information included in the survey. For quarterly forecast targets, we use the lagged

quarterly level as the basis. To obtain the next-year forecast of annual-average growth, we use the

SPF‘s predictions for the current year as base values (and analogously for the forecasts two and
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three years ahead). For each forecast horizon, we calculate growth rates for GDP and the GDP

price index as differences in log levels, as our model uses log-linearized expressions for quarterly

and annual-average growth in these variables that are detailed in Section 4.

To estimate our model, we also need measures of the outcomes of the variables. In the case of

GDP growth and GDP inflation, for which data can be substantially revised over time, we obtain

real-time measures for quarter t− 1 data as these data were publicly available in quarter t from the

quarterly files of real-time data in the Philadelphia Fed’s Real-Time Data Set for Macroeconomists

(RTDSM). For forecast evaluation, we measure the outcomes of GDP growth and GDP inflation

with the RTDSM vintage published two quarters after the outcome date.4 Because revisions to

quarterly data are relatively small for the unemployment rate and CPI inflation, we simply use the

historical time series available in the St. Louis Fed’s FRED database to measure the outcomes and

corresponding forecast errors for these variables.

4 Model and Estimation

In broad terms, our models can be seen as multivariate unobserved components models. We design

the state space specifications to match arbitrary term structures of expectations, with application

to the SPF in this paper. In all cases, we specify and estimate the models on a variable-by-variable

basis (i.e., separately for GDP growth, unemployment, and each inflation measure).

This section begins by spelling out the general setup of our models, including our underlying

assumptions. We then proceed with detailing the transition equations of our state space models,

starting with a specification that treats forecast updates as martingale differences and then pro-

ceeding to a more general specification that allows for biases and persistence in forecast errors and

expectations updates. After laying out transition dynamics, we present the measurement equation

included in both models, followed by our specification of the innovation components of the tran-

sition equations. Throughout, we use Yt to denote the state vector (partially latent) of quarterly

4That is, we use the quarterly vintage in t + h + 2 to evaluate forecasts for t + h made in t; this is the second
estimate available in the RTDSM’s vintages.
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8forecasts and Zt to denote the measurement vector of the available SPF point forecasts.

4.1 General setup

Throughout, yt refers to either (1) the annualized quarterly log growth rate of GDP or its price

index, (2) a quarterly average level of the unemployment rate, or (3) the annualized quarterly

(simple) percent change in the CPI. We denote SPF-consistent forecasts of the scalar outcome yt+h

made in period t by Ftyt+h and rational (or unbiased) forecasts as Etyt+h. “SPF-consistent” means

that these forecasts are either directly observed from the SPF or values imputed from our model

under the assumption that those values represent the (average) SPF response. The vector Yt — the

“SPF-consistent” term structure of expectations — includes the lagged realized value, yt−1, and

forecasts from horizons h = 0, . . . , H:

Yt ≡
[
yt−1, Ftyt, Ftyt+1, . . . , Ftyt+h, . . . , Ftyt+H

]′
. (1)

Note that, with yt−1 = Ftyt−1, we have FtYt = Yt. To derive the transition equation that captures

the dynamics of Yt, we begin with definitional equations for the (lagged) nowcast error, et−1, as

well as SPF forecast updates, (Ft − Ft−1)yt+h:5

yt−1 = Ft−1yt−1 + et−1 , (2)

Ftyt+h = Ft−1yt+h + (Ft − Ft−1)yt+h, ∀ h ≥ 0 . (3)

In each of these equations, the term on the left is an element of Yt, whereas the first term on the

right is an element of Yt−1, which suggests a strategy to derive a recursion for the dynamics of Yt.

5Some previous studies have also made use of expectational updates, for different purposes. For example, Patton
and Timmermann (2012) write a short-horizon forecast as a sum of a long-horizon forecast and forecast revisions, and
use it as the basis of an optimal revision regression to test forecast optimality. Coibion and Gorodnichenko (2015)
map out the implications of different theories of imperfect information for serial correlation in forecast updates.
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We also make the following three assumptions.

1. The term structure of SPF-consistent forecasts is flat beyond horizon H , with y∗t denoting

the endpoint of the term structure of SPF forecasts:

y∗t ≡ Ftyt+H+1 = Ftyt+H+j ∀ j > 0 . (4)

2. The endpoint y∗t is an unbiased (rational) long-run forecast of yt, corresponding to the

Beveridge-Nelson trend in yt and following a random walk process:

y∗t ≡ lim
j→∞

Etyt+H+j = y∗t−1 + w∗
t ⇒ Et−1w

∗
t = 0. (5)

3. The endpoint of the SPF term structure, y∗t , is the common trend in all elements of Yt and

deviations from trend, also called “gaps” and denoted by Ỹt, are (mean) stationary:

Yt = Ỹt + 1y∗t , with lim
h→∞

EtỸt+h = Ȳ , (6)

where the mean vector for the gaps, Ȳ , captures unconditional bias in the SPF at different

horizons (detailed further in the supplementary online appendix), and 1 denotes a vector of

ones. With this assumption, we are treating SPF forecasts as being at least weakly rational, so

that their forecast errors are stationary, which implies that SPF forecasts at different horizons

are cointegrated among each other and with the outcome variable (Mertens, 2016).6

Together with equation (3), these assumptions imply the following recursive law of motion for

the vector of gaps Ỹt (where I is the identity matrix):

Ỹt =
(
I − Ψ̃

)
Ȳ + Ψ̃Ỹt−1 + η̃t , (7)

6Other studies that decompose SPF forecasts into (perceptions of) permanent and transitory components include
Clements (2022) and Krane (2011).
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and η̄ ≡

I − Ψ̃


Ȳ . All eigenvalues of Ψ̃ are zeros, so that Ψ̃ is a stable matrix.7 To close the

description of the state equation, we need to model the dynamics of η̃t with particular attention to

its persistence, i.e., Et−1η̃t, as well as its distribution, which we model via variations in Vart−1 η̃t.

Below we explain the two different state equation specifications considered and the shock process.

The first assumption above also has implications for the setting of H when implementing our

model. While the SPF provides forecasts up to three calendar years ahead, its longer-run forecasts

are stated in terms of annual predictions that straddle several quarters. Thus, to match the observed

SPF, our state vector does not have to extend all the way to the end of the third calendar year (H =

15). Instead, we can utilize our assumption that the term structure of SPF-consistent forecasts is

flat beyond some horizon H and describe a three-year-ahead forecast with a state space extending

only to, say, H = 12. For concreteness, consider the case of a forecast, collected in Q1, that should

match the average of the four quarters of the third year ahead. With H = 12, only the last element

of Yt points into the third year ahead, and forecasts for quarters two to four of the third year are

set identical to the trend, with zero gaps.

In this spirit, we generally choose H such that when the forecast origin is in Q1, H points to

the first quarter of the farthest annual horizon covered by the SPF forecasts. An exception is made

for data covering only SPF forecasts up to the next year, where H is set to 5 (instead of 4), since the

7An earlier working paper version of this paper derived an equivalent recursion for Yt; reflecting the common
trend in Yt, this equivalent representation features a transition matrix with a single unit root and all other eigenvalues
equal to zero.

11



BANCO DE ESPAÑA 16 DOCUMENTO DE TRABAJO N.º 2429 

with Ψ̃ =




0 1 0 . . . . . . 0

0 0 1 0 . . . 0

...
... 0

. . . . . . 0

...
...

... . . . . . . 0

...
...

...
... . . . 1

0 . . . . . . . . . . . . 0




, η̃t ≡




et−1

(Ft − Ft−1)yt

(Ft − Ft−1)yt+1

...

(Ft − Ft−1)yt+h

...

(Ft − Ft−1)yt+H




− 1w∗
t − η̄ , (8)

and η̄ ≡

I − Ψ̃


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observed fixed-horizon SPF forecasts already extend through h = 4. As part of our out-of-sample

forecast analysis, models are (re-)estimated over different sub-samples of data, and we adjust H

accordingly. Specifically, we set H = 5 for data samples on GDP growth and unemployment

prior to 2009Q2, as well as for CPI inflation prior to 2005Q4, and inflation in the GDP price index

(entire sample). For estimates covering data that include SPF forecasts up to three years ahead

(GDP growth and unemployment since 2009Q2) we set H = 12, and for CPI inflation data since

2005Q4, which include SPF forecasts up to two years ahead, we set H = 8. Note that, even though

the state vector ends with Ftyt+H and H is no larger than 12, our endpoint assumption allows us

to simulate forecast densities arbitrarily far ahead, and we report densities up to 16 quarters ahead

for all variables throughout.

4.2 Transition equation in the martingale case

Our first model assumes SPF forecasts are rational so that Ftyt+h = Etyt+h ∀h. It follows that

forecasts are unbiased, Ȳ = 0, and that forecast updates are martingale difference sequences

(MDS): Et−1η̃t = 0 and Et−1w
∗
t = 0. With these restrictions, the mean dynamics of the gap

vector Ỹt are fully specified by equation (7), with the restriction Ȳ = 0 imposed.

To describe the density of Ỹt, we use a block-SV structure with fat-tailed shocks to η̃t and

w∗
t that will be described further below. Although this MDS-based model is written with a state

vector Yt containing SPF forecasts, we should emphasize that, in this specification, we are not

actually attributing a specific time series model to the evolution of SPF forecasts; we are taking

the observed fixed-horizon and fixed-event forecasts as given and using a time series process to

interpolate missing fixed-horizon forecasts out to H steps ahead. With the MDS specification, all

we need is the historical evolution of the SPF up to the forecast origin t and previous nowcast errors

in order to estimate SPF-consistent point forecasts and uncertainty bands around the forecasts; we

do not need a time series model of yt.

12
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To describe the density of Ỹt, we use a block-SV structure with fat-tailed shocks to η̃t and

w∗
t that will be described further below. Although this MDS-based model is written with a state

vector Yt containing SPF forecasts, we should emphasize that, in this specification, we are not

actually attributing a specific time series model to the evolution of SPF forecasts; we are taking

the observed fixed-horizon and fixed-event forecasts as given and using a time series process to

interpolate missing fixed-horizon forecasts out to H steps ahead. With the MDS specification, all

we need is the historical evolution of the SPF up to the forecast origin t and previous nowcast errors

in order to estimate SPF-consistent point forecasts and uncertainty bands around the forecasts; we

do not need a time series model of yt.

12

4.3 Transition equation of the VAR model

The MDS model places tight restrictions on the evolution of forecast updates by assuming that SPF

forecasts are rational. Our second, more general specification drops that assumption. This model

allows for (a) unconditional bias in the form of a non-zero intercept vector Ȳ in the transition

dynamics of equation (7) and (b) conditional bias by modeling the updates in (detrended) forecasts,

η̃t, as a VAR(1):8

η̃t = Π̃ η̃t−1 + ε̃t , with ε̃t ∼ N (0, Σ̃t), (9)

and details for Σ̃t to be described further below. In keeping with the common-trend assumption,

the transition matrix Π̃ is assumed to be stable. It follows that the state equation for the vector of

gaps Ỹt takes a VAR(2) form:

Ỹt =
(
I − Ψ̃

)(
I − Π̃

)
Ȳ +

(
Ψ̃+ Π̃

)
Ỹt−1 −

(
Ψ̃ Π̃

)
Ỹt−2 + ε̃t . (10)

The MDS model is nested in this specification, under the restrictions Ȳ = 0 and Π̃ = 0. Absent

these restrictions, the model allows for unconditional and conditional bias in the SPF. With that,

the VAR model still captures in Yt an SPF-consistent term structure of expectations that matches

the observed SPF data (exactly for quarterly SPF forecasts, and up to measurement error for the

annual forecasts). But predictions for the outcome variables generated by the VAR model will

generally differ from Yt, whereas point forecasts generated by the MDS specification will not.

8Our choice of a lag order of 1 is consistent with specifications and related evidence in Coibion and Gorodnichenko
(2015) and CMM. In addition, given the limited amount of SPF bias reported in the prior literature (Section 2) , we
view a low lag order as appropriate to limit the scope for overfitting.
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4.4 Measurement equation

To explain the measurement equation of our state space models, we define:

ȳt = 1/4 ·
3∑

j=0

yt−j, (11)

and ŷt ≡ 100× log

(
It + It−1 + It−2 + It−3

It−4 + It−5 + It−6 + It−7

)
, (12)

≈ 1/16 · (yt + 2 · yt−1 + 3 · yt−2 + 4 · yt−3 + 3 · yt−4 + 2 · yt−5 + yt−6) , (13)

where It denotes the quarterly level of GDP or its price index.

With these definitions of multi-period forecast targets, we can cover the different types of an-

nual forecasts published in the SPF: When t corresponds to a date in Q4, ȳt represents the annual

average level of the unemployment rate as well as Q4/Q4 percent changes in the CPI, and ŷt cap-

tures percent changes in annual average levels of GDP and its price index. As discussed in the

supplementary online appendix, the formula for ŷt in (13) represents a log-linear approximation to

the growth rate in average levels of calendar years ending at t and t − 4 in (12).9 The measure-

ment equations of our models, detailed below, use the approximation in (13) to relate annual SPF

forecasts for GDP growth and GDP price inflation to forecasts (or lagged realizations) of yt.10

We denote survey forecasts collected at forecast origin t for targets yt+h, ȳt+h, and ŷt+h, by

Ftyt+h, Ftȳt+h, and Ftŷt+h, respectively. At time t, the SPF provides observations of Ftyt+h,

Ftȳt+h, and/or Ftŷt+h, for different (but separate) values of h ≥ 0. The measurement vector Zt

contains the available observations from the SPF as well as a reading of the last realized value,

yt−1, that is available to SPF respondents at time t. In addition to the SPF’s quarterly fixed-

horizons forecasts, Ftyt+h for h = 0, 1, . . . , 4, we include in Zt the available readings of fixed-

9Mariano and Murasawa (2003) first developed the approximation in a nowcasting setting. Models of multi-period
survey forecasts that rely on this (or similar) approximations include Aruoba (2020), Crump et al. (2023), and Patton
and Timmermann (2012).

10For CPI inflation, the mapping from yt to ȳt holds only approximately as well. For CPI, our definition of yt as
the simple percent change follows the SPF convention for its quarterly fixed-horizon forecasts, whereas the annual
forecasts are solicited in terms of changes in Q4/Q4 levels.

14

4.4 Measurement equation

To explain the measurement equation of our state space models, we define:
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average level of the unemployment rate as well as Q4/Q4 percent changes in the CPI, and ŷt cap-
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event forecasts for the next year and beyond.11 For example, with t = 2024Q1, the measurement

vector for GDP growth is Zt =


yt−1, Ftyt, Ftyt+1, . . . , Ftyt+4, Ftŷt+7, Ftŷt+11, Ftŷt+15

′
. For t

= 2024Q2, the annual forecast entries become Ftŷt+6, Ftŷt+10, and Ftŷt+14. The corresponding

measurement vectors for the unemployment rate differ only by using annual forecasts expressed in

terms of ȳt instead of ŷt. Further details are described in the supplementary online appendix.

Our framework can match a term structure of expectations to an arbitrary set of observable SPF

data. It could do so without a need for measurement noise. However, while not essential, attaching

measurement error to at least some SPF observations may be warranted and helpful. It is possible

that the reported readings of annual forecasts contain some small discrepancies, due, for example,

to the computation of growth rates using GDP forecasts reported in levels with rounding. Con-

sider, for example, the case of SPFs in the third quarter of each year that include an annual forecast

for the next-year SPF. Given the handful of quarterly forecasts published in the SPF, to the model

the only “free” quarterly forecast for matching the annual forecast is the projection for the fourth

quarter of next year. In the applications to GDP growth and inflation in the GDP deflator, that

quarterly forecast has a weight of 1/16 in the annual approximation in (13), which in turn means

that potential discrepancies get scaled up by a factor of 16 in the imputation of the fourth quarter

forecast for next year. As detailed in the supplementary online appendix, these mechanics can
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The loading matrices Cq,t and Ca,t vary over time as a function of the available measurements, and

contain fixed coefficients of 0, 1, or fractional values as indicated in the measurement definitions

(11) and (13). The measurement errors are independent across elements of Za,t, modeled as

conditionally Gaussian with zero mean and time-varying variance, as detailed below.

4.5 Shock distributions

This section describes our modeling of the shocks in the MDS and VAR specifications, starting

with the distribution of ε̃t, the shocks to the gaps vector of our state space model. (In the MDS

case, η̃t = ε̃t.) Throughout, we model these shocks as conditionally Gaussian: ε̃t ∼ N (0, Σ̃t).

We model variations in uncertainty through a time-varying Σ̃t. To do so, we build on the

specification of Chan (2020) in which a scalar factor affects the entire Gaussian shock vector,

imparting perfectly correlated variations in uncertainty to all shocks. We extend his framework

by splitting the shock vector into multiple blocks, each with its own common volatility factor. In

our case, the shock vector reflects shocks to forecasts at different horizons, and the block structure

allows us to model distinct variations in uncertainty at different forecast horizons. Specifically, we

adopt a structure with two blocks, such that ε̃1,t consists of shocks to the lagged realized outcome

and forecasts up to h = 3 and ε̃2,t consists of shocks to forecasts for h = 4, . . . , H . The cutoff at

h = 3 between blocks reflects the desire for the first block to mostly capture forecasts for quarters

within the current year, while the second block captures forecasts for quarters in the next year and

beyond.12 Specifically, we adopt the following block-SV structure:

ε̃t =
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ε̃1,t
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
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0

0


 ,



λ1,t · Σ̃11 0

0 λ2,t · Σ̃22





 , (15)

in which K̃ is a matrix (with dimension 4 × (H − 2)) of coefficients to be estimated. This SV

12When the forecast origin is in Q1, h = 3 points to the last quarter of the current year. For forecast origins later in
the year, h = 3 points to the next year.
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structure yields the following time-varying variance-covariance matrix of the cyclical shocks:

Σ̃t =



I K̃

0 I






λ1,t · Σ̃11 0

0 λ2,t · Σ̃22






I K̃

0 I




′

. (16)

This block-SV representation includes a deliberate upper-triangular structure to capture covariance

between the shocks to the first and second blocks of shocks. Under this structure, the volatilities of

longer-horizon forecasts — latent states, not directly observed forecasts, for h ≥ 4 — are driven

by a single common, longer-horizon factor and not impacted by volatilities at shorter horizons.

Volatilities of shorter-horizon forecasts — which are directly observed — are allowed to be im-

pacted by both the common, shorter-horizon factor and the longer-horizon factor. We think of

time-varying volatility as having medium-frequency business cycle drivers as well as some higher

frequency drivers; the former impacts forecast volatility at all horizons, whereas the latter only

impacts the volatilities of shorter-horizon forecasts.

It is commonly understood that the ordering of variables affects estimates of VARs with SV

processes for each variable (see, e.g., Arias et al. (2023)). With our two-block specification, within

each block, the common SV specification means that variable ordering does not matter. However,

ordering has some impact through the block-triangular structure; changing to a lower-triangular

rather than upper-triangular structure would change the model estimates. In this setting, though, for

the reasons given above for the upper-triangular structure, this specification choice is less arbitrary

than the simple ordering of variables in a conventional VAR with SV.

The scalar factors λ1,t and λ2,t impart time variation and fat tails to the shock vector ε̃t. Build-

ing on, among others, Carriero et al. (2022), Chan (2020), and Jacquier et al. (2004), we model

these factors as the products of iid inverse-gamma draws and persistent stochastic volatility pro-
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cesses:

λi,t = ϕi,t · λ̃i,t , ∀ i = 1, 2 , (17)

with ϕi,t ∼ IG
νi
2
,
νi
2


, log λ̃t ≡



log λ̃1,t

log λ̃2,t


 =



ρ1 0

0 ρ2


 log λ̃t−1 + ϵλt , (18)

and ϵλt ∼ N (0,Φ). The iid inverse-gamma draws add fat tails in the form of a multivariate t

distribution with νi degrees of freedom to each block. The vector SV process log λ̃t has correlated

shocks and is normalized to a mean of zero, obviating the need for normalizing assumptions on the

constant-coefficient matrices Σ̃11 and Σ̃22.

To complete the models, we need to specify processes for the trend shock (w∗
t ) and measure-

ment error (ni,t) for each annual forecast i. We use (independent) horseshoe specifications for

these shocks. Carvalho et al. (2010) proposed the horseshoe for modeling sparse regressions, i.e.,

regressions with many regressors, many of which are expected to be irrelevant, with only a few

attracting substantial mass a posteriori. So while a horseshoe prior places considerable mass on

coefficient values of zero, it also has particularly fat tails to generate (few) sizable coefficient es-

timates. Similarly, our application of the horseshoe to shocks reflects our presumption that most

realizations of shocks are close to zero while some can instead be sizable. To allow the size of

measurement errors to vary systematically within the year, we apply separate horseshoe processes

to forecasts collected in different quarters of the year. The horseshoe has a conditionally Gaussian

representation, with conditional mean 0 and a time-varying conditional variance, as indicated in

equation (14) for the case of the noise shocks. Similarly, for the trend shocks, we have:

w∗
t ∼ N (0, ω2

t ). (19)

In modeling ω2
t and σ2

i,t, the horseshoe representation employs global and local shrinkage (i.e.,

specific to each variable and each t, respectively) as detailed in the supplementary online appendix.
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4.6 Estimation

We estimate the models using Bayesian Markov chain Monte Carlo (MCMC) methods — specifi-

cally, a Gibbs sampler. The model estimation is conditioned on joint data for observed realizations

and SPF predictions for a given economic variable (like GDP growth), but estimated separately for

different economic variables.

In the MDS specification, the objects to be estimated include the ρi and Φ parameters of the SV

processes, the constant innovation covariance matrix Σ̃, the parameters of the horseshoe models for

innovations to the long-run forecast and measurement errors, the time series of the latent volatility

states in λ̃t, and the time series of latent forecast states contained in Yt. We sample the parameters

of the SV processes using a conventional Gaussian prior and conditional posterior for ρi and an

inverse Wishart prior and conditional posterior for Φ. We sample Σ̃ with an inverse Wishart prior

and conditional posterior. We estimate the volatility states in λ̃t with the mixture approach of

Kim et al. (1998). Sampling of the horseshoe components in shocks to trend and noise follows

the MCMC scheme described in Makalic and Schmidt (2016). Estimation of the VAR requires

additional steps in the Gibbs sampler to draw the coefficients Π̃ from their multivariate normal

conditional posterior, while accounting for the heteroskedasticity in the shock processes. Further

details are provided in the supplementary online appendix.

Sampling the latent forecast states contained in Yt involves more complexity. Since our model

assumes no measurement error in at least some of its observables, we face an ill-defined posterior

precision that cannot be directly handled by conventional precision-based samplers. To efficiently

draw the latent forecast states in Yt, we build on a new precision-based sampler developed in

Mertens (2023) with details described in the supplementary online appendix. We retain 3,000

draws after a burn-in sample of 3,000 initial draws. When simulating the model’s predictive density

we sample 100 paths of future realizations of stochastic volatility and other state variables for each

MCMC draw, resulting in S = 300, 000 predictive density draws.
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5 Results

This section begins with results on the term structures of expectations and forecast uncertainty. We

focus on SPF-consistent forecasts from our MDS model specification. We then examine various

aspects of the quality of out-of-sample forecasts, from both our MDS and VAR specifications. In

all of these results, we examine forecasts starting in 1990Q1. We conclude the section with some

comparisons of our SPF-based forecasts against those of the FOMC as reported in the SEP.

5.1 Term structures of expectations and forecast uncertainty

To illustrate the term structures of SPF-consistent expectations produced by our MDS model, Fig-

ure 2 presents fan charts of quarterly forecasts from an origin of 2024Q1. As detailed above, to

generate these out-of-sample forecasts the model uses as inputs quarterly SPF forecasts up through

the four-step-ahead horizon and the available annual fixed-event forecasts (except for the current

year), available as of the indicated forecast origin (and not future forecasts or other data). We

report the mean forecasts and 68 and 90 percent forecast intervals.

In this example, the SPF-consistent point forecasts show GDP growth remaining around 2

percent, the unemployment rate edging up just a little before settling around 4 percent, and inflation

eventually settling at or (in the case of the CPI) a little above 2 percent. As expected, the forecast

intervals widen — i.e., forecast uncertainty increases — as the quarterly horizon grows. Below we

take up in more detail the term structure of uncertainty and its variation over time.

Regarding the construction of the SPF-consistent quarterly forecasts, by design the MDS model’s

forecasts for horizons 0 through 4 quarters exactly match the reported SPF projections. Forecasts

at horizons 5 through H interpolate (up to measurement error) through the SPF’s published annual

forecasts of growth, unemployment, and inflation. That interpolation is not necessarily simply lin-

ear; the model is capable of capturing richer dynamics based on the historical comovement among

the observed updates in SPF forecasts. At these horizons of 5 and more quarters, there is some

uncertainty around the model’s estimates of the SPF-consistent quarterly forecast (i.e., uncertainty
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Figure 2: Quarterly fan charts and SPF per 2024Q1
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Notes: SPF-consistent predictive densities as generated from our MDS model, showing predictive
mean as well as 68% and 90% uncertainty bands. Quarterly forecast horizons on the horizontal
axis. Diamonds indicate observed values for SPF fixed-horizon forecasts for h = 0, 1, 2, 3, 4.
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around the estimate of the point forecast — the state Ftyt+h that is latent for h ≥ 5). Comparisons

omitted in the interest of brevity confirm that, as expected, the uncertainty around the quarterly

forecast estimates is reduced by having annual forecasts as measurements. However, the uncer-

tainty around the latent state estimate is a small component of the overall forecast uncertainty

reflected in the fan charts. The overall forecast uncertainty is captured and driven by our model’s

estimates of the time-varying variances of historical forecast errors and updates.

To provide a broader time perspective on the term structure of SPF-consistent expectations,

Figure 3 shows the history of term structures of SPF-consistent forecasts (these are all out-of-

sample) from 1990 through 2019. For readability, we only report forecasts originating in the first

quarter of each year, and the figures stop in 2019 to avoid the pandemic period’s volatility. A

given colored solid line provides the SPF-consistent quarterly forecasts for a given forecast origin,

with different lines for different origins, and dotted lines provide the outcomes of each variable.

Across quarters for a given origin, the forecasts often show some fluctuations before settling at

the model’s take on the long-run mean. Over time, however, these means show some changes; the

forecast paths evolve to follow the broad contours of economic outcomes. This pattern is starkest

with the decline of actual unemployment and inflation from about 1990 to 2000. Also as expected,

from one forecast origin to another, short-horizon forecasts change more abruptly than do the

longer-horizon forecasts. The forecasts of growth and unemployment reflect the widely familiar

difficulty of forecasting recessions in advance; for example, the SPF-consistent forecasts of growth

turn sharply negative after the recessions of 1990-91 and 2007-2009 become evident and, in each

case, anticipate recoveries. On the other hand, SPF forecasters were consistently surprised by how

quickly unemployment declined after the 2007-2009 recession.

The dynamic behavior of the SPF-consistent forecasts across quarters reflects forecasters’

views of underlying data processes. In results detailed in the supplementary online appendix,

it is possible to derive univariate processes for the time series yt implied by estimates of our model

of SPF forecasts (conditioning on the entire SPF term structure). Essentially, using the model’s

steady-state Kalman filter and the Kalman gain, we can obtain moving average (MA) coefficients
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of the process for yt. In MDS model-based estimates for GDP growth and the two inflation mea-

sures, the coefficient profiles resemble low-order MA processes, with a little more persistence for

inflation than growth. Following a surprise increase, these variables steadily return to their longer-

run levels. The implied process for the unemployment rate resembles a much more persistent

AR process with hump-shaped dynamics, such that following a surprise increase, unemployment

rises further before slowly declining. Estimated processes implied by the VAR specification are

qualitatively similar to those from the MDS specification.

Turning from SPF-consistent point forecasts to the term structure of forecast uncertainty, Figure

4 depicts the term structure of uncertainty around quarterly forecasts, from 1990 to 2023. For

constructing the figure, we measure uncertainty by the width of the 68 percent bands of the model’s

predictive densities estimated in real time (i.e., we report out-of-sample forecast uncertainty). For

readability, the chart includes a subset of quarterly horizons, including a few short ones and longer

horizons at increments of 4 quarters.

In these results, uncertainty is noticeably higher at longer horizons (8 or more quarters) than

shorter horizons (0 to 4 quarters). While this applies to all variables, short-horizon uncertainty

compared to long-horizon uncertainty is relatively high for GDP growth. The uncertainty of out-

of-sample forecasts fluctuates significantly over time (a feature we capture by including stochastic

volatility in the model). For GDP growth and unemployment, uncertainty rose some following the

2001 recession and increased more notably around the Great Recession and again a few years into

the ensuing recovery (while omitted from the chart, our estimates also show uncertainty declining

significantly with the Great Moderation that occurred earlier in the sample). Then the outbreak

of COVID-19 produced an unprecedented, but temporary, spike in uncertainty in 2020. As of

2023Q4, forecast uncertainty for GDP growth and unemployment remains above its pre-pandemic

level. The uncertainty estimates for the inflation measures sharply trended down from 1990 to 2000

(inflation uncertainty also declined significantly with the Great Moderation) and then fluctuated

over the remainder of the sample, with some increases around the Great Recession and pandemic.
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Figure 3: SPF-consistent term structures of expectations over time (MDS)
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Note: Term structures of expectations for quarterly forecasts, generated out-of-sample from our
MDS model at different forecast origins, and realized values. For sake of readability, only forecast
origins in Q1 and for years prior to the COVID-19 pandemic are shown. Shaded areas depict
NBER recessions.
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of the process for yt. In MDS model-based estimates for GDP growth and the two inflation mea-

sures, the coefficient profiles resemble low-order MA processes, with a little more persistence for

inflation than growth. Following a surprise increase, these variables steadily return to their longer-

run levels. The implied process for the unemployment rate resembles a much more persistent

AR process with hump-shaped dynamics, such that following a surprise increase, unemployment

rises further before slowly declining. Estimated processes implied by the VAR specification are

qualitatively similar to those from the MDS specification.
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4 depicts the term structure of uncertainty around quarterly forecasts, from 1990 to 2023. For

constructing the figure, we measure uncertainty by the width of the 68 percent bands of the model’s

predictive densities estimated in real time (i.e., we report out-of-sample forecast uncertainty). For

readability, the chart includes a subset of quarterly horizons, including a few short ones and longer

horizons at increments of 4 quarters.

In these results, uncertainty is noticeably higher at longer horizons (8 or more quarters) than

shorter horizons (0 to 4 quarters). While this applies to all variables, short-horizon uncertainty

compared to long-horizon uncertainty is relatively high for GDP growth. The uncertainty of out-

of-sample forecasts fluctuates significantly over time (a feature we capture by including stochastic

volatility in the model). For GDP growth and unemployment, uncertainty rose some following the

2001 recession and increased more notably around the Great Recession and again a few years into

the ensuing recovery (while omitted from the chart, our estimates also show uncertainty declining

significantly with the Great Moderation that occurred earlier in the sample). Then the outbreak

of COVID-19 produced an unprecedented, but temporary, spike in uncertainty in 2020. As of

2023Q4, forecast uncertainty for GDP growth and unemployment remains above its pre-pandemic

level. The uncertainty estimates for the inflation measures sharply trended down from 1990 to 2000

(inflation uncertainty also declined significantly with the Great Moderation) and then fluctuated

over the remainder of the sample, with some increases around the Great Recession and pandemic.
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Figure 4: Term structures of uncertainty over time (MDS)
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Note: Uncertainty measured by the width of 68% predictive intervals, generated out of sample from
our MDS model, for selected quarterly forecast horizons. Shaded areas depict NBER recessions.
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of the process for yt. In MDS model-based estimates for GDP growth and the two inflation mea-

sures, the coefficient profiles resemble low-order MA processes, with a little more persistence for

inflation than growth. Following a surprise increase, these variables steadily return to their longer-

run levels. The implied process for the unemployment rate resembles a much more persistent

AR process with hump-shaped dynamics, such that following a surprise increase, unemployment

rises further before slowly declining. Estimated processes implied by the VAR specification are

qualitatively similar to those from the MDS specification.

Turning from SPF-consistent point forecasts to the term structure of forecast uncertainty, Figure

4 depicts the term structure of uncertainty around quarterly forecasts, from 1990 to 2023. For

constructing the figure, we measure uncertainty by the width of the 68 percent bands of the model’s

predictive densities estimated in real time (i.e., we report out-of-sample forecast uncertainty). For

readability, the chart includes a subset of quarterly horizons, including a few short ones and longer

horizons at increments of 4 quarters.

In these results, uncertainty is noticeably higher at longer horizons (8 or more quarters) than

shorter horizons (0 to 4 quarters). While this applies to all variables, short-horizon uncertainty

compared to long-horizon uncertainty is relatively high for GDP growth. The uncertainty of out-

of-sample forecasts fluctuates significantly over time (a feature we capture by including stochastic

volatility in the model). For GDP growth and unemployment, uncertainty rose some following the

2001 recession and increased more notably around the Great Recession and again a few years into

the ensuing recovery (while omitted from the chart, our estimates also show uncertainty declining

significantly with the Great Moderation that occurred earlier in the sample). Then the outbreak

of COVID-19 produced an unprecedented, but temporary, spike in uncertainty in 2020. As of

2023Q4, forecast uncertainty for GDP growth and unemployment remains above its pre-pandemic

level. The uncertainty estimates for the inflation measures sharply trended down from 1990 to 2000

(inflation uncertainty also declined significantly with the Great Moderation) and then fluctuated

over the remainder of the sample, with some increases around the Great Recession and pandemic.
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5.2 Quality of MDS and VAR forecasts

This section examines the quality of our SPF-consistent forecasts along various dimensions. This

quality assessment includes out-of-sample forecasts from both the MDS and VAR models. Un-

less otherwise noted, our evaluations use forecasts through 2023Q4. (The supplementary online

appendix contains corresponding results for a sample of forecasts ending before the pandemic,

which yield the same qualitative findings.) After presenting the results from the MDS and VAR

specifications, we discuss interpretations and implications of their relative performance.

Regarding departures from forecast rationality, before taking up forecast quality we assess the

extent to which the general VAR specification reflects them. Building on the framework of Nord-

haus (1987) and subsequent empirical work, as well as work on information rigidities in macroeco-

nomics, Coibion and Gorodnichenko (2015) propose quantifying departures from rationality with

the coefficients of regressions of forecast errors on forecast updates:

yt+h − Ftyt+h = αh + βh (Ft − Ft−1) yt+h + errort+h . (20)

Many subsequent studies — often pooling estimates across forecast horizons — have provided

related evidence using this regression for various forecasts. We apply this metric to estimates of

our VAR specification. From standard regression calculus, the βh coefficient of (20) is a function of

the moments of forecast errors and updates. As detailed in the supplementary online appendix, our

VAR specification of SPF forecasts can be used to compute corresponding moment values using

the estimated coefficients of the VAR and in turn to compute the implied βh coefficient. We use

this approach to obtain pooled estimates of β for the horizons for which observed fixed-horizon

forecasts are available from the SPF.13 As reported in the supplementary online appendix, these

estimates are generally in line with the literature that finds positive coefficients of small-to-modest

magnitudes, indicating some departures from full rationality in professional forecasts.

13The SPF generally provides fixed-horizon forecasts for quarters h = 0 through 4. Since the right-hand side of
equation (20) requires observations for an (h+1)-step-ahead forecast, it is typical to pool forecasts for h = 0 through
3, which we do as well.
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One metric of the quality of our estimated term structure of SPF (point) forecasts is whether

they are good predictions of the SPF published in the subsequent quarter — in particular, whether

our estimates of forecasts not directly observed at forecast origin t are good predictions of the

forecasts (at the same horizon) directly observed in the SPF published at forecast origin t+ 1. We

rely on estimates of regressions styled after the efficiency test of Mincer and Zarnowitz (1969):

Ft+1yt+h = αh + βhFtyt+h + errort+h , (21)

where we only use horizons such that the t+1 forecast on the left side is directly observed and the

t forecast on the right relies — at longer horizons — on latent quarterly forecasts estimated from

our model. (While we simplify notation here to just refer to quarterly forecasts, our regressions

also cover annual forecasts at longer horizons.) If the predictions are good, the slope coefficient βh

will be close to 1, with an intercept αh of 0. Table 1 reports these regression estimates for a sample

of 1990-2023, separately by model, variable, and horizon.

Generally, these tests of the predictability of SPF point forecasts indicate that our models fare

reasonably well in producing forecasts that are efficient or nearly efficient forecasts of the next and

directly observed SPF. For example, for GDP growth, the slope coefficients obtained for the MDS

forecasts are all close to 1; only at a horizon of h = 4 does the estimate differ significantly from

unity. With MDS forecasts, the same pattern applies for UNRATE, PGDP, and CPI: most slope

coefficients are close to 1, with one or two horizons departing significantly from a coefficient of

unity. By this metric, the quality of the forecasts at longer horizons appears to be comparable to

that at shorter horizons. The results are broadly similar for SPF forecasts obtained with the VAR

generalization of the model, albeit with a few more rejections of slope coefficients of unity (most

sharply for PGDP). Of course, given the count of tests reflected in the table’s results for different

variables and horizons, some rejections of unity slope coefficients are to be expected given Type

II error. Broadly, we take these results as evidence that our interpolation of quarterly forecasts at

longer horizons is yielding forecasts comparable in quality to the shorter-horizon forecasts.

27

As another measure of forecast quality, we conduct an out-of-sample evaluation of real-time

forecasts generated by the MDS and VAR versions of the model. Table 2 compares the accuracy

of point forecasts, evaluated in terms of RMSE, as well as density predictions, evaluated by the

continuous ranked probability score (CRPS). From 1990Q1 onward, out-of-sample forecasts are

generated for quarterly horizons from h = 0 through 16, by re-estimating the model at each forecast

origin (using all available data since 1968Q4), and simulating its predictive density. The results

are reported as ratios with MDS results in the denominator, so that entries below (above) 1 indicate

that the VAR forecasts are more (less) accurate than the MDS forecasts.

Table 2: Relative forecast accuracy of MDS vs. VAR model

RMSE CRPS

h RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

0 1.01 1.12 0.99 0.91∗∗ 1.02 0.95 1.00 0.93∗∗∗

1 1.04 1.05 1.02 1.01 1.01 1.00 1.00 1.01
2 0.99 1.07 1.01 1.01 0.99 1.01 0.99 1.01
3 1.00 1.04 1.02 1.01 1.01 1.00 1.00 1.01
4 1.00 1.02 1.03 1.01 1.00 1.00 1.00 1.01
5 1.00 1.02 1.04 1.01 1.00 1.01 1.01 1.01
6 1.00 1.02 1.04 1.01 1.01 1.02 1.02 1.01
7 1.00 1.02 1.04 1.01 0.99 1.03 1.02 1.01
8 1.00 1.02∗ 1.04 1.01 1.00 1.03 1.02 1.01
9 1.00 1.03∗ 1.04 1.01 1.00 1.04 1.03 1.01
10 1.00 1.03 1.04 1.01 1.00 1.04 1.03 1.02
11 1.00 1.02 1.04 1.01 1.00 1.03 1.03 1.02
12 1.00 1.01 1.04 1.01 1.00 1.02 1.03 1.01
13 1.00 1.00 1.04 1.01 1.00 1.00 1.03 1.01
14 1.00 0.99 1.04 1.01 1.01 0.99 1.04 1.01
15 1.00 1.00 1.04 1.01 1.01 1.00 1.03 1.01
16 1.00 1.00 1.04 1.00 1.01 0.99 1.03 1.01

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast
horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized values are
available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors with
h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

These results indicate that the point and density forecasts (again, these are out-of-sample) from

the MDS and VAR specifications have broadly similar accuracy over the full sample. For RGDP,
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Table 1: Predictability of SPF point forecasts

RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 1.41 1.32 0.86 0.83 0.99 0.98 1.15 1.19
(0.24) (0.25) (0.08) (0.10) (0.05) (0.06) (0.16) (0.15)

h = 1 1.02 1.02 0.91 0.86 1.02 0.99 1.01 1.00
(0.09) (0.09) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 1.02 0.97 0.94 0.90 0.94 0.85 0.94 0.95
(0.08) (0.08) (0.06) (0.07) (0.03) (0.03) (0.04) (0.05)

h = 3 0.94 0.80 0.96 0.91 0.92 0.86 0.92 0.92
(0.09) (0.09) (0.05) (0.06) (0.04) (0.03) (0.04) (0.04)

h = 4 0.87 0.57 0.97 0.93 0.91 0.90 0.94 0.89
(0.06) (0.09) (0.05) (0.06) (0.03) (0.04) (0.04) (0.03)

y = 1 0.94 0.91 0.96 0.93 0.93 0.91 0.98 0.96
(0.09) (0.07) (0.05) (0.06) (0.03) (0.03) (0.05) (0.05)

y = 2 0.94 0.96 0.92 0.95 — — 0.85 0.74
(0.09) (0.10) (0.07) (0.04) — — (0.11) (0.09)

y = 3 0.95 0.59 0.76 0.95 — — — —
(0.06) (0.24) (0.08) (0.04) — — — —

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based pre-
dictions of next-quarter’s published values for SPF forecasts at different forecast horizons.
Heteroskedasticity-consistent standard errors in parentheses. Bold font distinguishes coefficient
estimates significantly different from 1 with a 10% confidence level. Evaluation window from
1990Q1 to 2023Q4 (and as far as data for SPF forecasts at the different horizons are available).
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forecasts generated by the MDS and VAR versions of the model. Table 2 compares the accuracy

of point forecasts, evaluated in terms of RMSE, as well as density predictions, evaluated by the

continuous ranked probability score (CRPS). From 1990Q1 onward, out-of-sample forecasts are

generated for quarterly horizons from h = 0 through 16, by re-estimating the model at each forecast

origin (using all available data since 1968Q4), and simulating its predictive density. The results

are reported as ratios with MDS results in the denominator, so that entries below (above) 1 indicate

that the VAR forecasts are more (less) accurate than the MDS forecasts.

Table 2: Relative forecast accuracy of MDS vs. VAR model

RMSE CRPS

h RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

0 1.01 1.12 0.99 0.91∗∗ 1.02 0.95 1.00 0.93∗∗∗

1 1.04 1.05 1.02 1.01 1.01 1.00 1.00 1.01
2 0.99 1.07 1.01 1.01 0.99 1.01 0.99 1.01
3 1.00 1.04 1.02 1.01 1.01 1.00 1.00 1.01
4 1.00 1.02 1.03 1.01 1.00 1.00 1.00 1.01
5 1.00 1.02 1.04 1.01 1.00 1.01 1.01 1.01
6 1.00 1.02 1.04 1.01 1.01 1.02 1.02 1.01
7 1.00 1.02 1.04 1.01 0.99 1.03 1.02 1.01
8 1.00 1.02∗ 1.04 1.01 1.00 1.03 1.02 1.01
9 1.00 1.03∗ 1.04 1.01 1.00 1.04 1.03 1.01
10 1.00 1.03 1.04 1.01 1.00 1.04 1.03 1.02
11 1.00 1.02 1.04 1.01 1.00 1.03 1.03 1.02
12 1.00 1.01 1.04 1.01 1.00 1.02 1.03 1.01
13 1.00 1.00 1.04 1.01 1.00 1.00 1.03 1.01
14 1.00 0.99 1.04 1.01 1.01 0.99 1.04 1.01
15 1.00 1.00 1.04 1.01 1.01 1.00 1.03 1.01
16 1.00 1.00 1.04 1.00 1.01 0.99 1.03 1.01

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast
horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized values are
available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors with
h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

These results indicate that the point and density forecasts (again, these are out-of-sample) from

the MDS and VAR specifications have broadly similar accuracy over the full sample. For RGDP,
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horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized values are
available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors with
h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

These results indicate that the point and density forecasts (again, these are out-of-sample) from

the MDS and VAR specifications have broadly similar accuracy over the full sample. For RGDP,

29the RMSE and CRPS ratios are all very close to 1, at both shorter horizons (for which SPF forecasts

are directly observed) and longer horizons (for which quarterly forecasts must be interpolated by

the models). For the inflation measures, the RMSE and CRPS ratios are typically just a bit above

1.00, giving a very slight advantage (not enough to be considered material) to the MDS model.14

The MDS model’s advantage over the VAR is modestly greater for UNRATE.

As another measure of forecast quality, Table 3 reports unconditional coverage rates — the

frequency with which actual quarterly outcomes fall within 68 and 90 percent forecast intervals.

(In the 90 percent case, there are relatively few observations available for evaluating accuracy in

the tails of the distributions.) A frequency of more (less) than 68/90 percent means that, on average

over a given sample, the estimated forecast density is too wide (narrow). We judge the significance

of the results using p-values of t-statistics for the null hypothesis that the empirical coverage rate

equals the nominal rate. To save space, the table reports results for just the VAR specification; the

MDS model yields similar coverage rates, reported in the supplementary online appendix.

Overall, these results indicate that our models applied to the SPF yield forecasts and densities

that are reasonable, but not perfect, from the perspective of unconditional coverage. The coverage

rates are best for CPI and PGDP inflation, with empirical coverage rates comparable to nominal

rates and relatively few rejections of correct coverage. Coverage performance is more mixed for

GDP growth. At longer horizons, coverage rates are close to nominal rates (with few significant

departures), although empirical rates run a bit below nominal rates, indicating the intervals are a

little too narrow. At shorter horizons, the empirical coverage rates are more notably below nominal

rates. Unconditional coverage performance is also mixed for unemployment forecasts — for 68

percent coverage and less so for 90 percent coverage. For unemployment, 68 percent predictive

intervals tend to be too wide at shorter horizons and too narrow at longer horizons.

Of course, unconditional coverage rates may be seen as a limited window into the calibration

of the predictive densities. Rossi and Sekhposyan (2019) develop a broader approach to assessing

14Instances of relative RMSE that are worse for the VAR model compared to the MDS case are consistent with
results reported in Bianchi et al. (2022), who find generally poor out-of-sample predictability of SPF forecasts based
on past forecasts alone.
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As another measure of forecast quality, we conduct an out-of-sample evaluation of real-time

forecasts generated by the MDS and VAR versions of the model. Table 2 compares the accuracy

of point forecasts, evaluated in terms of RMSE, as well as density predictions, evaluated by the

continuous ranked probability score (CRPS). From 1990Q1 onward, out-of-sample forecasts are

generated for quarterly horizons from h = 0 through 16, by re-estimating the model at each forecast

origin (using all available data since 1968Q4), and simulating its predictive density. The results

are reported as ratios with MDS results in the denominator, so that entries below (above) 1 indicate

that the VAR forecasts are more (less) accurate than the MDS forecasts.
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8 1.00 1.02∗ 1.04 1.01 1.00 1.03 1.02 1.01
9 1.00 1.03∗ 1.04 1.01 1.00 1.04 1.03 1.01
10 1.00 1.03 1.04 1.01 1.00 1.04 1.03 1.02
11 1.00 1.02 1.04 1.01 1.00 1.03 1.03 1.02
12 1.00 1.01 1.04 1.01 1.00 1.02 1.03 1.01
13 1.00 1.00 1.04 1.01 1.00 1.00 1.03 1.01
14 1.00 0.99 1.04 1.01 1.01 0.99 1.04 1.01
15 1.00 1.00 1.04 1.01 1.01 1.00 1.03 1.01
16 1.00 1.00 1.04 1.00 1.01 0.99 1.03 1.01

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast
horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized values are
available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors with
h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

These results indicate that the point and density forecasts (again, these are out-of-sample) from

the MDS and VAR specifications have broadly similar accuracy over the full sample. For RGDP,
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the RMSE and CRPS ratios are all very close to 1, at both shorter horizons (for which SPF forecasts

are directly observed) and longer horizons (for which quarterly forecasts must be interpolated by

the models). For the inflation measures, the RMSE and CRPS ratios are typically just a bit above

1.00, giving a very slight advantage (not enough to be considered material) to the MDS model.14

The MDS model’s advantage over the VAR is modestly greater for UNRATE.

As another measure of forecast quality, Table 3 reports unconditional coverage rates — the

frequency with which actual quarterly outcomes fall within 68 and 90 percent forecast intervals.

(In the 90 percent case, there are relatively few observations available for evaluating accuracy in

the tails of the distributions.) A frequency of more (less) than 68/90 percent means that, on average

over a given sample, the estimated forecast density is too wide (narrow). We judge the significance

of the results using p-values of t-statistics for the null hypothesis that the empirical coverage rate

equals the nominal rate. To save space, the table reports results for just the VAR specification; the

MDS model yields similar coverage rates, reported in the supplementary online appendix.

Overall, these results indicate that our models applied to the SPF yield forecasts and densities

that are reasonable, but not perfect, from the perspective of unconditional coverage. The coverage

rates are best for CPI and PGDP inflation, with empirical coverage rates comparable to nominal

rates and relatively few rejections of correct coverage. Coverage performance is more mixed for

GDP growth. At longer horizons, coverage rates are close to nominal rates (with few significant

departures), although empirical rates run a bit below nominal rates, indicating the intervals are a

little too narrow. At shorter horizons, the empirical coverage rates are more notably below nominal

rates. Unconditional coverage performance is also mixed for unemployment forecasts — for 68

percent coverage and less so for 90 percent coverage. For unemployment, 68 percent predictive

intervals tend to be too wide at shorter horizons and too narrow at longer horizons.

Of course, unconditional coverage rates may be seen as a limited window into the calibration

of the predictive densities. Rossi and Sekhposyan (2019) develop a broader approach to assessing

14Instances of relative RMSE that are worse for the VAR model compared to the MDS case are consistent with
results reported in Bianchi et al. (2022), who find generally poor out-of-sample predictability of SPF forecasts based
on past forecasts alone.
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that are reasonable, but not perfect, from the perspective of unconditional coverage. The coverage

rates are best for CPI and PGDP inflation, with empirical coverage rates comparable to nominal

rates and relatively few rejections of correct coverage. Coverage performance is more mixed for

GDP growth. At longer horizons, coverage rates are close to nominal rates (with few significant

departures), although empirical rates run a bit below nominal rates, indicating the intervals are a

little too narrow. At shorter horizons, the empirical coverage rates are more notably below nominal

rates. Unconditional coverage performance is also mixed for unemployment forecasts — for 68

percent coverage and less so for 90 percent coverage. For unemployment, 68 percent predictive

intervals tend to be too wide at shorter horizons and too narrow at longer horizons.

Of course, unconditional coverage rates may be seen as a limited window into the calibration

of the predictive densities. Rossi and Sekhposyan (2019) develop a broader approach to assessing
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the RMSE and CRPS ratios are all very close to 1, at both shorter horizons (for which SPF forecasts

are directly observed) and longer horizons (for which quarterly forecasts must be interpolated by

the models). For the inflation measures, the RMSE and CRPS ratios are typically just a bit above

1.00, giving a very slight advantage (not enough to be considered material) to the MDS model.14

The MDS model’s advantage over the VAR is modestly greater for UNRATE.

As another measure of forecast quality, Table 3 reports unconditional coverage rates — the

frequency with which actual quarterly outcomes fall within 68 and 90 percent forecast intervals.

(In the 90 percent case, there are relatively few observations available for evaluating accuracy in

the tails of the distributions.) A frequency of more (less) than 68/90 percent means that, on average

over a given sample, the estimated forecast density is too wide (narrow). We judge the significance

of the results using p-values of t-statistics for the null hypothesis that the empirical coverage rate

equals the nominal rate. To save space, the table reports results for just the VAR specification; the

MDS model yields similar coverage rates, reported in the supplementary online appendix.

Overall, these results indicate that our models applied to the SPF yield forecasts and densities

that are reasonable, but not perfect, from the perspective of unconditional coverage. The coverage

rates are best for CPI and PGDP inflation, with empirical coverage rates comparable to nominal

rates and relatively few rejections of correct coverage. Coverage performance is more mixed for

GDP growth. At longer horizons, coverage rates are close to nominal rates (with few significant

departures), although empirical rates run a bit below nominal rates, indicating the intervals are a

little too narrow. At shorter horizons, the empirical coverage rates are more notably below nominal

rates. Unconditional coverage performance is also mixed for unemployment forecasts — for 68

percent coverage and less so for 90 percent coverage. For unemployment, 68 percent predictive

intervals tend to be too wide at shorter horizons and too narrow at longer horizons.

Of course, unconditional coverage rates may be seen as a limited window into the calibration

of the predictive densities. Rossi and Sekhposyan (2019) develop a broader approach to assessing

14Instances of relative RMSE that are worse for the VAR model compared to the MDS case are consistent with
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Table 3: Forecast coverage rates (VAR model)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

0 50.00∗∗∗ 81.62∗∗∗ 76.47∗ 94.85∗∗ 55.88∗∗∗ 84.56∗ 66.18 91.18
1 55.56∗∗∗ 79.26∗∗∗ 77.78∗∗ 93.33 62.22 82.22∗∗ 60.74 84.44
2 58.21∗∗ 82.84∗∗ 77.61∗ 94.03 65.67 85.82 63.43 84.33
3 53.38∗∗∗ 82.71∗ 78.20∗ 91.73 64.66 86.47 64.66 86.47
4 56.06∗∗ 85.61 68.94 90.91 62.88 86.36 64.39 84.09
5 59.54 86.26 66.41 89.31 64.89 87.79 68.70 87.02
6 58.46∗∗ 86.15 63.85 88.46 64.62 87.69 66.15 88.46
7 64.34 86.05 62.02 88.37 64.34 89.92 65.89 87.60
8 62.50 84.38 60.16 87.50 65.62 88.28 68.75 86.72
9 62.20 83.46 56.69∗ 86.61 66.93 86.61 66.14 88.19
10 62.70 84.92 56.35∗ 85.71 65.87 89.68 67.46 87.30
11 66.40 83.20 52.00∗∗ 83.20 69.60 88.80 72.00 88.00
12 63.71 84.68 50.00∗∗ 82.26 69.35 89.52 70.16 87.90
13 69.11 84.55 48.78∗∗ 82.93 67.48 90.24 70.73 87.80
14 66.39 86.89 49.18∗∗ 82.79 69.67 89.34 69.67 88.52
15 64.46 86.78 48.76∗∗ 82.64 69.42 88.43 69.42 89.26
16 66.67 87.50 48.33∗ 81.67 71.67 90.00 71.67 89.17

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample
forecasts at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2023Q4
(and as far as realized values are available). Significance assessed by Diebold-Mariano tests using
Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and
10% level, respectively.
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whether predictive densities are correctly specified: testing the uniformity of the empirical cumu-

lative distribution functions (CDFs) of probability integral transforms (PITs) of forecasts. Their

approach compares empirical CDFs to the 45-degree line (representing a uniform CDF) with ap-

propriate confidence intervals for departures from uniformity. In the interest of brevity, Figure 5

provides these results for MDS and VAR forecasts of GDP growth and unemployment, for selected

horizons (the supplementary online appendix provides results for inflation).

The PITs comparisons indicate that the predictive densities are correctly calibrated for GDP

growth, with empirical CDFs of the PITs within the confidence intervals. This applies to both

the MDS and VAR forecasts. Importantly, the forecasts are correctly specified at both the shorter

horizons for which quarterly SPF forecasts are directly observed and the longer horizons for which

quarterly forecasts must be estimated with our models. The departures from uniformity are some-

what greater for the PITs of unemployment forecasts, with the empirical CDFs further away from

the 45-degree line. Graphically, while these departures come close to or hit the confidence interval

bounds, they generally do not fall outside the bounds, except in the case of h = 4 forecasts from the

MDS model. In this instance, the VAR performs a little better than the MDS model by allowing

some bias and rationality departures in the forecasts.

While we omit details in the interest of brevity (estimates are available in the supplemen-

tary online appendix), there is one metric by which the MDS specification has a clear advantage:

Marginal data densities (the conventional Bayesian measure of model fit) estimated with one-step-

ahead predictive likelihoods indicate that the MDS specification fits the data significantly better

than the more general VAR model. Nonetheless, we have shown that the VAR model implies de-

partures from full rationality in keeping with those documented in Coibion and Gorodnichenko

(2015) and subsequent studies, in which forecast updates of professional forecasters show statisti-

cally significant serial correlation. Yet the battery of additional metrics of forecast quality reported

in this section indicate that the more restricted MDS specification is on par with the more general

VAR; the models are hard to distinguish in those comparisons. These results suggest little benefit

— to forecast quality — to generalizing our baseline model to allow departures from our MDS
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assumption. But they also show that doing so imposes little cost on forecast quality.

In our assessment, the ambiguity around the best model can be seen as consistent with the

broader literature on survey forecasts. The strong evidence of bias and other departures from

rationality in survey forecasts comes from in-sample analysis of the forecasts. Various studies

have found these departures more challenging to exploit on an out-of-sample basis. Croushore

(2010) documents that deviations of the SPF (and the Livingston Survey) forecasts from rationality

are typically short-lived (episodic) and hard to exploit in real time; more recently, Foerster and

Matthes (2022) and Hajdini and Kurmann (2024) have found similar results. Similarly, Eva and

Winkler (2023) argue that the departures from rationality in Coibion and Gorodnichenko (2015)

and subsequent studies do not apply on an entirely out-of-sample basis and cannot be used (in linear

models) to improve on the SPF forecasts in real time. Biases being short-lived, contributing at most

only a small fraction to overall MSE, is consistent with notions of SPF forecasts providing at least

boundedly optimal, if not highly rational, forecasts, as discussed in, for example, Mertens and

Nason (2020). On the other hand, Bianchi et al. (2022) find that machine learning algorithms —

fed large amounts of information — can be used to improve forecast accuracy in survey forecasts

subject to time-varying bias. Ultimately, what model would we recommend? Our own inclination

is for the simpler MDS model that yields forecasts that are fully SPF-consistent. But researchers

with a stronger preference to allow for biases and other departures from rationality in SPF forecasts

can comfortably proceed with the VAR specification.

5.3 SPF forecasts as compared to SEP projections

In the introduction, we illustrated the use of our approach to produce SEP-like fan charts for SPF-

consistent forecasts. Of course, this raises a question as to how our SPF forecasts compare to SEP

forecasts over a longer time period. As context, note that Reifschneider and Tulip (2019) showed

that survey forecasts and Federal Reserve forecasts are very similar in terms of RMSE accuracy

over long periods of time. Their comparison relied on the fixed-event annual forecasts published by

various professional sources, including surveys; we will instead use our term structure of quarterly
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Figure 5: PITs for real GDP growth and the unemployment rate
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for GDP
growth and unemployment at selected quarterly forecast horizons. All forecasts are generated out
of sample by our MDS and VAR models, and evaluated over an evaluation window from 1990Q1
through 2023Q4 (and as far as realized values are available). 95% confidence bands for tests of
correct calibration from Rossi and Sekhposyan (2019); computed separately for each model, but
with nearly identical plot lines.
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assumption. But they also show that doing so imposes little cost on forecast quality.

In our assessment, the ambiguity around the best model can be seen as consistent with the

broader literature on survey forecasts. The strong evidence of bias and other departures from

rationality in survey forecasts comes from in-sample analysis of the forecasts. Various studies

have found these departures more challenging to exploit on an out-of-sample basis. Croushore

(2010) documents that deviations of the SPF (and the Livingston Survey) forecasts from rationality

are typically short-lived (episodic) and hard to exploit in real time; more recently, Foerster and

Matthes (2022) and Hajdini and Kurmann (2024) have found similar results. Similarly, Eva and

Winkler (2023) argue that the departures from rationality in Coibion and Gorodnichenko (2015)

and subsequent studies do not apply on an entirely out-of-sample basis and cannot be used (in linear

models) to improve on the SPF forecasts in real time. Biases being short-lived, contributing at most

only a small fraction to overall MSE, is consistent with notions of SPF forecasts providing at least

boundedly optimal, if not highly rational, forecasts, as discussed in, for example, Mertens and

Nason (2020). On the other hand, Bianchi et al. (2022) find that machine learning algorithms —

fed large amounts of information — can be used to improve forecast accuracy in survey forecasts

subject to time-varying bias. Ultimately, what model would we recommend? Our own inclination

is for the simpler MDS model that yields forecasts that are fully SPF-consistent. But researchers

with a stronger preference to allow for biases and other departures from rationality in SPF forecasts

can comfortably proceed with the VAR specification.

5.3 SPF forecasts as compared to SEP projections

In the introduction, we illustrated the use of our approach to produce SEP-like fan charts for SPF-

consistent forecasts. Of course, this raises a question as to how our SPF forecasts compare to SEP

forecasts over a longer time period. As context, note that Reifschneider and Tulip (2019) showed

that survey forecasts and Federal Reserve forecasts are very similar in terms of RMSE accuracy

over long periods of time. Their comparison relied on the fixed-event annual forecasts published by

various professional sources, including surveys; we will instead use our term structure of quarterly
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SPF forecasts to construct the fixed-event forecasts defined as in the SEP, which are Q4/Q4 growth

and inflation rates and the Q4 unemployment rate. Since SEP forecasts are not available before late

2007, the sample for comparison is less than 20 years; so we rely on informal comparisons rather

than engaging in formal inference that would likely be imprecise in the small sample available.15

To compare SEP forecasts with our forecasts constructed from the SPF using the MDS model,

Figure 6 reports the errors in real-time forecasts (errors measured as realizations less forecasts)

from the SEP and SPF, along with 68 percent uncertainty bands. The figure provides results for

forecasts of the current year and the following two years. Note that, for each year from 2008

through 2023, we report estimates for SPF and SEP forecasts published every quarter; within each

year, the (fixed-event annual) forecast horizon shrinks before resetting the next year, resulting in

sawtooth patterns in the charts. In keeping with the SEP fan charts, in the SEP results in our figure

the errors are based on point predictions measured as the median forecasts across participants, and

the uncertainty bands are +/− one times the historical RMSEs published in the SEP’s Table 2. In

the SPF results in the figure, the forecast errors are based on the posterior mean forecast obtained

from our MDS model, and the uncertainty bands are based on the 16th and 84th percentiles of the

predictive distribution.

The forecast errors reported in dots in the charts are broadly similar for the SEP and SPF, indi-

cating that the forecasts were also broadly similar. Both the SEP and SPF-consistent projections of
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than for inflation. The errors in SPF-consistent forecasts fall outside the SPF bands with some

regularity, whereas the errors in SEP forecasts are rarely outside the SEP bands.16 (Ideally, for

correct coverage, about 32 percent of errors would be outside the bands.) The SEP appears to

instead have bands wide enough to imply empirical coverage rates well above the nominal 68

percent rate. In this context, while the SPF-consistent bands are imperfect, in practice they could

be a useful point of comparison to bands published in SEP fan charts.

Our SPF-consistent forecast uncertainty bands also differ from the SEP bands in their time

variation. As might be expected, our estimates show more variation over time than do the SEP

measures, because our models include stochastic volatility, whereas the SEP measures treat fore-

cast error variances as being constant over 20-year windows. Following the Great Recession, our

estimates of uncertainty rise notably; the SEP measures show much less change. In the aftermath

of the recession, the SEP bands eventually widen a little, but they do so too late and too little in

comparison to our model’s estimates. In the ensuing economic recovery, our estimates fall quickly.

From 2015 to 2019, both our estimates of uncertainty and the associated forecast error bands and

the SEP estimates of uncertainty and forecast bands are relatively stable, with SEP bands wider

than the SPF bands. Following the volatility induced by the outbreak of the pandemic in 2020,

for GDP growth and unemployment our SV-based estimates of uncertainty rose sharply, to exceed

the SEP estimates, resulting in much wider 68 percent forecast error bands, but only temporarily.

For CPI inflation, our SPF-based estimates of forecast uncertainty have contours similar to those

of the SEP bands until the pandemic. The pandemic’s forecast errors initially caused uncertainty

bands from our model to widen and then narrow, whereas the SEP bands trended upward with

some delay.

16In results omitted in the interest of brevity, we have verified that the patterns in results shown above for coverage
rates of quarterly forecasts carry over to SEP-styled fixed-event forecasts.
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Figure 6: Error bands of annual forecasts: MDS model vs. SEP
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Note: Forecast errors measured as realizations less forecasts. Model-based uncertainty bands cor-
respond to 68% predictive intervals. FOMC’s SEP bands reflect the historical RMSEs of pro-
fessional forecasts over the previous 20 years as described by Reifschneider and Tulip (2019).
SPF-consistent densities and (ex-post) errors for calendar-year definitions of the SEP generated
from our MDS model. For inflation, we compare model-based densities for CPI against the SEP’s
forecasts for PCE inflation.
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6 Conclusion

This paper develops models that take published survey point forecasts — in our applications, from

the SPF — as inputs and produce estimates of a longer, more complete term structure (across

horizons) of survey-consistent point forecasts, along with a term structure of forecast uncertainty.

Our estimates of forecast uncertainty reflect dispersion in past errors from the SPF’s point forecasts,

with time-varying uncertainty captured through stochastic volatility. Our methods can exactly

replicate the SPF’s quarterly forecasts at short horizons while interpolating through the available

annual forecasts at longer horizons. To avoid excessively volatile imputation that can arise from

small inconsistencies between quarterly and annual SPF predictions, we model annual forecasts

with fat-tailed measurement errors that are a priori close to zero. Extending previous work, our

models (1) provide SPF-consistent quarterly term structures of expectations and uncertainty that

extend arbitrarily far ahead, while (2) handling the ragged edge of the SPF’s fixed-event forecasts

at longer horizons, and (3) offering a way to capture potential inefficiencies in SPF forecasts.

After illustrating the use of our approach to produce fan charts of annual forecasts (of Q4/Q4

percent changes or Q4 levels) directly analogous to those published by the FOMC, we show that

our baseline model yields SPF-consistent quarterly real-time forecasts of GDP growth, unemploy-

ment, and inflation that match the published fixed-horizon quarterly forecasts from the SPF and

interpolate through the annual fixed-event point forecasts. The model’s estimates of forecast un-

certainty vary over time, temporarily rising around recessions, and generally rise with the forecast

horizon. The SPF forecasts obtained from our models perform comparably — and reasonably

well — in various metrics of forecast quality, including efficiency as forecasts of the future SPF,

unconditional coverage rates, and overall density calibration. The quality of our SPF-consistent

estimated forecasts is comparable to the quality of the published short-horizon forecasts that have

been widely used in research and practice. Our models generate fan charts with time-varying

forecast uncertainty and reliable coverage rates.
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I SPF data and measurements

This appendix provides further information about the survey data used in our paper and obtained

from the Survey of Professional Forecasters (SPF) for the US. In addition, this appendix describes

additional details about the mapping between the survey data and the model. Finally, this appendix

assesses potential inconsistencies between observed SPF forecasts for quarterly and annual forecast

targets and the potential for such inconsistencies to generate excessively volatile imputations in our

model’s term structure of expectation, when assuming that both quarterly and annual forecasts are

observed without error.

I(a) Data availability

As described in the paper, we use SPF forecasts for four variables: growth in real GDP, the unem-

ployment rate, and inflation in CPI and GDP prices. For these variables, the SPF provides fairly

long samples of data, albeit with differing availabilities of forecasts at different forecast horizons.

The availability of forecasts at different horizons for each of the four variables is listed in Table A.1.

All forecast data listed in the table is used for our analysis (of course, for our out-of-sample anal-

ysis, the data is used only subject to real-time availability).

Table A.1: Availability of SPF point forecasts

Fixed-horizon Fixed-event calendar years

Variable Mnemonic Quarters 0 – 4 next 2-year 3-year

Real GDP RGDP 1968Q4 1981Q3 2009Q2 2009Q2
Unemployment rate UNRATE 1968Q4 1981Q3 2009Q2 2009Q2
GDP price index PGDP 1968Q4 1981Q3 NA NA
CPI inflation CPI 1981Q3 1981Q3 2005Q3 NA

Note: The table reports the first quarters in which SPF predictions become available in our data
set for the stated variables and horizons. NA stands for not available. Prior to 1992, RGDP corre-
sponds to real GNP, while PGDP corresponds to the GNP implicit deflator. The SPF’s published
data files include point forecasts for RGDP and PGDP in levels, which we convert to continu-
ously compounded growth rates. The SPF also provides current year predictions that are, however,
disregarded in our analysis due to overlap with the quarterly fixed-horizon predictions.

A.1
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Table A.2: Choice of maximal H in term-structure vector Yt

Variable Samples H

RGDP prior 2009Q2 5
since 2009Q2 12

UNRATE prior 2009Q2 5
since 2009Q2 12

PGDP entire sample 5

CPI prior 2005Q4 5
since 2005Q4 8

In principle, to track forecasts for up to three calendar years ahead, our model’s state vector

should need to track (latent) quarterly forecasts, Ftyt+h, for up to h = 15 quarters ahead. However,

as described in Section 4 of the paper, the paucity of quarterly forecast data at longer horizons

allows us to discipline our models by assuming that forecasts converge to a common trend level

sooner than for 15 quarters ahead. We denote the maximal horizon for which we track deviations

from trend by H . We generally choose H such that when the forecast origin is in Q1, H points to

the first quarter of the farthest annual horizon covered by the SPF forecasts. An exception is made

for data covering only SPF forecasts up to the next year, where H is set to 5 (instead of 4), since the

observed fixed-horizon SPF forecasts already extend through h = 4. As part of our out-of-sample

forecast analysis, models are (re-)estimated over different sub-samples of data, and we adjust H

accordingly. Reflecting the availability of long-horizon SPF data for different variables, we set H

as listed in Table A.2. Note that, even though the state vector ends with Ftyt+H and H is no larger

than 12, our endpoint assumption indicated in the paper allows us to simulate forecast densities

arbitrarily far ahead, and we report densities up to 16 quarters ahead for all variables throughout.

A.2

I(b) Measurement equations

This subsection provides examples of the measurement vector and the loading matrix introduced

in Section 4.4 of the main paper, defined as

Zt =



Zq,t

Za,t


 , (A.1)

Ct =



Cq,t

Ca,t


 , (A.2)

respectively, where the subscripts (q and a) reflect the partition of the arrays according to the

quarterly or annual horizons, and the time index t highlights that these objects vary over time as

a function of the available measurements. In the following examples, we take t = 2024Q1 as the

first forecast origin, and then illustrate how the corresponding elements change when we move to

the next quarter, t = 2024Q2. Before illustrating the measurement equations with examples for

each variable and at different forecasting origins, we review the data definitions used throughout

the paper for outcome variables and SPF data.

I(b.1) Data definitions

As indicated in the paper, the (quarterly) outcome variable yt refers to the following data definitions

for each variable:

RGDP: We measure GDP growth by the annualized quarterly growth rate (400 times the log

change) of real GDP.

UNRATE: The quarterly average level of the unemployment rate.

PGDP: We measure inflation in GDP prices by the annualized quarterly growth rate of the GDP

deflator (as with RGDP, calculated as 400 times the quarterly log change).

CPI: For CPI inflation, we take the annualized simple growth rate of quarterly CPI levels.

A.3
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A.3For each variable, we denote quarterly outcomes as defined above by yt.

Considering their treatment in the SPF, the variables listed above can broadly be categorized

into two groups: Variables from the national income and product accounts (NIPA) and non-NIPA

variables. The NIPA variables are GDP growth and GDP price inflation, while the non-NIPA

variables are the unemployment rate and CPI inflation.

For the non-NIPA variables, the SPF provides forecasts for the data definitions stated above. In

addition, for the non-NIPA variables, annual forecasts can be represented as four-quarter averages

of yt over the calendar year, whose realization we denote by ȳt, as defined in equation (11) of the

paper:

ȳt =
1

4
·

3∑
j=0

yt−j . (11)

For the unemployment rate, the annual forecast targets are defined as annual average levels. For

CPI inflation the annual forecasts target Q4/Q4 growth, which we approximate by the arithmetic

four-quarter mean of quarterly growth rates (so as to avoid further transformations of the SPF

quarterly forecasts).

In contrast, for the NIPA variables, the SPF provides (in the publicly available data files) fore-

casts in levels. We convert these to log growth rates.1 Moreover, SPF calendar-year forecasts

for NIPA variables reflect annual-average levels. Denoting the quarterly level of a NIPA variable

by It, growth in the annual-average level for the calendar year ending at quarter t is measured in

equation (12) of our paper as follows:

ŷt ≡ 100× log

(
It + It−1 + It−2 + It−3

It−4 + It−5 + It−6 + It−7

)
, (12)

Of course, the definition of ŷt is non-linear, and to capture annual forecasts for GDP growth

(and inflation in GDP prices) we employ a log-linear approximation involving 7 quarterly growth

rates. The approximation itself has been popularized by the work of Mariano and Murasawa (2003)

1Similar transformations are also applied, for example, by Aruoba (2020) and others.
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ȳt =
1

4
·

3∑
j=0

yt−j . (11)

For the unemployment rate, the annual forecast targets are defined as annual average levels. For

CPI inflation the annual forecasts target Q4/Q4 growth, which we approximate by the arithmetic

four-quarter mean of quarterly growth rates (so as to avoid further transformations of the SPF

quarterly forecasts).

In contrast, for the NIPA variables, the SPF provides (in the publicly available data files) fore-

casts in levels. We convert these to log growth rates.1 Moreover, SPF calendar-year forecasts

for NIPA variables reflect annual-average levels. Denoting the quarterly level of a NIPA variable

by It, growth in the annual-average level for the calendar year ending at quarter t is measured in

equation (12) of our paper as follows:

ŷt ≡ 100× log

(
It + It−1 + It−2 + It−3

It−4 + It−5 + It−6 + It−7

)
, (12)

Of course, the definition of ŷt is non-linear, and to capture annual forecasts for GDP growth

(and inflation in GDP prices) we employ a log-linear approximation involving 7 quarterly growth

rates. The approximation itself has been popularized by the work of Mariano and Murasawa (2003)

1Similar transformations are also applied, for example, by Aruoba (2020) and others.

A.4

on nowcasting, and its accuracy has been favorably evaluated in the context of SPF forecasts by

(amongst others) Patton and Timmermann (2011). Moreover, the approximation is commonly

used in the related literature on SPF forecasts, with notable examples provided by Aruoba (2020),

Crump et al. (2023), and Patton and Timmermann (2011). Specifically, this is a log-linear approxi-

mation, around a steady-state of zero growth, It/It−j = 1 for all j, and with yt ≡ 400·log (It/It−1),

and is equation (13) of the paper we get:

ŷt ≈
100

4
·
(
log

It
It−4

+ log
It−1

It−5

+ log
It−2

It−6

+ log
It−3

It−7

)
,

= 1/16 · (yt + 2 · yt−1 + 3 · yt−2 + 4 · yt−3 + 3 · yt−4 + 2 · yt−5 + yt−6) . (13)

The measurement equations of our model, described further below, use the approximation in (13)

to relate the annual SPF forecasts measured as in (12) to forecasts (or lagged realizations) of yt.

To recap, the SPF provides forecasts for targets yt+h, ȳt+h (annual forecasts of non-NIPA vari-

ables), and ŷt+h (annual forecasts of NIPA variables). To match forecasts of annual average levels

and their growth rates, t + h should, of course, correspond to a date in Q4, so that ȳt+h and ŷt+h

denote outcomes that are realized at the end of a calendar year. We denote the corresponding SPF

forecasts collected at forecast origin t by Ftyt+h, Ftȳt+h, and Ftŷt+h, respectively. At time t, we

match observed forecasts from the SPF with measurement equations for Ftyt+h, Ftȳt+h, and/or

Ftŷt+h, for different (but separate) values of h ≥ 0. We treat the calendar-year forecasts of the

unemployment rate and CPI inflation as readings of Ftȳt+h, while treating annual forecasts for

growth in real GDP and GDP prices as data on Ftŷt+h. The remainder of this appendix describes

the details of this matching with specific examples for each variable.

A.5



BANCO DE ESPAÑA 50 DOCUMENTO DE TRABAJO N.º 2429 

on nowcasting, and its accuracy has been favorably evaluated in the context of SPF forecasts by

(amongst others) Patton and Timmermann (2011). Moreover, the approximation is commonly

used in the related literature on SPF forecasts, with notable examples provided by Aruoba (2020),

Crump et al. (2023), and Patton and Timmermann (2011). Specifically, this is a log-linear approxi-

mation, around a steady-state of zero growth, It/It−j = 1 for all j, and with yt ≡ 400·log (It/It−1),

and is equation (13) of the paper we get:
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A.5

I(b.2) Real GDP growth

In Zq,2024Q1, we have y2023Q4 (real GDP growth of 2023Q4) and quarterly SPF point forecasts (as

of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =


y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

′
.

(A.3)

In Za,2024Q1, we have annual real GDP forecasts targeting 2025, 2026 and 2027 (note that

annual forecasts are associated with the fourth quarter of the target year):

Za,2024Q1 =


F2024Q1ŷ2025Q4, F2024Q1ŷ2026Q4, F2024Q1ŷ2027Q4

′
. (A.4)

The loading matrix takes the following form:

C2024Q1 =




Cq,2024Q1

Ca,2024Q1


 (A.5)

=




1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16
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0 0 0 0 0 0 1
16

2
16

3
16

4
16

3
16

2
16

1
16

0

0 0 0 0 0 0 0 0 0 0 1
16

2
16

3
16

4
16




, (A.6)

where the horizontal line marks the distinction between the mapping into quarterly (upper part) and

annual average (lower part) growth rates. Also, note that the loading matrix reflects the assumption

that the term structure of SPF-consistent forecasts is flat beyond H = 12. In other words, the gaps
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where the horizontal line marks the distinction between the mapping into quarterly (upper part) and

annual average (lower part) growth rates. Also, note that the loading matrix reflects the assumption

that the term structure of SPF-consistent forecasts is flat beyond H = 12. In other words, the gaps

A.6
Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2027Q2 = Ỹ2027Q3 = · · · = 0), and at those

horizons only the trend loading matters, hence the forecasts are set identical to the trend, with zero

gaps.

When we move to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1 (real GDP growth

of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting 2024Q2, 2024Q3, 2024Q4,

2025Q1 and 2025Q2, formally:

Zq,2024Q2 =


y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

′
,

(A.7)

hence compared to equation (A.3) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter.

In Za,2024Q2, we have annual real GDP forecasts targeting 2025, 2026 and 2027, as before, but

as annual forecasts are associated with the fourth quarter of the target year, the forecast horizons

shrink by one quarter relative to equation (A.4):

Za,2024Q2 =


F2024Q2ŷ2025Q4, F2024Q2ŷ2026Q4, F2024Q2ŷ2027Q4

′
. (A.8)

The loading matrix, C2024Q2, has the following components:

Cq,2024Q2 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0




, (A.9)
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A.7

and

Ca,2024Q2 =



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. (A.10)

with

C2024Q2 =




Cq,2024Q2

Ca,2024Q2


 . (A.11)

Compared to C2024Q1 in equation (A.6), in equation (A.9) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first two rows of Ca,2024Q1 in equation (A.10) shift

to the left, and so does the third row, with the weight 3
16

appearing as the last (bottom right) entry

(i.e., the loadings associated with the fixed-event forecasts change, in line with shrinking forecast

horizons).

In case of a forecast origin in Q3, the measurement vector and loadings can be constructed

analogously to the previous examples. However, when the forecast origin is in Q4, we need to adapt

the procedures, on account of the next-year growth rate being modeled as a linear combination of

growth rates in several quarters that also comprise the 2nd quarter of the current year, i.e., yt−2,

whereas the state vector comprises only yt−1, and Ftyt+h for h ≥ 0. In principle, a measure of

yt−2 is contained in the lagged state vector. However, in our measurements, the lagged realization

of GDP growth contained in Yt is informed by the first release data available at the time t round

of the SPF. Instead, when t is in Q4, the reading of yt−2 relevant for constructing Ftŷt+4 should

be provided by the time t vintage of GDP data. Thus, short of tracking data revisions in our

state space, we adjust the data construction and measurement loading for Ftŷt+4, when t is in Q4.
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whereas the state vector comprises only yt−1, and Ftyt+h for h ≥ 0. In principle, a measure of

yt−2 is contained in the lagged state vector. However, in our measurements, the lagged realization

of GDP growth contained in Yt is informed by the first release data available at the time t round

of the SPF. Instead, when t is in Q4, the reading of yt−2 relevant for constructing Ftŷt+4 should

be provided by the time t vintage of GDP data. Thus, short of tracking data revisions in our

state space, we adjust the data construction and measurement loading for Ftŷt+4, when t is in Q4.
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Specifically, we define:

FQ4
t+4ŷt+4 ≡

16

15
·

Ft+4ŷt+4 −

yt−2

16


(A.12)

=
1

15
(yt+4 + 2 · yt+3 + 3 · yt+2 + 4 · yt+1 + 3 · yt + 2 · yt−1) . (A.13)

Consider the example of t = 2023Q4.2 The measurement vector and associated loadings for

the SPF’s quarterly fixed-horizon forecasts remains unchanged relative to our earlier examples

for forecast origins in Q1 and Q2. However, considering the annual fixed-event forecasts, the

measurement vector becomes

Za,2023Q4 =


FQ4

2023Q4ŷ2024Q4, F2023Q4ŷ2025Q4, F2023Q4ŷ2026Q4

′
, (A.14)

and the associated measurement loadings are as follows:

Ca,2023Q4 =



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I(b.3) Unemployment rate

In Zq,2024Q1, we have y2023Q4 (unemployment rate in 2023Q4) and quarterly SPF point forecasts (as

of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =


y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

′
.

(A.16)

In Za,2024Q1, we have annual average unemployment rate forecasts targeting 2025, 2026 and

2At the time of writing, the SPF has released only forecast data through 2024Q2. However, we would expect the
same definitions to continue to apply also for the 2024Q4 release.
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In Za,2024Q1, we have annual average unemployment rate forecasts targeting 2025, 2026 and

2At the time of writing, the SPF has released only forecast data through 2024Q2. However, we would expect the
same definitions to continue to apply also for the 2024Q4 release.

A.9

2027 (note that annual forecasts are associated with the fourth quarter of the target year):

Za,2024Q1 =


F2024Q1ȳ2025Q4, F2024Q1ȳ2026Q4, F2024Q1ȳ2027Q4

′
. (A.17)

The loading matrix takes the following form:

C2024Q1 =




Cq,2024Q1

Ca,2024Q1


 =



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0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
4


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, (A.18)

where the horizontal line marks the distinction between the mapping into quarterly (upper part)

and annual average (lower part) unemployment rates. Also, note that the loading matrix reflects

the assumption that the term structure of SPF-consistent forecasts is flat beyond H = 12. In other

words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2027Q2 = Ỹ2027Q3 = · · · = 0),

and at those horizons only the trend loading matters, hence the forecasts are set identical to the

trend, with zero gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1

(unemployment rate in 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting 2024Q2,

2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =


y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

′
,

(A.19)

A.10

hence compared to equation (A.16) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter. In Za,2024Q2, we have annual average unemployment rate forecasts targeting

2025, 2026 and 2027 as before, but as annual forecasts are associated with the fourth quarter of the

target year, the forecast horizons shrink by one quarter relative to equation (A.17):

Za,2024Q2 =


F2024Q2ȳ2025Q4, F2024Q2ȳ2026Q4, F2024Q2ȳ2027Q4

′
. (A.20)

The loading matrix takes the following form:

C2024Q2 =




Cq,2024Q2

Ca,2024Q2


 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1
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

. (A.21)

Compared to C2024Q1 in equation (A.18), in equation (A.21) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first two rows of Ca,2024Q1 shift to the left, and so

does the third row, with the weight 1
4

appearing as the last (bottom right) entry (i.e., the loadings

associated with the fixed-event forecasts change, in line with shrinking forecast horizons).

A.11
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hence compared to equation (A.16) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter. In Za,2024Q2, we have annual average unemployment rate forecasts targeting

2025, 2026 and 2027 as before, but as annual forecasts are associated with the fourth quarter of the

target year, the forecast horizons shrink by one quarter relative to equation (A.17):

Za,2024Q2 =


F2024Q2ȳ2025Q4, F2024Q2ȳ2026Q4, F2024Q2ȳ2027Q4

′
. (A.20)

The loading matrix takes the following form:

C2024Q2 =




Cq,2024Q2

Ca,2024Q2


 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0
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. (A.21)

Compared to C2024Q1 in equation (A.18), in equation (A.21) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first two rows of Ca,2024Q1 shift to the left, and so

does the third row, with the weight 1
4

appearing as the last (bottom right) entry (i.e., the loadings

associated with the fixed-event forecasts change, in line with shrinking forecast horizons).

A.11

I(b.4) GDP price inflation

In Zq,2024Q1, we have y2023Q4 (GDP price inflation of 2023Q4) and quarterly SPF point forecasts

(as of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =


y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

′
.

(A.22)

In Za,2024Q1, we have annual GDP price inflation forecasts targeting 2025 (note that the annual

forecast is associated with the fourth quarter of the target year):

Za,2024Q1 =


F2024Q1ŷ2025Q4

′
. (A.23)

The loading matrix takes the following form:

C2024Q1 =




Cq,2024Q1

Ca,2024Q1


 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 1
16

2
16

3
16

4
16

3
16




, (A.24)

where the horizontal line marks the distinction between the mapping into quarterly (upper part) and

annual average (lower part) GDP price inflation rates. Also, note that the loading matrix reflects

the assumption that the term structure of SPF-consistent forecasts is flat beyond H = 5. In other

words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2025Q3 = Ỹ2025Q4 = · · · = 0),

and at those horizons only the trend loading matters, hence the forecasts are set identical to the

trend, with zero gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1

A.12
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I(b.4) GDP price inflation

In Zq,2024Q1, we have y2023Q4 (GDP price inflation of 2023Q4) and quarterly SPF point forecasts

(as of 2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =


y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

′
.

(A.22)

In Za,2024Q1, we have annual GDP price inflation forecasts targeting 2025 (note that the annual

forecast is associated with the fourth quarter of the target year):

Za,2024Q1 =


F2024Q1ŷ2025Q4

′
. (A.23)

The loading matrix takes the following form:

C2024Q1 =




Cq,2024Q1

Ca,2024Q1


 =



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
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, (A.24)

where the horizontal line marks the distinction between the mapping into quarterly (upper part) and

annual average (lower part) GDP price inflation rates. Also, note that the loading matrix reflects

the assumption that the term structure of SPF-consistent forecasts is flat beyond H = 5. In other

words, the gaps Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2025Q3 = Ỹ2025Q4 = · · · = 0),

and at those horizons only the trend loading matters, hence the forecasts are set identical to the

trend, with zero gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1

A.12

(GDP price inflation of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting

2024Q2, 2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =


y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

′
,

(A.25)

hence compared to equation (A.22) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter.

In Za,2024Q2, we have annual GDP price inflation forecast targeting 2025 as before, but as

annual forecasts are associated with the fourth quarter of the target year, the forecast horizon

shrinks by one quarter relative to equation (A.23):

Za,2024Q2 =


F2024Q2ŷ2025Q4

′
. (A.26)

The loading matrix takes the following form:

C2024Q2 =




Cq,2024Q2

Ca,2024Q2


 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1
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16
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16




. (A.27)

Compared to C2024Q1 in equation (A.24), in equation (A.27) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of Ca,2024Q1 shift to the left, with the weight 2
16

appearing

as the last (bottom right) entry (i.e., the loadings associated with the fixed-event forecast change,

in line with shrinking forecast horizon).

A.13
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(GDP price inflation of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting

2024Q2, 2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =


y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

′
,

(A.25)

hence compared to equation (A.22) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter.

In Za,2024Q2, we have annual GDP price inflation forecast targeting 2025 as before, but as

annual forecasts are associated with the fourth quarter of the target year, the forecast horizon

shrinks by one quarter relative to equation (A.23):

Za,2024Q2 =


F2024Q2ŷ2025Q4

′
. (A.26)

The loading matrix takes the following form:

C2024Q2 =




Cq,2024Q2

Ca,2024Q2


 =



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
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. (A.27)

Compared to C2024Q1 in equation (A.24), in equation (A.27) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of Ca,2024Q1 shift to the left, with the weight 2
16

appearing

as the last (bottom right) entry (i.e., the loadings associated with the fixed-event forecast change,

in line with shrinking forecast horizon).

A.13

In case of a forecast origin in Q3, the measurement vector and loadings can be constructed

analogously to the previous examples. However, when the forecast origin is in Q4, such as t =

2023Q4, we need to amend the data definition and measurement loadings as described above in

the case of RGDP, and the measurement loadings for the (sole) annual forecast becomes:

Ca,2023Q4 =


2
15

3
15

4
15

3
15

2
15

1
15

0


. (A.28)

I(b.5) CPI inflation

In Zq,2024Q1, we have y2023Q4 (CPI inflation of 2023Q4) and quarterly SPF point forecasts (as of

2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =


y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

′
.

(A.29)

In Za,2024Q1, we have annual Q4/Q4 CPI inflation forecasts targeting 2025 and 2026:

Za,2024Q1 =


F2024Q1ȳ2025Q4, F2024Q1ȳ2026Q4

′
. (A.30)

The loading matrix takes the following form:

C2024Q1 =




Cq,2024Q1

Ca,2024Q1


 =



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, (A.31)
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In case of a forecast origin in Q3, the measurement vector and loadings can be constructed

analogously to the previous examples. However, when the forecast origin is in Q4, such as t =

2023Q4, we need to amend the data definition and measurement loadings as described above in

the case of RGDP, and the measurement loadings for the (sole) annual forecast becomes:

Ca,2023Q4 =


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
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I(b.5) CPI inflation

In Zq,2024Q1, we have y2023Q4 (CPI inflation of 2023Q4) and quarterly SPF point forecasts (as of

2024Q1) targeting 2024Q1, 2024Q2, 2024Q3, 2024Q4 and 2025Q1, formally:

Zq,2024Q1 =


y2023Q4, F2024Q1y2024Q1, F2024Q1y2024Q2, F2024Q1y2024Q3, F2024Q1y2024Q4, F2024Q1y2025Q1

′
.

(A.29)

In Za,2024Q1, we have annual Q4/Q4 CPI inflation forecasts targeting 2025 and 2026:

Za,2024Q1 =


F2024Q1ȳ2025Q4, F2024Q1ȳ2026Q4

′
. (A.30)

The loading matrix takes the following form:

C2024Q1 =




Cq,2024Q1

Ca,2024Q1


 =
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, (A.31)

A.14
where the horizontal line marks the distinction between the mapping into quarterly (upper part) and

Q4/Q4 (lower part) CPI inflation rates. Also, note that the loading matrix reflects the assumption

that the term structure of SPF-consistent forecasts is flat beyond H = 8. In other words, the gaps

Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2026Q2 = Ỹ2026Q3 = · · · = 0), and at those

horizons only the trend loading matters, hence the forecasts are set identical to the trend, with zero

gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1

(CPI inflation of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting 2024Q2,

2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =


y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

′
,

(A.32)

hence compared to equation (A.29) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter.

In Za,2024Q2, we have annual Q4/Q4 CPI inflation forecasts targeting 2025 and 2026 as before,

but the forecast horizon shrinks by one quarter relative to equation (A.30):

Za,2024Q2 =


F2024Q2ȳ2025Q4, F2024Q2ȳ2026Q4

′
. (A.33)

The loading matrix, C2024Q2, has the following components:

Cq,2024Q2 =




1 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 1 0 0 0 0




, (A.34)

A.15
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where the horizontal line marks the distinction between the mapping into quarterly (upper part) and

Q4/Q4 (lower part) CPI inflation rates. Also, note that the loading matrix reflects the assumption

that the term structure of SPF-consistent forecasts is flat beyond H = 8. In other words, the gaps

Ỹt+H+j are assumed to be zero for all j > 0 (thus Ỹ2026Q2 = Ỹ2026Q3 = · · · = 0), and at those

horizons only the trend loading matters, hence the forecasts are set identical to the trend, with zero

gaps.

When the forecast origin moves to the next quarter, t = 2024Q2, in Zq,2024Q2 we have y2024Q1

(CPI inflation of 2024Q1) and quarterly SPF point forecasts (as of 2024Q2) targeting 2024Q2,

2024Q3, 2024Q4, 2025Q1 and 2025Q2, formally:

Zq,2024Q2 =


y2024Q1, F2024Q2y2024Q2, F2024Q2y2024Q3, F2024Q2y2024Q4, F2024Q2y2025Q1, F2024Q2y2025Q2

′
,

(A.32)

hence compared to equation (A.29) all quarterly forecast targets (and the lagged realization) move

ahead by one quarter.

In Za,2024Q2, we have annual Q4/Q4 CPI inflation forecasts targeting 2025 and 2026 as before,

but the forecast horizon shrinks by one quarter relative to equation (A.30):

Za,2024Q2 =


F2024Q2ȳ2025Q4, F2024Q2ȳ2026Q4

′
. (A.33)

The loading matrix, C2024Q2, has the following components:

Cq,2024Q2 =
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and

Ca,2024Q2 =



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4

1
4

1
4

1
4

0 0
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4

1
4


 , (A.35)

with

C2024Q2 =




Cq,2024Q2

Ca,2024Q2


 . (A.36)

Compared to C2024Q1 in equation (A.31), in equation (A.34) we see that Cq,2024Q2 = Cq,2024Q1

(i.e., the loadings associated with the lagged realization and the fixed-horizon forecasts remain

unchanged), while the non-zero elements of the first row of Ca,2024Q1 in equation (A.34) shift to

the left, and so does the second row, with the weight 1
4

appearing as the last (bottom right) entry

(i.e., the loadings associated with the fixed-event forecasts change, in line with shrinking forecast

horizons).
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I(c) Measurement error in annual forecasts

This appendix serves to motivate our choice for modeling data on annual SPF forecasts with mea-

surement error. To preview the main arguments of this appendix:

• In general, the goal of this paper is to treat observed SPF data largely as is, and we maintain

the assumption that treats quarterly fixed-horizon forecasts from the SPF as observed without

error.

• However, when jointly using data on quarterly and annual forecasts from the SPF, overlap

in their respective forecast targets raises the question of whether both types of readings are

perfectly consistent with each other. In case of next-year forecasts collected in Q4, there is

perfect overlap with fixed-horizon forecasts collected for h = 1, 2, 3, 4, and it is straight-

forward to check whether both readings are a perfect match. As illustrated below, quarterly

forecasts collected in Q4 are indeed often close to the corresponding next-year forecast re-

ported by the SPF. However, deviations have not been infrequent either, and at times even

quite sizable.

• Moreover, as argued below, even small inconsistencies can lead to outsized effects on im-

puted quarterly forecasts at longer horizons, as quarterly forecasts for the near term are taken

as given from the SPF.

I(c.1) Observed inconsistencies in next-year forecasts collected in Q4

In Q4, the SPF reports a set of quarterly forecasts for h = 0, 1, 2, 3, 4 as well as an annual forecast

for the next year. Evidently, the quarterly forecasts perfectly overlap with the next-year forecast.

Here we assess how well the reported next-year forecasts match what is implied by the observed

quarterly SPF forecasts (and lagged data if necessary).

To match quarterly SPF forecasts with the next year forecast, recall that, in case of the unem-

ployment rate the annual forecast is directly defined as the arithmetic average of unemployment
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over the four quarters of the year. In case of CPI, the same holds approximately (since the an-

nual forecast is to reflect Q4/Q4 inflation, measured as a simple growth rate). As discussed above

in Appendix I(b), for the NIPA variables (GDP growth and inflation in GDP prices), the annual

forecast reflects an (approximate) linear combination of growth in the four quarters of the targeted

year, as well as the last three quarters of the previous year. Thus, in the case of NIPA variables,

when matching the next-year forecasts with quarterly forecasts collected in Q4, we also need to

utilize the nowcast, as well as two lags of data.

Figure A.1 plots the difference between next year forecasts collected in Q4, and what is im-

plied for the same forecast target by the SPF’s quarterly fixed-horizon forecast that were collected

jointly with the annual forecast. All data definitions follow the procedures employed in our model

estimates, as described in Appendix I(b) above. Formally, according to the data definitions em-

ployed in our paper, annual forecast targets are linear combinations of quarterly values, and we can

generically write:

ŷt =
J−1∑
j=0

wjyt−j , (A.37)

with J = 7 and w0 = 1/16, w1 = 2/16, w2 = 3/16, w3 = 4/16, w4 = 3/16, w5 = 2/16, and

w6 = 1/16 in case of GDP growth and GDP price inflation, and J = 4 and wj = 1/4 in case of

the unemployment rate and CPI inflation.3 Figure A.1 then plots the difference between the actual

next-year forecast, denoted F o
t ŷt+4, and the implied value constructed from the quarterly forecasts,

Ftŷt+4 ≡
∑J−1

j=0 wjF
o
t yt+4−j . The superscript “‘o” in F o

t denotes observed SPF data (or, if needed,

lagged realized data known by the SPF respondents in real time).4

Overall, Figure A.1 shows that there are indeed some differences between the actual next-year

forecast from the SPF and what is implied by the corresponding quarterly SPF predictions. For

3The notation adopted here generalizes a little the more specific notation for ŷt and ȳt as adopted in the paper. At
slight abuse of our earlier notation, we denote here annual forecasts for all variables simply by ŷt, without distinguish-
ing further between ŷt and ȳt.

4Lagged realized data is needed to construct Ftŷt+4 in case of GDP growth and GDP price inflation, for which
we have J = 7. Real time vintages that correspond to SPF rounds are obtained from the Philadelphia Fed.
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slight abuse of our earlier notation, we denote here annual forecasts for all variables simply by ŷt, without distinguish-
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many observations of all variables, the differences are quite small (less than 10 basis points (bp)

in absolute value), but there are also cases when the differences are much larger than that. The

occurrence of sizable differences varies across variables. For the unemployment rate, differences

are always well below 5bp. For CPI inflation, there are notable differences in the 1980s and 1990s,

with two particularly large outliers in 1981 and 1990, of about 100 and 70 basis points, respectively.

For GDP growth, and GDP price inflation, differences do not exceed 30bp in absolute value, but

there are still some observations with differences of 20bp or more, in particular prior to 1990.

All in all, this suggests that there are some measurement issues and that these are quite unevenly

distributed across time and variables. As we will argue next, even small inconsistencies can lead

to outsized effects on imputed quarterly forecasts at longer horizons, as quarterly forecasts for the

near term are taken as given from the SPF.

Consider the case of a forecast origin in Q3, henceforth denoted t. In this case, there is large

overlap between the observed SPF forecast for next year, F o
t ŷt+5, and what is covered by the

equally observed quarterly forecasts, F o
t yt+h for h = 0, 1, 2, 3, 4. In fact, quarterly forecasts for

h ≤ 4 (and lagged data) account for every component of Ftŷt+5 except for the forecast of Q4 next

year, Ftyt+5. In this case, a measurement equation of the form in (A.37) already determines the

imputed value for Ftŷt+5 without any further need for modeling the stochastic evolution of data

and SPF:

F̂tyt+5 =
1

w0

·

(
Ftŷ

o
t+5 −

J−1∑
j=1

wjF
o
t yt+5−j

)
, when t in Q3 , (A.38)

where the “hat” in F̂t denotes an imputed value. If the assumption is correct that annual SPF

forecasts map into the SPF’s quarterly forecasts without error, an imputation as in (A.38) should

hold exactly. However, as we have seen in Figure A.1 for the case when t is in Q4, this is not

always the case, casting doubt over the applicability of (A.38) when t is in Q3.

Instead, consider the case where the observed annual forecast is measured only with some

(potentially) small error, while we maintain the assumption that quarterly forecasts are observed

A.20



BANCO DE ESPAÑA 62 DOCUMENTO DE TRABAJO N.º 2429 

Figure A.1: Observed inconsistencies between quarterly and next-year forecasts collected in Q4
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Notes: Difference between actual and implied SPF annual forecasts for next year collected in Q4.
Implied SPF forecasts constructed from available quarterly forecast for one to four-quarters ahead,
as well as lagged data (as needed for GDP growth and GDP price inflation). Only Q4 observations
since 1981Q4. (The SPF began reporting next-year forecasts in 1981Q3.)
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many observations of all variables, the differences are quite small (less than 10 basis points (bp)

in absolute value), but there are also cases when the differences are much larger than that. The

occurrence of sizable differences varies across variables. For the unemployment rate, differences

are always well below 5bp. For CPI inflation, there are notable differences in the 1980s and 1990s,

with two particularly large outliers in 1981 and 1990, of about 100 and 70 basis points, respectively.

For GDP growth, and GDP price inflation, differences do not exceed 30bp in absolute value, but

there are still some observations with differences of 20bp or more, in particular prior to 1990.
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1

w0

·

(
Ftŷ

o
t+5 −

J−1∑
j=1

wjF
o
t yt+5−j

)
, when t in Q3 , (A.38)

where the “hat” in F̂t denotes an imputed value. If the assumption is correct that annual SPF

forecasts map into the SPF’s quarterly forecasts without error, an imputation as in (A.38) should

hold exactly. However, as we have seen in Figure A.1 for the case when t is in Q4, this is not

always the case, casting doubt over the applicability of (A.38) when t is in Q3.
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without error (so that Ftyt+j = F o
t yt+j for j ≤ 4). In this case, we can write the measurement

equation for the annual forecast as follows:

F o
t ŷt+5 =

J−1∑
j=0

wjFtyt+5−j + nt. (A.39)

But, application of an imputation, as in (A.38), that assumes the absence of measurement error

distorts the imputed value by the measurement error:

⇒ F̂tyt+5 =
1

w0

·

(
Ftŷ

o
t+5 −

J−1∑
j=1

wjF
o
t yt+5−j

)
, when t in Q3, (A.40)

= Ftyt+5 +
1

w0

nt . (A.41)

With 1/w0 = 16 (for GDP growth and GDP inflation) or 1/w0 = 4 (for the unemployment rate and

CPI inflation), even small measurement errors in the annual forecast can lead to large distortions

in the imputed value for the forecast made in Q3 this year (t) for the quarterly outcome in Q4 next

year.

By a similar logic, observations in Q1 and Q2 for the SPF’s next-year and quarterly forecasts

directly restrict a weighted average of imputed values for the quarterly forecasts for the next year.

When the imputations are made based on an error-free measurement equation as in (A.37), while

the actual data is affected by measurement error, these restrictions on imputed values are again

distorted by measurement error:

When t in Q2: α̂t,5:6 ≡
1

w0

·

(
Ftŷ

o
t+6 −

J−1∑
j=2

wjF
o
t yt+6−j

)
(A.42)

=
w0Ftyt+6 + w1Ftyt+5

w0 + w1

+
nt

w0 + w1

. (A.43)

And, when t in Q1: α̂t,5:7 =
1

w0

·

(
Ftŷ

o
t+7 −

J−1∑
j=3

wjF
o
t yt+7−j

)
(A.44)

=
w0Ftyt+7 + w1Ftyt+6 + w2Ftyt+5

w0 + w1 + w2

+
nt

w0 + w1 + w2

. (A.45)
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Notably, the weight on the measurement error in these calculations is increasing for imputations

made later in a given calendar year.

For simplicity, we call F̂tyt+5, α̂t,5:6, and α̂t,5:7 “naive” imputations. Figure A.2 plots these

naive imputations against data for realized outcomes and the observed next-year SPF. Overall, the

naive imputations appear to track (or predict) the data fairly well. Of note, α̂t,5:6, and α̂t,5:7 should

reflect (weighted) averages of quarterly outcomes, which could be expected to be less volatile than

quarterly outcomes or forecasts thereof. Indeed, imputations made in Q3 (yellow diamonds) tend

to stand out more often than those made in Q1 and Q2 (orange squares and blue circles, respec-

tively). More importantly, Figure A.2 shows some patterns that are reminiscent of what is shown

in Figure A.1 for inconsistencies between observed and implied values for the next-year forecast

at Q4 origins (which are a direct reflection of measurement error): While the naive imputations

track the data particularly well for the unemployment rate and CPI inflation, imputations made

in Q3 for GDP growth and GDP inflation show notable outliers, which could be indicative of the

measurement error term in (A.41), and with decreasing effect for values constructed in Q2 and Q1,

as predicted by equations (A.43) and (A.45).

I(c.2) Excessively volatile imputations when treating annual forecasts without error

Of course, the arguments presented so far can only highlight the particular risk of distortions in

imputed values when annual forecasts are not perfectly consistent with quarterly forecasts. And,

the results shown in Figures A.1 and A.2 are at best indicative of the extent to which such in-

consistencies may be relevant in the data. At least for SPF rounds in Q4, the data suggests that

inconsistencies cannot always be neglected.

As such, we evaluated models that allow for measurement error in annual forecasts, as de-

scribed in Section 4 of the paper, as well as versions that assume all SPF data are observed without

error. The latter case was also the basis for earlier versions of our manuscript. In light of Fig-

ure A.1, we drop Q4 observations from the estimation data for models that assume annual forecasts
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are observed without error.5

Strikingly, term structures of SPF-consistent forecasts that we imputed from models without

measurement error are notably more volatile than those imputed from models that allow for mea-

surement error in annual forecasts. This is particularly true for GDP growth and GDP price in-

flation, where the volatility of imputed forecasts at longer horizons is much higher in models that

assume no measurement error in annual forecasts. Of course, these findings support the argument

that even small inconsistencies between quarterly and annual forecasts can lead to outsized ef-

fects on imputed quarterly forecasts at longer horizons, as quarterly forecasts for the near term are

taken as given from the SPF. Moreover, in feedback received from forecasting practitioners, the

more “wiggly” imputations obtained from models that omit measurement error were considered

to be less credible. In a similar vein, Table A.3 shows that one-step ahead forecasts of SPF data

generated by a version of our model that assumes no measurement error in annual forecasts are

dramatically worse in predicting future survey data than our baseline model which does assume

measurement error (with results shown in Table 1 of the paper and restated as Table A.4 below).

All told, these results lead us to prefer — and adopt in the revised paper — models that allow

for measurement error in observed annual SPF forecasts. Given the occasional nature of inconsis-

tencies that are directly detectable (Figure A.1) and related patterns in naive imputations made in

different quarters of the year (Figure A.2), we chose (1) to specify separate measurement error pro-

cesses for data observed in different quarters of the year, and (2) to adopt fat-tailed specifications

for the measurement errors, which place much mass a priori on errors being zero, while retaining

the flexibility to fit occasionally sizable occurrences of errors. Details of the measurement error

specifications are described in Section 4 of the paper and Appendix II below. Throughout, we

maintain the specification that quarterly SPF forecasts are observed without error, in keeping with

the goal of this paper to treat observed SPF data largely as is.

Figures A.3 through A.6 report time series of estimates of the measurement noise in annual

forecasts — specifically, posterior medians in observed SPF forecasts for the next calendar year

5In results not shown, we also evaluated models that drop Q4 observations from the estimation data for models
that allow for measurement error in annual forecasts. The results were largely similar to those presented in the paper.
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the goal of this paper to treat observed SPF data largely as is.

Figures A.3 through A.6 report time series of estimates of the measurement noise in annual

forecasts — specifically, posterior medians in observed SPF forecasts for the next calendar year

5In results not shown, we also evaluated models that drop Q4 observations from the estimation data for models
that allow for measurement error in annual forecasts. The results were largely similar to those presented in the paper.
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Figure A.2: Naive imputations of quarterly forecasts at longer horizons
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are observed without error.5

Strikingly, term structures of SPF-consistent forecasts that we imputed from models without

measurement error are notably more volatile than those imputed from models that allow for mea-

surement error in annual forecasts. This is particularly true for GDP growth and GDP price in-

flation, where the volatility of imputed forecasts at longer horizons is much higher in models that

assume no measurement error in annual forecasts. Of course, these findings support the argument

that even small inconsistencies between quarterly and annual forecasts can lead to outsized ef-

fects on imputed quarterly forecasts at longer horizons, as quarterly forecasts for the near term are

taken as given from the SPF. Moreover, in feedback received from forecasting practitioners, the

more “wiggly” imputations obtained from models that omit measurement error were considered

to be less credible. In a similar vein, Table A.3 shows that one-step ahead forecasts of SPF data

generated by a version of our model that assumes no measurement error in annual forecasts are

dramatically worse in predicting future survey data than our baseline model which does assume

measurement error (with results shown in Table 1 of the paper and restated as Table A.4 below).

All told, these results lead us to prefer — and adopt in the revised paper — models that allow

for measurement error in observed annual SPF forecasts. Given the occasional nature of inconsis-

tencies that are directly detectable (Figure A.1) and related patterns in naive imputations made in

different quarters of the year (Figure A.2), we chose (1) to specify separate measurement error pro-

cesses for data observed in different quarters of the year, and (2) to adopt fat-tailed specifications

for the measurement errors, which place much mass a priori on errors being zero, while retaining

the flexibility to fit occasionally sizable occurrences of errors. Details of the measurement error

specifications are described in Section 4 of the paper and Appendix II below. Throughout, we

maintain the specification that quarterly SPF forecasts are observed without error, in keeping with

the goal of this paper to treat observed SPF data largely as is.

Figures A.3 through A.6 report time series of estimates of the measurement noise in annual

forecasts — specifically, posterior medians in observed SPF forecasts for the next calendar year

5In results not shown, we also evaluated models that drop Q4 observations from the estimation data for models
that allow for measurement error in annual forecasts. The results were largely similar to those presented in the paper.
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ahead up through three years ahead (for variables with forecasts at these horizons), for both the

MDS and VAR specifications. These estimates show that, in keeping with our choice of a horseshoe

specification of the shocks’ distributions, the noise shocks are usually small, but very occasionally

large. This pattern is especially stark for the next-year forecasts. The relatively very large noise

shocks in Figure A.3 tend to occur in the instances of large inconsistencies between quarterly and

next-year forecasts indicated in Figure A.1, which are primarily early in the sample and to a lesser

extent around the time of the outbreak of the COVID-19 pandemic. However, in keeping with the

logic described above with imputation issues, the size of the noise shocks tends to be generally

larger than the size of the inconsistencies; this naturally stems from the large weights that some

quarters of forecasts can get due to the weights of the Mariano-Murasawa approximation of annual

GDP growth and GDP price inflation. Another evident pattern in the estimates is that, except in the

case of the unemployment rate (for which noise shocks are generally small) the noise shocks tend

to be larger (in absolute value) at the year-ahead horizon than longer horizons. To the extent that

the measurement error is linked to inconsistencies in annual and observed quarterly forecasts, this

is to be expected, given that quarterly forecasts are only observed at shorter horizons and therefore

consistency is only an issue for the year-ahead forecasts. Finally, the estimated shocks are similar

for the MDS and VAR specifications, most clearly and strongly for the year-ahead horizon.
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Figure A.3: Estimated noise in SPF next-year forecasts (MDS, 2024Q1)
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Notes: Posterior medians of noise levels in observed SPF forecasts for the next calendar year
ahead. Q4 observations marked by a diamond. Estimates from the MDS model using data through
2024Q1.
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Figure A.4: Estimated noise in SPF next-year forecasts (VAR, 2024Q1)
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Notes: Posterior medians of noise levels in observed SPF forecasts for the next calendar year
ahead. Q4 observations marked by a diamond. Estimates from the VAR model using data through
2024Q1.
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Figure A.5: Estimated noise in SPF two-years ahead forecasts (2024Q1)

MDS model
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ahead. Q4 observations marked by a diamond. Estimates based on data through 2024Q1.
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Figure A.6: Estimated noise in SPF three-years ahead forecasts (2024Q1)

MDS model
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I(c.3) Comparison of results from models with and without noise in annual forecasts

To show how including measurement error around published annual forecasts impacts our fore-

casts and results, Figures A.7 through A.10 report examples of term structures of (out-of-sample)

quarterly forecasts from models with and without measurement noise. Note that these charts end

with H as specified for each variable; to facilitate comparisons, we do not report the forecasts out

to 16 steps ahead (recall that the point forecasts for h = H + 1, . . . , 16 are equal to the forecasts

for h = H). In addition, by construction, without noise on short-horizon forecasts, the forecasts

for h = 0, . . . , 4 are the same across the noise and no-noise models.

Focusing first on results from MDS specifications, without noise, the quarterly forecasts at

longer horizons show more variation from quarter to quarter than do the forecasts from the model

with measurement noise in annual forecasts. In particular, the forecasts from the model with noise

avoid the tendency of the forecasts from the model without noise to change one way early on and

then snap in the opposite direction in the following few quarters. In some instances — e.g., GDP

price inflation in the 2024Q1 example and unemployment in the 2019Q4 example — the inclusion

of noise in the model can impact the level of the longer-horizon quarterly forecasts as compared

to the model without noise. It is also evident that the inclusion of measurement noise on annual

forecasts can have some impact on the uncertainty around the estimated quarterly forecast at longer

horizons. This is evident in the case of GDP price inflation, with greater uncertainty around the

forecasts from the model without noise than the model with noise. However, as noted in the paper,

uncertainty around the latent quarterly forecast estimates at longer horizons is small relative to the

overall forecast uncertainty reflected in the size of historical forecast errors. While not shown in

the interest of brevity, the inclusion of noise in the model does not have much impact on overall

forecast uncertainty: The widths of forecast confidence bands are comparable for the with-noise

and without-noise model specifications.

Patterns are very broadly similar in forecasts from VAR specifications that allow for bias in SPF

forecasts. However, the inclusion of noise around published annual forecasts has a smaller impact

with the VAR than the MDS specification. For example, the with-noise and without-noise forecasts
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of GDP growth are quite similar in the VAR case; the with-noise forecasts are not smoother than

the without-noise forecasts as observed in the MDS case. In turn, the forecasts of GDP growth

from the VAR (in both the with-noise and without-noise estimates) show more variability across

quarters than do the forecasts from the MDS specification with noise.

To further assess the role of measurement noise in our models and results, Tables A.3 and A.4

provide the estimated intercepts and slopes of Mincer-Zarnowitz regressions of SPF forecasts pub-

lished in quarter t+ 1 on SPF forecasts estimated from our model using SPF forecasts up through

quarter t. Table A.3 reports results from MDS and VAR specifications without measurement noise;

Table A.4 provides corresponding results from specifications with measurement noise (the results

also shown in the paper). In these results, the forecasts from models without noise are somewhat

less efficient predictions of future SPF forecasts, in particular for annual SPF forecasts, as well

as the four-quarters-ahead SPF. Overall, there are more rejections of slope coefficients of unity in

the no-noise forecasts than the with-noise forecasts. Related, in some cases, the no-noise forecasts

yield noticeably lower slope coefficients than the with-noise forecasts, especially with the VAR and

less so with the MDS specification. For example, with GDP growth (PGDP inflation) at the four-

quarters-ahead horizon (h = 4), the slope coefficient estimate is 0.39 (0.47) in the noise-free MDS

forecasts and 0.87 (0.91) in the with-noise MDS forecasts. As another example, with GDP growth

(PGDP inflation) at the one-year-ahead horizon (y = 1 in the table), the slope coefficient estimate

is 0.83 (0.80) in the noise-free VAR forecasts and 0.91 (0.91) in the with-noise VAR forecasts.

While the specification with or without measurement error has some bearing on imputed SPF-

consistent expectations, and the model’s fit for SPF data, it has less effect on model-based predic-

tive densities for the outcome variable. To illustrate the latter, Figure A.11–A.14 plot the proba-

bility integral transforms (PITs) of the forecasts of MDS and VAR models without noise against

those from our baseline models with noise. As these figures show, both model variants generate

fairly similar PITs. Likewise, the (realized) coverage rates for 68% and 90% predictive intervals

generated from the model without noise, as reported in Table A.5, are quite similar to those from

models with noise as reported in Tables A.11 and A.10 further below (as well as Table 3 in the
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Figure A.7: Term structures estimated with and without noise (MDS, 2024Q1)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations, de-
noted Yt, obtained from the MDS model with or without noise in the observed SPF calendar-year
forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-year
forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates based on
data through 2024Q1.
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of GDP growth are quite similar in the VAR case; the with-noise forecasts are not smoother than

the without-noise forecasts as observed in the MDS case. In turn, the forecasts of GDP growth

from the VAR (in both the with-noise and without-noise estimates) show more variability across

quarters than do the forecasts from the MDS specification with noise.

To further assess the role of measurement noise in our models and results, Tables A.3 and A.4

provide the estimated intercepts and slopes of Mincer-Zarnowitz regressions of SPF forecasts pub-

lished in quarter t+ 1 on SPF forecasts estimated from our model using SPF forecasts up through

quarter t. Table A.3 reports results from MDS and VAR specifications without measurement noise;

Table A.4 provides corresponding results from specifications with measurement noise (the results

also shown in the paper). In these results, the forecasts from models without noise are somewhat

less efficient predictions of future SPF forecasts, in particular for annual SPF forecasts, as well

as the four-quarters-ahead SPF. Overall, there are more rejections of slope coefficients of unity in

the no-noise forecasts than the with-noise forecasts. Related, in some cases, the no-noise forecasts

yield noticeably lower slope coefficients than the with-noise forecasts, especially with the VAR and

less so with the MDS specification. For example, with GDP growth (PGDP inflation) at the four-

quarters-ahead horizon (h = 4), the slope coefficient estimate is 0.39 (0.47) in the noise-free MDS

forecasts and 0.87 (0.91) in the with-noise MDS forecasts. As another example, with GDP growth

(PGDP inflation) at the one-year-ahead horizon (y = 1 in the table), the slope coefficient estimate

is 0.83 (0.80) in the noise-free VAR forecasts and 0.91 (0.91) in the with-noise VAR forecasts.

While the specification with or without measurement error has some bearing on imputed SPF-

consistent expectations, and the model’s fit for SPF data, it has less effect on model-based predic-

tive densities for the outcome variable. To illustrate the latter, Figure A.11–A.14 plot the proba-

bility integral transforms (PITs) of the forecasts of MDS and VAR models without noise against

those from our baseline models with noise. As these figures show, both model variants generate

fairly similar PITs. Likewise, the (realized) coverage rates for 68% and 90% predictive intervals

generated from the model without noise, as reported in Table A.5, are quite similar to those from

models with noise as reported in Tables A.11 and A.10 further below (as well as Table 3 in the
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Figure A.8: Term structures estimated with and without noise (VAR, 2024Q1)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations, de-
noted Yt, obtained from the VAR model with or without noise in the observed SPF calendar-year
forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-year
forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates based on
data through 2024Q1.
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of GDP growth are quite similar in the VAR case; the with-noise forecasts are not smoother than

the without-noise forecasts as observed in the MDS case. In turn, the forecasts of GDP growth

from the VAR (in both the with-noise and without-noise estimates) show more variability across

quarters than do the forecasts from the MDS specification with noise.

To further assess the role of measurement noise in our models and results, Tables A.3 and A.4

provide the estimated intercepts and slopes of Mincer-Zarnowitz regressions of SPF forecasts pub-

lished in quarter t+ 1 on SPF forecasts estimated from our model using SPF forecasts up through

quarter t. Table A.3 reports results from MDS and VAR specifications without measurement noise;

Table A.4 provides corresponding results from specifications with measurement noise (the results

also shown in the paper). In these results, the forecasts from models without noise are somewhat

less efficient predictions of future SPF forecasts, in particular for annual SPF forecasts, as well

as the four-quarters-ahead SPF. Overall, there are more rejections of slope coefficients of unity in

the no-noise forecasts than the with-noise forecasts. Related, in some cases, the no-noise forecasts

yield noticeably lower slope coefficients than the with-noise forecasts, especially with the VAR and

less so with the MDS specification. For example, with GDP growth (PGDP inflation) at the four-

quarters-ahead horizon (h = 4), the slope coefficient estimate is 0.39 (0.47) in the noise-free MDS

forecasts and 0.87 (0.91) in the with-noise MDS forecasts. As another example, with GDP growth

(PGDP inflation) at the one-year-ahead horizon (y = 1 in the table), the slope coefficient estimate

is 0.83 (0.80) in the noise-free VAR forecasts and 0.91 (0.91) in the with-noise VAR forecasts.

While the specification with or without measurement error has some bearing on imputed SPF-

consistent expectations, and the model’s fit for SPF data, it has less effect on model-based predic-

tive densities for the outcome variable. To illustrate the latter, Figure A.11–A.14 plot the proba-

bility integral transforms (PITs) of the forecasts of MDS and VAR models without noise against

those from our baseline models with noise. As these figures show, both model variants generate

fairly similar PITs. Likewise, the (realized) coverage rates for 68% and 90% predictive intervals

generated from the model without noise, as reported in Table A.5, are quite similar to those from

models with noise as reported in Tables A.11 and A.10 further below (as well as Table 3 in the
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Figure A.9: Term structures estimated with and without noise (MDS, 2019Q4)
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Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations, de-
noted Yt, obtained from the MDS model with or without noise in the observed SPF calendar-year
forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-year
forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates based on
data through 2019Q4.
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of GDP growth are quite similar in the VAR case; the with-noise forecasts are not smoother than

the without-noise forecasts as observed in the MDS case. In turn, the forecasts of GDP growth

from the VAR (in both the with-noise and without-noise estimates) show more variability across

quarters than do the forecasts from the MDS specification with noise.

To further assess the role of measurement noise in our models and results, Tables A.3 and A.4

provide the estimated intercepts and slopes of Mincer-Zarnowitz regressions of SPF forecasts pub-

lished in quarter t+ 1 on SPF forecasts estimated from our model using SPF forecasts up through

quarter t. Table A.3 reports results from MDS and VAR specifications without measurement noise;

Table A.4 provides corresponding results from specifications with measurement noise (the results

also shown in the paper). In these results, the forecasts from models without noise are somewhat

less efficient predictions of future SPF forecasts, in particular for annual SPF forecasts, as well

as the four-quarters-ahead SPF. Overall, there are more rejections of slope coefficients of unity in

the no-noise forecasts than the with-noise forecasts. Related, in some cases, the no-noise forecasts

yield noticeably lower slope coefficients than the with-noise forecasts, especially with the VAR and

less so with the MDS specification. For example, with GDP growth (PGDP inflation) at the four-

quarters-ahead horizon (h = 4), the slope coefficient estimate is 0.39 (0.47) in the noise-free MDS

forecasts and 0.87 (0.91) in the with-noise MDS forecasts. As another example, with GDP growth

(PGDP inflation) at the one-year-ahead horizon (y = 1 in the table), the slope coefficient estimate

is 0.83 (0.80) in the noise-free VAR forecasts and 0.91 (0.91) in the with-noise VAR forecasts.

While the specification with or without measurement error has some bearing on imputed SPF-

consistent expectations, and the model’s fit for SPF data, it has less effect on model-based predic-

tive densities for the outcome variable. To illustrate the latter, Figure A.11–A.14 plot the proba-

bility integral transforms (PITs) of the forecasts of MDS and VAR models without noise against

those from our baseline models with noise. As these figures show, both model variants generate

fairly similar PITs. Likewise, the (realized) coverage rates for 68% and 90% predictive intervals

generated from the model without noise, as reported in Table A.5, are quite similar to those from

models with noise as reported in Tables A.11 and A.10 further below (as well as Table 3 in the
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Figure A.10: Term structures estimated with and without noise (VAR, 2019Q4)

(a) Real GDP growth

0 2 4 6 8 10 12
0

1

2

3

4

5

With Noise

Without Noise

(b) Unemployment rate

0 2 4 6 8 10 12
2.5

3

3.5

4

4.5

(c) GDP price inflation

0 2 4 6
1.5

1.6

1.7

1.8

1.9

2

2.1

(d) CPI inflation

0 2 4 6 8
1.6

1.8

2

2.2

2.4

Notes: Posterior medians (and 68% bands) of term structures of SPF-consistent expectations, de-
noted Yt, obtained from the VAR model with or without noise in the observed SPF calendar-year
forecasts. For estimation of the mode without noise, we drop Q4 observations for the next-year
forecast (due to perfect overlap with the observed quarterly SPF forecasts.) Estimates based on
data through 2019Q4.
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of GDP growth are quite similar in the VAR case; the with-noise forecasts are not smoother than

the without-noise forecasts as observed in the MDS case. In turn, the forecasts of GDP growth

from the VAR (in both the with-noise and without-noise estimates) show more variability across

quarters than do the forecasts from the MDS specification with noise.

To further assess the role of measurement noise in our models and results, Tables A.3 and A.4

provide the estimated intercepts and slopes of Mincer-Zarnowitz regressions of SPF forecasts pub-

lished in quarter t+ 1 on SPF forecasts estimated from our model using SPF forecasts up through

quarter t. Table A.3 reports results from MDS and VAR specifications without measurement noise;

Table A.4 provides corresponding results from specifications with measurement noise (the results

also shown in the paper). In these results, the forecasts from models without noise are somewhat

less efficient predictions of future SPF forecasts, in particular for annual SPF forecasts, as well

as the four-quarters-ahead SPF. Overall, there are more rejections of slope coefficients of unity in

the no-noise forecasts than the with-noise forecasts. Related, in some cases, the no-noise forecasts

yield noticeably lower slope coefficients than the with-noise forecasts, especially with the VAR and

less so with the MDS specification. For example, with GDP growth (PGDP inflation) at the four-

quarters-ahead horizon (h = 4), the slope coefficient estimate is 0.39 (0.47) in the noise-free MDS

forecasts and 0.87 (0.91) in the with-noise MDS forecasts. As another example, with GDP growth

(PGDP inflation) at the one-year-ahead horizon (y = 1 in the table), the slope coefficient estimate

is 0.83 (0.80) in the noise-free VAR forecasts and 0.91 (0.91) in the with-noise VAR forecasts.

While the specification with or without measurement error has some bearing on imputed SPF-

consistent expectations, and the model’s fit for SPF data, it has less effect on model-based predic-

tive densities for the outcome variable. To illustrate the latter, Figure A.11–A.14 plot the proba-

bility integral transforms (PITs) of the forecasts of MDS and VAR models without noise against

those from our baseline models with noise. As these figures show, both model variants generate

fairly similar PITs. Likewise, the (realized) coverage rates for 68% and 90% predictive intervals

generated from the model without noise, as reported in Table A.5, are quite similar to those from

models with noise as reported in Tables A.11 and A.10 further below (as well as Table 3 in the

A.35

paper).

While the specification of measurement error notably affects the imputed term structures of ex-

pectations (as shown in Figures A.7 through A.10), those effects change the imputed expectations

by just about 10-20 basis points. In contrast, the predictive densities for the (quarterly) outcome

variables are much wider; as reported in the paper, the width of their 68% bands regularly amounts

to multiple percentage points. These differences in scales also explain the relative similarity in

predictive densities obtained from models with and without noise, despite their differing impact

on imputed term structures of expectations. All told, the specification of measurement error for

annual forecasts matters mainly for improving the model’s fit for SPF data than for the outcome

variable.
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paper).

While the specification of measurement error notably affects the imputed term structures of ex-

pectations (as shown in Figures A.7 through A.10), those effects change the imputed expectations

by just about 10-20 basis points. In contrast, the predictive densities for the (quarterly) outcome

variables are much wider; as reported in the paper, the width of their 68% bands regularly amounts

to multiple percentage points. These differences in scales also explain the relative similarity in

predictive densities obtained from models with and without noise, despite their differing impact

on imputed term structures of expectations. All told, the specification of measurement error for

annual forecasts matters mainly for improving the model’s fit for SPF data than for the outcome

variable.
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Table A.3: Predictability of SPF point forecasts (noise-free model)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 -1.52 −1.17 0.81 0.91 −0.04 0.06 −0.33 −0.36 1.41 1.35 0.86 0.85 0.99 0.96 1.15 1.21
(0.76) (0.73) (0.52) (0.58) (0.11) (0.13) (0.40) (0.39) (0.24) (0.26) (0.08) (0.09) (0.05) (0.06) (0.16) (0.16)

h = 1 −0.11 −0.06 0.55 0.73 −0.08 0.04 −0.07 −0.07 1.02 1.02 0.91 0.88 1.02 0.98 1.01 1.03
(0.28) (0.25) (0.43) (0.48) (0.09) (0.09) (0.15) (0.13) (0.09) (0.08) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 −0.14 0.05 0.38 0.58 0.11 0.15 0.10 0.16 1.02 0.97 0.94 0.90 0.94 0.99 0.94 0.93
(0.23) (0.23) (0.36) (0.39) (0.07) (0.09) (0.10) (0.09) (0.08) (0.08) (0.06) (0.06) (0.03) (0.04) (0.04) (0.04)

h = 3 0.13 1.70 0.26 0.30 0.15 1.27 0.15 0.61 0.94 0.37 0.96 0.96 0.92 0.37 0.92 0.75
(0.26) (0.18) (0.32) (0.38) (0.08) (0.08) (0.09) (0.17) (0.09) (0.06) (0.05) (0.06) (0.04) (0.03) (0.04) (0.07)

h = 4 1.67 1.69 0.20 0.44 1.25 0.24 0.50 0.49 0.39 0.40 0.97 0.93 0.47 0.89 0.80 0.82
(0.19) (0.16) (0.28) (0.28) (0.15) (0.08) (0.14) (0.11) (0.07) (0.05) (0.05) (0.05) (0.06) (0.04) (0.06) (0.04)

y = 1 0.23 0.47 0.23 0.36 0.14 0.41 0.12 0.38 0.91 0.83 0.96 0.94 0.94 0.80 0.94 0.86
(0.15) (0.14) (0.34) (0.38) (0.09) (0.10) (0.09) (0.15) (0.05) (0.05) (0.06) (0.06) (0.04) (0.05) (0.04) (0.06)

y = 2 0.30 0.68 0.01 0.32 — — 0.60 0.78 0.87 0.73 1.00 0.94 — — 0.74 0.66
(0.21) (0.32) (0.23) (0.22) (0.27) (0.27) (0.07) (0.11) (0.04) (0.03) (0.12) (0.12)

y = 3 0.33 1.08 0.22 0.29 — — — — 0.87 0.58 0.95 0.94 — — — —
(0.15) (0.35) (0.22) (0.21) (0.06) (0.14) (0.04) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for
SPF forecasts at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient
estimates significantly different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2023Q4
(and as far as data for SPF forecasts at the different horizons is available).
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Table A.4: Predictability of SPF point forecasts (model w/noise)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 -1.52 −1.09 0.81 1.02 −0.04 0.04 −0.33 −0.31 1.41 1.32 0.86 0.83 0.99 0.98 1.15 1.19
(0.76) (0.71) (0.52) (0.60) (0.11) (0.12) (0.40) (0.37) (0.24) (0.25) (0.08) (0.10) (0.05) (0.06) (0.16) (0.15)

h = 1 −0.11 −0.04 0.55 0.82 −0.08 0.08 −0.07 0.04 1.02 1.02 0.91 0.86 1.02 0.99 1.01 1.00
(0.28) (0.27) (0.43) (0.51) (0.09) (0.09) (0.15) (0.13) (0.09) (0.09) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 −0.14 0.02 0.38 0.59 0.11 0.27 0.10 0.14 1.02 0.97 0.94 0.90 0.94 0.85 0.94 0.95
(0.23) (0.23) (0.36) (0.42) (0.07) (0.08) (0.10) (0.11) (0.08) (0.08) (0.06) (0.07) (0.03) (0.03) (0.04) (0.05)

h = 3 0.13 0.50 0.26 0.52 0.15 0.25 0.15 0.21 0.94 0.80 0.96 0.91 0.92 0.86 0.92 0.92
(0.26) (0.26) (0.32) (0.36) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.05) (0.06) (0.04) (0.03) (0.04) (0.04)

h = 4 0.37 1.25 0.20 0.48 0.20 0.24 0.13 0.25 0.87 0.57 0.97 0.93 0.91 0.90 0.94 0.89
(0.19) (0.26) (0.29) (0.35) (0.07) (0.08) (0.09) (0.09) (0.06) (0.09) (0.05) (0.06) (0.03) (0.04) (0.04) (0.03)

y = 1 0.09 0.20 0.25 0.41 0.12 0.18 0.02 0.10 0.94 0.91 0.96 0.93 0.93 0.91 0.98 0.96
(0.25) (0.21) (0.28) (0.33) (0.07) (0.07) (0.12) (0.11) (0.09) (0.07) (0.05) (0.06) (0.03) (0.03) (0.05) (0.05)

y = 2 0.16 0.13 0.36 0.26 — — 0.36 0.61 0.94 0.96 0.92 0.95 — — 0.85 0.74
(0.25) (0.27) (0.36) (0.24) (0.25) (0.21) (0.09) (0.10) (0.07) (0.04) (0.11) (0.09)

y = 3 0.11 0.99 1.03 0.18 — — — — 0.95 0.59 0.76 0.95 — — — —
(0.16) (0.59) (0.37) (0.19) (0.06) (0.24) (0.08) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for
SPF forecasts at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient
estimates significantly different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2023Q4
(and as far as data for SPF forecasts at the different horizons is available).

A
.37



BANCO DE ESPAÑA 79 DOCUMENTO DE TRABAJO N.º 2429 

Table A.5: Coverage rates (model w/o noise, full sample)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

PANEL A: MDS Model

0 48.53∗∗∗ 80.15∗∗∗ 87.50∗∗∗ 96.32∗∗∗ 58.09∗∗ 84.56 66.91 91.91
1 54.07∗∗∗ 77.78∗∗∗ 82.96∗∗∗ 96.30∗∗∗ 60.00∗ 85.19 59.26∗∗ 85.19
2 52.99∗∗∗ 79.10∗∗∗ 79.85∗∗ 94.78∗ 60.45 82.09∗ 58.21∗∗ 85.07
3 50.38∗∗∗ 78.20∗∗ 75.94 93.98 60.15 85.71 63.16 83.46
4 56.06∗∗ 81.82∗ 71.97 91.67 57.58∗∗ 84.85 65.15 84.85
5 54.96∗∗ 85.50 69.47 90.08 62.60 87.02 64.89 82.44
6 62.31 85.38 66.92 88.46 69.23 93.08 66.92 84.62
7 66.67 88.37 66.67 89.92 68.22 93.02 65.89 86.05
8 69.53 84.38 66.41 89.06 70.31 93.75 65.62 85.94
9 71.65 84.25 64.57 88.98 70.87 92.91 66.93 87.40
10 70.63 87.30 61.90 88.10 70.63 92.86 67.46 88.10
11 69.60 87.20 64.00 88.00 72.00 92.00 70.40 87.20
12 68.55 87.90 63.71 87.10 75.00 91.13 69.35 87.10
13 69.92 88.62 61.79 87.80 75.61 92.68 69.92 87.80
14 69.67 87.70 60.66 86.89 76.23 94.26 68.03 88.52
15 67.77 88.43 61.16 86.78 76.03 94.21 71.07 87.60
16 71.67 88.33 59.17 87.50 75.83 93.33 71.67 89.17

PANEL B: VAR Model

0 52.21∗∗∗ 82.35∗∗∗ 80.15∗∗∗ 94.12∗ 56.62∗∗∗ 84.56 67.65 91.18
1 56.30∗∗ 77.78∗∗∗ 82.22∗∗∗ 95.56∗∗ 62.96 82.96∗ 59.26∗ 85.93
2 56.72∗∗ 79.85∗∗∗ 79.10∗∗ 94.78∗ 67.16 85.82 63.43 83.58
3 54.89∗∗ 79.70∗∗ 78.95∗ 93.98 64.66 87.22 64.66 86.47
4 55.30∗∗ 84.85 72.73 91.67 64.39 86.36 67.42 87.88
5 58.78∗ 84.73 70.99 90.84 66.41 88.55 68.70 87.79
6 58.46∗ 84.62 67.69 90.00 66.15 90.00 66.15 86.92
7 58.14∗ 85.27 63.57 89.92 66.67 90.70 65.12 87.60
8 60.94 82.03 61.72 89.84 66.41 89.84 67.19 87.50
9 62.20 81.10 60.63 88.98 66.14 92.13 70.08 88.19
10 61.90 84.92 57.14 88.10 65.87 91.27 69.84 88.10
11 64.00 82.40 55.20∗∗ 88.00 68.00 89.60 68.00 89.60
12 66.13 84.68 54.84∗ 86.29 67.74 91.13 70.97 89.52
13 68.29 85.37 54.47∗ 84.55 66.67 91.06 73.17 89.43
14 66.39 84.43 53.28∗ 85.25 70.49 90.16 71.31 90.16
15 66.94 86.78 52.89∗ 85.12 73.55 90.91 73.55 89.26
16 66.67 87.50 53.33 85.83 74.17 91.67 72.50 90.00

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample forecasts
at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized
values are available). Reflecting the availability of annual SPF forecasts, forecasts for inflation in CPI and
GDP prices are evaluated only up to h = 12, and h = 8, respectively. Significance assessed by Diebold-
Mariano tests using Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the
1%, 5%, and 10% level, respectively.
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Figure A.11: GDP growth PITs with and without noise
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for GDP
growth at selected quarterly forecast horizons. All forecasts are generated out of sample by our
MDS and VAR models (with and without noise in measurement equations for annual forecasts),
and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far as realized
values are available). 95% confidence bands for tests of correct calibration from Rossi and Sekh-
posyan (2019); computed separately for each model, but with nearly identical plot lines.
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Figure A.12: Unemployment rate PITs with and without noise
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for Unemploy-
ment rate at selected quarterly forecast horizons. All forecasts are generated out of sample by our
MDS and VAR models (with and without noise in measurement equations for annual forecasts),
and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far as realized
values are available). 95% confidence bands for tests of correct calibration from Rossi and Sekh-
posyan (2019); computed separately for each model, but with nearly identical plot lines.
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Figure A.13: GDP price inflation PITs with and without noise
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for GDP price
inflation at selected quarterly forecast horizons. All forecasts are generated out of sample by our
MDS and VAR models (with and without noise in measurement equations for annual forecasts),
and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far as realized
values are available). 95% confidence bands for tests of correct calibration from Rossi and Sekh-
posyan (2019); computed separately for each model, but with nearly identical plot lines.

A.42



BANCO DE ESPAÑA 83 DOCUMENTO DE TRABAJO N.º 2429 

Figure A.14: CPI inflation PITs with and without noise
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for CPI infla-
tion at selected quarterly forecast horizons. All forecasts are generated out of sample by our MDS
and VAR models (with and without noise in measurement equations for annual forecasts), and
evaluated over an evaluation window from 1990Q1 through 2023Q4 (and as far as realized values
are available). 95% confidence bands for tests of correct calibration from Rossi and Sekhposyan
(2019); computed separately for each model, but with nearly identical plot lines.
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II Details on Bayesian MCMC sampler and priors

II(a) Model summary, priors and MCMC steps

Before turning to a description of priors and MCMC sampling steps, we begin by restating the

equations of our general model, with a VAR specification for forecast updates and unconditional

bias, as detailed in Section 4 of the paper.

States: The model tracks a term structure of SPF-implied quarterly forecasts, denoted Yt as

detailed in equation (1) of the paper:

Yt ≡
[
yt−1, Ftyt, Ftyt+1, . . . , Ftyt+h, . . . , Ftyt+H

]′
. (1)

The dynamics of Yt are characterized by the following trend-cycle decomposition:

Yt = Ỹt + 1y∗t , (A.46)

y∗t = y∗t−1 + w∗
t , w∗

t ∼ N (0, ω2
t ) . (A.47)

Section 4 of the paper, in equations (7), (9), and (10), derives the following law of motion for the

gap vector:

Ỹt =
(
I − Ψ̃

)
Ȳ + Ψ̃Ỹt−1 + η̃t , (7)

and η̃t = Π̃ η̃t−1 + ε̃t , with ε̃t ∼ N (0, Σ̃t), (9)

⇒ Ỹt =
(
I − Ψ̃

)(
I − Π̃

)
Ȳ +

(
Ψ̃+ Π̃

)
Ỹt−1 −

(
Ψ̃ Π̃

)
Ỹt−2 + ε̃t , (10)

where Ψ̃ is a matrix of zeros and ones as described in equation (8) of the paper, Π̃ a stable matrix

to be estimated, and Ȳ a vector of average gap values, also to be estimated.

As discussed in the paper, the MDS version of our model is nested in the above, with the

restrictions Ȳ = 0 and Π̃ = 0.

A.44
The measurement equations are:

Zt =



Zq,t

Za,t


 =



Cq,t

Ca,t


Yt +



0

nt


 , ni,t ∼ N (0, σ2

i,t), (A.48)

where Zq,t contains the lagged realized value yt−1 and observed quarterly fixed-horizon fore-

casts from the SPF (all assumed to be measured without error) and Za,t consists of the observed

fixed-event annual predictions from the SPF. Further details on Zq,t, Za,t and their measurement

loadings Cq,t and Ca,t are described in Appendix I(b) above.

Shock distributions: Horseshoe models are applied to the time-varying variances of shocks to

trend and noise, ω2
t and σ2

i,t, as detailed further below in appendix II(b). As described in Section 4.5

of the paper, the time-varying second moment matrices of the gap shocks are modeled via the

following two-block stochastic volatility (SV) process with fat tails. Restating the equations from

the paper, we have:

ε̃t =



ε̃1,t

ε̃2,t


 =



I K̃

0 I






ε∗1,t

ε∗2,t


 , with



ε∗1,t

ε∗2,t


 ∼ N






0

0


 ,



λ1,t · Σ̃11 0

0 λ2,t · Σ̃22





 , (15)

in which K̃ is a matrix (with dimension 4 × (H − 2)) of coefficients to be estimated. This SV

structure yields the following time-varying variance-covariance matrix of the cyclical shocks:

Σ̃t =



I K̃

0 I






λ1,t · Σ̃11 0

0 λ2,t · Σ̃22






I K̃

0 I




′

. (16)

The scalar factors λ1,t and λ2,t impart time variation and fat tails to the shock vector ε̃t. Building

on, among others, Carriero et al. (2022b), Chan (2020), and Jacquier et al. (2004), we model these
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factors as the products of iid inverse-gamma draws and persistent stochastic volatility processes:

λi,t = ϕi,t · λ̃i,t , ∀ i = 1, 2 , (17)

with ϕi,t ∼ IG
νi
2
,
νi
2


, log λ̃t ≡



log λ̃1,t

log λ̃2,t


 =



ρ1 0

0 ρ2


 log λ̃t−1 + ϵλt , (18)

and ϵλt ∼ N (0,Φ). The iid inverse-gamma draws add fat tails in the form of a multivariate t

distribution with νi degrees of freedom to each block. The vector SV process log λ̃t has correlated

shocks and is normalized to a mean of zero, obviating the need for normalizing assumptions on the

constant-coefficient matrices Σ̃11 and Σ̃22.

Notation for state vectors, measurement vectors, and parameters: We collect all observed

measurements, {Zt}Tt=1 , in the measurement vector Z, and all values of {y∗t }Tt=0, {Ỹt}Tt=−1, and

Ȳ in the (linear) state vector Y , where t = T denotes the end of the sample, and t = −1, 0

points to initial conditions.6 Conditional on values for the time-varying second moment param-

eters, {Σ̃t}Tt=1, and {ω2
t }Tt=1, the equations above describe a Gaussian state space, with measure-

ments Z and state vector Y . In addition, we collect the latent SV and t-mixture-representation

states, λ̃i,t and ϕt,i, in the vectors λ̃, and ϕ, respectively, and collect the time-varying second mo-

ment parameters for trend and noise shocks in the vectors ω2 and σ2. The remaining parameters

of the model are the VAR coefficient matrix, Π̃, fixed parameters of the block-SV model, K,

Σ̃11, and Σ̃22, the AR(1) coefficients of the cyclical SV processes, ρ = [ρ1, ρ2]
′, and associated

variance-covariance matrix of shocks to the SV processes, Φ, as well as the degrees of freedom of

the multivariate t distributions for cyclical shocks, ν = [ν1, ν2]
′.

In our description of the MCMC sampler below, we denote the sets of constant parameters and

6Our reference to Y as state vector is understood conditional on trajectories for the time-varying second moment
parameters, whose stochastic evolution is, of course, also needed to fully describe the state of the model.
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time-varying second moment states as follows:

Θ ≡

Π̃,K, Σ̃11, Σ̃22,ρ,Φ,ν


, (A.49)

Ω =

λ̃,ϕ,ω2,σ2


. (A.50)

When referring to any of these sets while excluding one of its components, we simply refer to Θ† or

Ω†, where the excluded component shall be clear from the context. Moreover, we suppress notation

for mixture states involved in the estimation of the SV processes based on the methods of Kim et al.

(1998) and Omori et al. (2007), as well as mixture states used in the horsehoe representations of

the shocks to trend and noise (with further details provided in Appendix II(b)).

We use the following priors for parameters and initial values of the states:

• y∗0 ∼ N (0, 1002), which is an essentially diffuse prior for the initial value of the trend level.

•



Ỹ0

Ỹ−1


 ∼ N (0, 25 · I), which is a fairly wide prior for the initial gap levels.

• Ȳ ∼ N (0,DY ) with DY a diagonal matrix with typical element Var (Ȳj) = 25/j so as to

imply shrinkage of (unconditional) bias towards zero that is increasing with forecast horizon.

• vec (Π̃) ∼ N (0,DΠ̃), where DΠ̃ is a diagonal matrix that implements the structure of a

typical Minnesota prior on the VAR coefficients, with overall shrinkage Var (Π̃i,i) = θ1 and

cross-variable shrinkage Var (Π̃i,j) = θ1 · θ2 for i ̸= j, and θ1 = .22 and θ2 = .52.

• log (λ̃j,0) ∼ N (0, 100) for j = 1, 2, which is a fairly uninformative prior for the initial values

of the SV factors.

• ρj ∼ N (0.8, 0.22) for j = 1, 2 as in Clark and Ravazzolo (2015) and other studies.

• νj ∼ U(3, 40) for j = 1, 2, and implemented over a grid of natural numbers as in Jacquier

et al. (2004).
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Ỹ−1


 ∼ N (0, 25 · I), which is a fairly wide prior for the initial gap levels.
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A.47• Σ̃jj ∼ IW (Nj, 0.01 · I) for i = 1, 2, where Nj is the number of elements of the j block of

the SV model, so that the prior is relatively uninformative, and has no mean.

• vec (K) ∼ N (0, I).

• Φ ∼ IW (2, I), which is fairly uninformative since with as many degrees of freedom as

there are SV shocks, this prior has no mean.

Note that the initial levels of trend and mean bias, y∗0 and Ȳ , are not separately identifiable and

could be normalized, for example by setting y∗0 = 0. We choose to estimate both, but report only

statistics reflecting their joint effects, as the estimates with the normalization y∗0 = 0 displayed

poorer convergence properties in our experiments.

Our MCMC sampler iterates over the following steps:

1. p
(
Y
∣∣Ω,Θ,Z

)
. Draws from the latent vector of term-structure expectations can be obtained

via standard sampling techniques for a linear Gaussian state space model. For computational

efficiency, we build on the precision-based sampler developed by Mertens (2023), with de-

tails described below in Appendix II(c).

2. p
(
Π̃
∣∣Y ,Ω,Θ†,Z

)
. We draw from the posterior of the VAR coefficients using a Bayesian

updating with normal conjugate prior (and posteriors). Appendix II(d) provides details of

an efficient implementation that accounts for the heteroskedasticity in the VAR residuals

while exploiting the two-block structure of the SV model. Rejection sampling is employed

to ensure that the VAR coefficients remain within the unit circle.

3. p
(
K

∣∣Y ,Ω,Θ†,Z
)

is a standard Bayesian vector regression with normal conjugate prior

(and posterior), performed by regressing draws of ε̃1,t on ε̃2,t after scaling each by λ1,t.

4. For j = 1, 2, draw p
(
Σ̃jj

∣∣Y ,Ω,Θ†,Z
)

, which are standard inverse-Wishart updates based

on draws of ε∗j,t/λj,t.
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5. p

(
ν
∣∣Y ,Ω,Θ†,Z

)
the degrees of freedom for the multivariate student t distributions of the

cyclical shocks are sampled over a uniform grid of natural numbers, as described by Jacquier

et al. (2004).

6. p
(
ϕ̃
∣∣Y ,Ω†,Θ,Z

)
which are the common inverse-gamma mixture states of the multivariate

t distributions for the cyclical shock blocks, and are drawn as described, for example, by

Chan (2020), exploiting the conjugacy of their (conditional) inverse Gamma priors.

7. p
(
λ̃
∣∣Y ,Ω†,Θ,Z

)
which are the common SV processes of the cyclical shock blocks, and

are drawn as described, for example, by Carriero et al. (2016) and Chan (2020), using the

mixture-state SV sampler of Kim et al. (1998), with a 10-point grid as recommended in

Omori et al. (2007), while following the advice of Del Negro and Primiceri (2015), regarding

the correct ordering of steps in the mixture sampling.

8. p
(
ρ
∣∣Y ,Ω,Θ†,Z

)
is a seemingly-unrelated Bayesian system regression with normal con-

jugate prior (and posterior), using draws of λ̃j,t for j = 1, 2, and which is conducted using

rejection sampling to ensure that the AR(1) coefficients remain within the unit circle.

9. p
(
Φ
∣∣Y ,Ω,Θ†,Z

)
is a standard inverse-Wishart update based on draws of the shocks to the

(log-)SV processes.

10. p
(
ω2

∣∣Y ,Ω†,Θ,Z
)

and p
(
σ2

∣∣Y ,Ω†,Θ,Z
)

are independently sampled using the Gibbs

sampling steps described by Makalic and Schmidt (2016) for the horseshoe model. (See also

Appendix II(b)).

The MDS version of our model restricts Ȳ and Π̃ to be zero, so that when estimating the

model, we omit Ȳ from the state vector Y and drop the sampling step for Π̃. In addition, we

can omit Ỹ−1 from the set of initial conditions, since the gap dynamics are fully determined by a

VAR(1) (instead of a VAR(2)) in this case.

The remainder of this appendix describes details of the horseshoe specifications for the shocks

to trend and noise, the precision-based sampler for the state space, and the sampling of VAR
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model, we omit Ȳ from the state vector Y and drop the sampling step for Π̃. In addition, we
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coefficients when heteroskedasticity in its residuals is described by a two-block SV model.

II(b) Horseshoe shock specifications

II(b.1) Horseshoe model for trend shocks

We model shocks to the trend and measurement errors via a horseshoe model. The horseshoe

model has originally been proposed by Carvalho et al. (2010) for modeling sparse regressions, i.e.

regressions with a priori potentially many regressors, many of whom are however expected to be

irrelevant, with only a few attracting substantial mass a posteriori. As such, while the horseshoe

prior places considerable mass on coefficient values of zero, it also has particularly fat tails to

generate (few) significantly-sized coefficient estimates.

In our application, we apply the horseshoe model to sequences of shocks (in this case: the

trend shocks), instead of regression coefficients where we suspect that most realizations are close

to zero while some can also be sizable. In a similar spirit, Prüser (2021) applies a horseshoe model

to the shocks of drifting coefficients in a VAR with time-varying parameters. The horseshoe has a

conditionally Gaussian representation for the shocks:

w∗
t ∼ N

(
0, ω2

t

)
(A.51)

and achieves its particular form with a hierarchical model for the conditional variance ω2
t :

⇒ ω2
t = τ 2ω · ϑ2

w,t (A.52)

with τ 2ω ∼ C+(0, 1) , and ϑ2
w,t ∼ C+(0, 1) , (A.53)

where C+(0, 1) denotes the half-Cauchy distribution. In this horseshoe model, τ 2w denotes the

global shrinkage (applicable to shocks, w∗
t , at all t) and ϑ2

w,t denotes local shrinkage (that is specific
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to the time-t realization of w∗
t ). For brevity, we denote the hierarchical model for ω2

t as follows:

ω2
t ∼ HS

(
τ 2ω
)
. (A.54)

The horseshoe model can be represented via scale mixtures. Moreover, as shown by Makalic

and Schmidt (2016), Bayesian estimation via Gibbs sampling becomes straightforward when auxil-

iary variables are used, and we follow their approach in sampling posterior values for ω2
t . Estimated

trend levels are reported in Appendix V further below.

II(b.2) Measurement error with horseshoe model

With similar motivation to the trend shocks, we apply (separate) horseshoe models to the mea-

surement errors attached to annual SPF forecasts. Moreover, since we suspect that the size of

measurement errors varies across quarters of the year, we apply separate horseshoe models to fore-

casts collected in different quarters of the year. For this purpose, let q(t) ∈ {1, 2, 3, 4} denote a

function that maps a time index t into the corresponding quarter of the year.

As described, the measurement error in the annual forecast i at time t by ni,t has a conditionally

Gaussian distribution, and for each q(t) we apply separate horseshoe models to the conditional

variance of ni,t :

ni,t ∼ N (0, σ2
i,t) , σ2

i,t ∼ HS
(
τ 2i,q(t)

)
(A.55)

⇒ σ2
i,t = τ 2i,q(t) · ϑ2

i,t , τ 2i,q(t) ∼ C+(0, 1) ϑ2
i,t ∼ C+(0, 1) . (A.56)

Estimated noise levels are reported in Appendix I(c).

A.51

II(c) Precision-based sampling from state space

Step 1 of the MCMC scheme outlined above involves drawing a vector of latent states, Y , condi-

tional on observables, Z, and draws of model parameters (including time-varying second moment

parameters). This sampling step involves a Gaussian signal extraction, which is efficiently imple-

mented with a precision-based sampler, that extends methods detailed in Mertens (2023), and that

is described here.

For ease of notation, we drop dependence of the sampling problem on the various model pa-

rameters. As before, Y , denotes a vector of all values for Yt for all t, stacked on top of each other,

and likewise for Z. In stacked form, the state space can be written as follows:

AY = Y0 +Bwt , w ∼ N (0, I) , (A.57)

Zq = CqY , (A.58)

Za = CaY +Dn , n ∼ N (0, I) , (A.59)

and Zq and Za collecting measurement equations for, respectively, quarterly fixed-horizon data

(without measurement error) and annual fixed-event data (with measurement error). Details of the

mapping between a dynamic representation, such as the one described in Section 4 of the paper,

and this stacked representation are illustrated, for example, in Mertens (2023).

Originally developed in Chib and Jeliazkov (2006) and then Chan and Jeliazkov (2009), precision-

based samplers offer a computationally efficient alternative to sample latent states from linear

Gaussian models as compared to recursive methods based on Kalman filtering and smoothing,

such as the simulation smoother of Durbin and Koopman (2002). Precision-based samplers oper-

ate on the inverse variance of the state vector. However, in cases where the measurement vector is

assumed to be observed without measurement error, as in (A.58), we face an ill-defined posterior

precision:

Cq Var (Y |Zq) = 0 =⇒ |Var (Y |Zq)| = 0 , (A.60)
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which cannot be directly handled by conventional precision-based samplers. Mertens (2023) de-

rives a precision-based sampler for the case when all measurement variables are observed without

error, thus corresponding to the state space consisting solely of (A.57) and (A.58). The version

of our model without error in all measurement equations is isomorphic to merely sampling from

p (Y |Zq), but using Z in lieu of Zq, and, in this case, the sampling methods of Mertens (2023)

can be directly applied.

To sample from the space consisting of (A.57) and (A.58) and (A.59), where some measure-

ments, but not all, are observed without error, we build on the methods of Mertens (2023) as

follows:

• Consider the posterior moments of p (Y |Zq):

– From a QR decomposition of Cq, obtain the following:

Cq = RQ =


R1 0


Q1

Q2


 , QQ′ = I , (A.61)

Y =



Y1

Y2


 ≡



Q1

Q2


 Y , ⇔ Y = Q′

1 Y1 +Q′
2 Y2 , (A.62)

where R1 is lower triangular, Y1 describes linear combinations of the state vector Y

that are perfectly described by Zq, and Y2 collects the remaining linear combinations.

Since Y is multivariate normal, so is also Y .

– With Y1 = R−1
1 Zq, the problem of describing p (Y |Zq) boils down to

p (Y2|Zq) ∼ N

µ2|1,P

−1
22|1


. (A.63)

Derivations for the posterior mean, µ2|1, and precision, P22|1, are detailed in Mertens

(2023).

• For p (Y2|Zq,Za), set up a conventional precision-based sampling problem with measure-

A.53



BANCO DE ESPAÑA 92 DOCUMENTO DE TRABAJO N.º 2429 

which cannot be directly handled by conventional precision-based samplers. Mertens (2023) de-

rives a precision-based sampler for the case when all measurement variables are observed without

error, thus corresponding to the state space consisting solely of (A.57) and (A.58). The version

of our model without error in all measurement equations is isomorphic to merely sampling from

p (Y |Zq), but using Z in lieu of Zq, and, in this case, the sampling methods of Mertens (2023)

can be directly applied.

To sample from the space consisting of (A.57) and (A.58) and (A.59), where some measure-

ments, but not all, are observed without error, we build on the methods of Mertens (2023) as

follows:

• Consider the posterior moments of p (Y |Zq):

– From a QR decomposition of Cq, obtain the following:

Cq = RQ =


R1 0




Q1

Q2


 , QQ′ = I , (A.61)

Y =



Y1

Y2


 ≡



Q1

Q2


 Y , ⇔ Y = Q′

1 Y1 +Q′
2 Y2 , (A.62)

where R1 is lower triangular, Y1 describes linear combinations of the state vector Y

that are perfectly described by Zq, and Y2 collects the remaining linear combinations.

Since Y is multivariate normal, so is also Y .

– With Y1 = R−1
1 Zq, the problem of describing p (Y |Zq) boils down to

p (Y2|Zq) ∼ N

µ2|1,P

−1
22|1


. (A.63)

Derivations for the posterior mean, µ2|1, and precision, P22|1, are detailed in Mertens

(2023).
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A.53ment error.

– The problem is isomorphic to sampling from p (Y2|Za), while using µ2|1, and P22|1

as prior moments.

– The transformed measurement equation is:

Za = CaQ
′
1 R

−1
1 Zq + CaQ

′
2 Y2 +Dn (A.64)

⇒ Z̃a ≡ Za − CaQ
′
1 R

−1
1 Zq (A.65)

= C̃a Y2 +Dn (A.66)

with C̃a ≡ CaQ
′
2.

– Standard signal extraction formulas lead to the following posterior:

p (Y2|Zq,Za) ∼ N
(
µ2,P

−1
22

)
, (A.67)

with P22 = P22|1 + C̃′
a (DD′)

−1 C̃a , (A.68)

and P22 µ2 = P22|1 µ2|1 + C̃′
a (DD′)

−1
Z̃a . (A.69)

• Given a draw from p (Y2|Zq,Za) we can construct a draw from p (Y |Zq,Za) from

Y = Q′
1 R

−1
1 Zq +Q′

2 Y2 . (A.70)
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1 R

−1
1 Zq +Q′

2 Y2 . (A.70)
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II(d) Sampling of VAR coefficients with two-block SV model

Step 2 of the MCMC scheme outlined above involves drawing the VAR coefficients, Π̃, conditional

on the latent states, Y , and draws of model parameters (including time-varying second moment pa-

rameters). As described in the paper, we employ a two-block SV model for the cyclical shocks. In

our VAR specification, these cyclical shocks drive the VAR in the detrended SPF forecast updates,

given by equation (9) of the paper (and restated above). Estimation of the VAR coefficients for

the updates to (detrended) forecasts requires us to account for this source of heteroskedasticity. In

general, estimation of VAR models with SV can be computationally intensive, and Carriero et al.

(2022a) and Carriero et al. (2019) derive an efficient Gibbs sampling procedure for this case. We

build on their sampler, and we develop a variant of it that exploits the specific two-block structure

of the SV model. As such Step 2 of the MCMC sampler described above involves multiple steps,

which we detail here:

• We condition on draws for {η̃t}Tt=0, as well as K̃, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2 and seek to

sample the slope coefficients Π̃ in the following regression, which restates the regressors

of (9) in terms of xt ≡ η̃t−1:

η̃t = Π̃xt + ε̃t, (A.71)

where ε̃t is the vector of cyclical shocks described in (15). With a multivariate normal prior

on Π̃ and since the shock vector, ε̃t is multivariate normal, the posterior for Π̃ is multivariate

normal as well.7 Thus, we can equivalently work with a linearly rotated matrix of VAR

slopes, which will be convenient to do, as will be shown in the following steps.

• Following the two-block structure of the SV specification, we partition the vector regression

7The shock vector is multivariate normal conditional on K, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2.
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into two sets of equations:



η̃1,t

η̃2,t


 =



Π̃1

Π̃2


xt +



I K̃

0 I






ε∗1,t

ε∗2,t


 , (A.72)

where ε∗i,t ∼ N (0, λi,t · Σ̃ii) for i = 1, 2 (as in (15)).

• When K̃ ̸= 0, the VAR shocks are correlated across blocks and it is convenient to rotate the

system into a decoupled form:

Let



η∗
1,t

η∗
2,t


 ≡



I K̃

0 I



−1 


η̃1,t

η̃2,t


 , and



Π∗

1

Π∗
2


 ≡



I K̃

0 I



−1 


Π̃1

Π̃2


 (A.73)

and we obtain



η∗
1,t

η∗
2,t


 =



Π∗

1

Π∗
2


xt +



ε∗1,t

ε∗2,t


 . (A.74)

Since



I K̃

0 I



−1

=



I −K̃

0 I


 , (A.75)

we have ε∗2,t = ε̃2,t, ε∗1,t = η̃1,t − K̃η̃2,t, Π∗
2 = Π̃2, Π∗

1 = Π̃1 − K̃Π̃2.

• If the priors for Π∗
1 and Π∗

2 are independent, both blocks of the decoupled VAR system

in (A.74) could be separately estimated. However, this is generally not the case. In fact, in

a typical application (including ours), a researcher might specify independent priors for Π̃1

and Π̃2. In that case, and with K̃ ̸= 0, the priors for the rotated slopes, Π∗
1 and Π∗

2, will

generally be correlated.

• Below, we derive a two-step Gibbs algorithm with the following steps:
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A.56
1. p

(
Π∗

1|Π∗
2,I

)
with prior p

(
Π∗

1|Π∗
2

)

2. p
(
Π∗

2|Π∗
1,I

)
with prior p

(
Π∗

2|Π∗
1

)
,

where I = {{η̃t}t=0}Tt=1, K̃, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2}. These Gibbs steps are similar to

the triangular algorithm of Carriero et al. (2022a), but specialized to the two-block case, and

they proceed by operating on the rotated slopes (and their priors), rather than by adjusting

the VAR equations with additional regressors (as in Carriero et al. (2022a)). Of course, for

full estimation of our state space model, these two Gibbs steps are to be wrapped into a larger

Gibbs sampler with additional steps for inference on the latent states, SV processes, etc. and

as described elsewhere in our paper (or its appendix).

• In the general case, with K̃ ̸= 0, we generally have p
(
Π∗

1|Π∗
2

)
̸= p

(
Π∗

1

)
and p

(
Π∗

2|Π∗
1

)
̸=

p
(
Π∗

2

)
and these conditional priors are reevaluated at each step of the Gibbs sampler as

described further below.8

• Apart from deriving p
(
Π∗

i ,Π
∗
j ̸=i|I

)
∀ i, j = 1, 2, each of the two Gibbs steps amounts to a

standard Gaussian vector regression subject to a scalar SV factor, λi,t, and can be efficiently

sampled with standard methods.

• A given set of draws for Π∗
1 and Π∗

2 can then swiftly be transformed into draws for Π̃1 and

Π̃2 by using (A.73). The joint draw for Π̃1 and Π̃2 is accepted only if the resulting transition

matrix for the VAR, Π̃, is stable.

Derivation of priors for the rotated slopes: To derive the conditional priors, p
(
Π∗

i ,Π
∗
j ̸=i|I

)
,

we begin with the (given) prior for the original VAR slopes, Π̃. Since Π̃ is a matrix (its sub-blocks

Π̃1 and Π̃2 are also matrices), we consider priors for their vectorized forms. To keep better track

of the system’s block structure, it is convenient to express the prior in terms of vectorizing the

8Note: For the case of K̃ = 0, we have p
(
Π∗

1|Π∗
2

)
= p

(
Π∗

1

)
and p

(
Π∗

2|Π∗
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)
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transposed slopes matrix, Π̃
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Throughout, we assume a Gaussian prior for vec

Π̃

′
that is mean zero and has a (block-) diag-

onal variance-covariance matrix. Expressed in terms of precision matrices (i.e. inverse variance-

covariance matrices), the prior has the following form:10
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The vector of rotated slopes is related to the vector of the original slopes as follows:11
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, with K ≡ K̃ ⊗ I (A.79)
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�
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
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
Π̃2

′
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�
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2
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
Π̃2
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. (A.80)

9Expressing the slopes’ prior in terms of Π̃
′

also corresponds to much of the general literature on VAR systems,
including Kadiyala and Karlsson (1997), and Carriero et al. (2019).

10Typical Minnesota-style priors, like the one used in our application, have diagonal variance-covariance matrices,
thus also diagonal precision matrices P11 and P22. The extension to non-diagonal priors and variance-covariance
matrices is straightforward.

11Throughout, each use of I denotes an identity matrix of conformable size, so that repeated uses of I need not
refer to identically-sized identity matrices.
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where I = {{η̃t}t=0}Tt=1, K̃, Σ̃ii, {λi,t}Tt=1 ∀ i = 1, 2}. These Gibbs steps are similar to

the triangular algorithm of Carriero et al. (2022a), but specialized to the two-block case, and

they proceed by operating on the rotated slopes (and their priors), rather than by adjusting

the VAR equations with additional regressors (as in Carriero et al. (2022a)). Of course, for

full estimation of our state space model, these two Gibbs steps are to be wrapped into a larger

Gibbs sampler with additional steps for inference on the latent states, SV processes, etc. and

as described elsewhere in our paper (or its appendix).
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and these conditional priors are reevaluated at each step of the Gibbs sampler as

described further below.8

• Apart from deriving p
(
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i ,Π
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)
∀ i, j = 1, 2, each of the two Gibbs steps amounts to a

standard Gaussian vector regression subject to a scalar SV factor, λi,t, and can be efficiently

sampled with standard methods.

• A given set of draws for Π∗
1 and Π∗

2 can then swiftly be transformed into draws for Π̃1 and

Π̃2 by using (A.73). The joint draw for Π̃1 and Π̃2 is accepted only if the resulting transition

matrix for the VAR, Π̃, is stable.

Derivation of priors for the rotated slopes: To derive the conditional priors, p
(
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)
,

we begin with the (given) prior for the original VAR slopes, Π̃. Since Π̃ is a matrix (its sub-blocks

Π̃1 and Π̃2 are also matrices), we consider priors for their vectorized forms. To keep better track

of the system’s block structure, it is convenient to express the prior in terms of vectorizing the

8Note: For the case of K̃ = 0, we have p
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and p
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)
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)
, and the system is per-

fectly decoupled. A single iteration over both steps generates a direct draw from the joint distribution of p
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)
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The joint prior for Π∗
1 and Π∗

2 can then be expressed (and again using precision matrices) as
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where



P ∗

11 P ∗
12

P ∗
21 P ∗

22


 =



I K

0 I




′ 

P11 0

0 P22






I K

0 I


 (A.82)

=




P11 P11K
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and, using standard signal-extraction formulas, the conditional priors then follow as:
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−P−1

22 K′P11 vec
�
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1
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−1

. (A.85)

For MCMC estimation, an additional step is added to the sampler described above for the MDS

version of the SV model. Between steps 1 and 2 of the sampler, we draw from

p

Π̃
Z,Y ,λ, σ2

∗, Σ̃, σ2
ν


= p


Π̃
Y ,λ, Σ̃


,

which is a standard conjugate-normal Bayesian regression update. (Furthermore, Π̃ is added to the

conditioning sets of the other steps).
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For MCMC estimation, an additional step is added to the sampler described above for the MDS

version of the SV model. Between steps 1 and 2 of the sampler, we draw from
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
Π̃
Z,Y ,λ, σ2

∗, Σ̃, σ2
ν


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which is a standard conjugate-normal Bayesian regression update. (Furthermore, Π̃ is added to the

conditioning sets of the other steps).
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III Coibion-Gorodnichenko slopes implied by VAR model

This appendix describes our calculations of model-implied slopes for regressions testing the effi-

ciency of SPF forecasts known from the work of Coibion and Gorodnichenko (2015). We derive

these slopes within our VAR model for forecast updates. To restate relevant parts of the model, we

denote the vector of forecast updates (including the lagged nowcast error, and change in long-run

forecast) by ηt, and the VAR model with SV specifies the following:

ηt ≡ Ft



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− Ft−1


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yt+H−1




(A.86)

= η̃t + 1w∗
t + η̄ , (A.87)

with η̃t = Π̃ η̃t−1 + ε̃t , (A.88)

and ε̃t ∼ N(0, Σ̃t) , (A.89)

w∗
t ∼ N(0, ω2

t ) . (A.90)

Since the SPF is assumed to know the lagged realized value, we have Ftyt−1 = yt−1, and the top

element of ηt is identical to et−1 = yt−1 − Ft−1yt−1. The VAR’s transition matrix, Π̃, is required

to be stable (i.e. all eigenvalues inside the unit circle).

For each MCMC draw of the model parameters, we derive regression slopes from the popula-

tion moments of the model. For the time-varying variance parameters, Σ̃t and ω2
t , we use fixed

values (per MCMC draw) as follows: For the trend shocks, that are generated from a horseshoe

model, ω2
t ∼ HS(τ 2w), we use the global scale parameter τ 2w. This choice is motivated by the notion

that the local scale parameter represents occasional shifts in trend levels that are ignored for sake
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of computing CG slopes. In lieu of Σ̃t, at a given MCMC draw, we use the median values over the

sampled (time-series) paths for λ1,t and λ2,t to construct the corresponding (constant) value for Σ̃.

III(a) CG regressions in population

Given values for Σ̃, ω2, and Π̃, we can solve for the variance of the unconditional (or steady-state)

variance of ηt as follows:

Var (ηt) ≡ Γ = Γ̃+ 11′ω , with Γ̃ = Π̃ Γ̃ Π̃
′
+ Σ̃ , (A.91)

where the second equation is a standard Lyapunov equation. Given a (positive definite) solution

for Γ̃, autocovariances of ηt follow as Cov (ηt+h,ηt) = Π̃
h
Γ̃ ∀h > 0.12

Based on the population variances Var (ηt) and autocovariances Cov (ηt+h,ηt), we want to

compute regression slopes, bh, for the following “CG” regression known from Coibion and Gorod-

nichenko (2015):

(1− Ft)yt+h = ah + bh · (Ft − Ft−1)yt+h + et+h (A.92)

for horizons h = 0, 1, 2, . . . etc., with

bh =
Cov ((1− Ft)yt+h, (Ft − Ft−1)yt+h)

Var ((Ft − Ft−1)yt+h)
. (A.93)

The regressor of the CG regression represents a sum of forecast updates at different points in

time:13

(1− Ft)yt+h =
h∑

k=0

(Ft+k+1 − Ft+k)yt+h . (A.94)

12Equation (A.91) is a standard Lyapunov equation and can be solved analytically. The solution exists since Π̃ is
stable, and it is positive definite since Σ̃ is.

13Recall that Ft+h+1yt+h = yt+h.
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for horizons h = 0, 1, 2, . . . etc., with

bh =
Cov ((1− Ft)yt+h, (Ft − Ft−1)yt+h)

Var ((Ft − Ft−1)yt+h)
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The regressor of the CG regression represents a sum of forecast updates at different points in

time:13

(1− Ft)yt+h =
h∑

k=0

(Ft+k+1 − Ft+k)yt+h . (A.94)

12Equation (A.91) is a standard Lyapunov equation and can be solved analytically. The solution exists since Π̃ is
stable, and it is positive definite since Σ̃ is.

13Recall that Ft+h+1yt+h = yt+h.
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Let e(k) denote a selection vector, defined for k = −1, 0, 1 . . . , H , that selects the (k + 2)th

element of a vector of length H + 2 so that (Ft − Ft−1)yt+k = e(k)′ ηt (∀ k < H), and we get:

Cov ((1− Ft)yt+h, (Ft − Ft−1)yt+h) =
h∑

k=0

Cov (Ft+k+1 − Ft+k)yt+h, (Ft − Ft−1)yt+h) (A.95)

=

(
h∑

k=0

e(h− k − 1)′Π̃
k+1

)
Γ̃ e(h) , (A.96)

and Var ((Ft − Ft−1)yt+h) = e(h)′ Γ e(h) (A.97)

= e(h)′ Γ̃ e(h) + ω2 (A.98)

and the CG slope can be computed as follows:

bh =

(∑h
k=0 e(h− k − 1)′Π̃

k+1
)
Γ̃ e(h)

e(h)′ Γ̃ e(h) + ω2
. (A.99)

When pooling the CG slopes across j = 0, 2, . . . , h, the pooled slope is:14

b̄0:h =

∑h
j=1

[(∑j
k=0 e(h− k − 1)′Π̃

k+1
)
Γ̃ e(j)

]

∑h
j=1

[
e(j)′ Γ̃ e(j)

]
+ h · ω2

. (A.100)

Since the common trend is a martingale (and thus an efficient forecast), the CG coefficients will be

smaller the larger the trend-shock variance, ω2.

III(b) Estimated CG slopes

Table A.6 reports the slopes of Coibion-Gorodnichenko regressions for each variable implied by

our VAR specifications fit to SPF forecasts. We compute the population slopes, as described above,

for each draw of model parameters obtained from Bayesian MCMC estimation of the VAR model

and report the posterior moments of the pooled slopes, b̄0:h, for h = 3. The horizons consid-

ered correspond to what is available in terms of observed SPF fixed-horizon forecasts, and thus

14See, for example, Chapter 4 of Hayashi (2000).
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A.62Table A.6: Slopes of Coibion-Gorodnichenko regressions

2019Q4 2023Q4

Variable 5% 50% 95% 5% 50% 95%

RGDP 0.01 0.11 0.22 0.02 0.12 0.23
UNRATE 0.08 0.18 0.30 0.06 0.15 0.27
PGDP 0.00 0.13 0.29 0.04 0.18 0.35
CPI 0.11 0.22 0.33 0.14 0.25 0.36

Notes: Posterior moments of model-implied slopes, bh, in predictability regressions of Coibion
and Gorodnichenko (2015), (1− Ft)yt+h = bh · (Ft − Ft−1)yt+h + et+h, pooled for h = 0, 1, 2, 3.
Estimated from our VAR model, using full-sample data through 2019Q4 and 2023Q4, respectively.

commonly used in empirical work.15

These estimates are generally in line with the literature that finds positive coefficients of small-

to-modest magnitudes, indicating some departures from full rationality in professional forecasts.

For the sample of forecasts through 2023Q4, across variables the posterior medians range from

0.11 (RGDP) to 0.24 (CPI inflation), with 90 percent credible sets that do not include 0, except in

the case of the unemployment rate. Quantitatively, our estimates are broadly comparable to those

in surveys such as Angeletos et al. (2021).16 Based on this evidence, it appears that our VAR model

of SPF forecasts can capture reasonably well the empirical extent of non-rationality emphasized

by Coibion and Gorodnichenko and subsequent studies.

15Note that the right-hand side of (A.92) involves a forecast for h + 1 steps ahead, so that computation of b̄0:3
involves all observable fixed-horizon forecasts.

16For example, for a sample of (SPF) unemployment and inflation forecasts for 1984-2017 at a horizon of h = 3,
these authors report a coefficient of 0.292 (their Table 1).
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IV Model-implied IMA representation for outcome process

Our state space model embeds a process for the outcome variable, yt, that is driven by multiple

shocks, most of which represent expectational updates at various horizons. As described in Clark

et al. (2020), such a representation can emerge from a wide class of models with multiple drivers,

including DSGE models, that have a (conditionally linear) state-space representation. For ease of

reference, we can also describe the model-implied process for yt in terms of a univariate represen-

tation driven by innovations defined relative to the history of yt alone:

εt ≡ yt − E(yt|yt−1) , with yt−1 ≡ {yt−1, yt−2, . . .} . (A.101)

Here we show that our MDS model implies a univariate IMA(1, H) process for yt, which can

be derived from the innovations representation of our state space model. Further below, we also

show that, due to the added persistence in its forecast updates, the VAR model implies a univariate

IMA(1,∞) representation.

In this context, the conditional expectations operator, E(·|yt−1), is understood to condition also

on given values for the model’s parameters (like Σ̃11, Σ̃22, K̃, and τ 2w, or Π̃ in the case of the VAR

model). For simplicity, we derive a time-invariant process of yt that abstracts from variations in

stochastic volatility. To do so, and similar to our derivation of CG slopes in Appendix III(b), we

work with a time-invariant representation of our state space model, obtained by holding fixed the

time-varying second moments of the model, Σ̃t and ω2
t . All computations are performed draw-by-

draw from the model’s MCMC output. As in Appendix III(b), at every MCMC draw, we employ

a fixed value for Σ̃t that is constructed using the median values over the sampled (time-series)

paths for λ1,t and λ2,t, and we replace ω2
t ∼ HS(τ 2w) by the corresponding draw of the global scale

parameter τ 2w.
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IV(a) Univariate process for yt implied by MDS model

The MDS model is characterized by the following state equations (and assuming constant vari-

ances, as discussed above):

Ỹt = Ψ̃Ỹt−1 + η̃t , η̃t ∼ N (0, Σ̃) , (A.102)

y∗t = y∗t−1 + w∗
t , w∗

t ∼ N (0, τ 2w) . (A.103)

We derive an innovations representation based on the following univariate measurement equation:

yt = e1Ỹt+1 + y∗t+1 , (A.104)

where e1 is a row vector that selects the first element of Ỹt+1.17 To derive the innovations process

for yt, we need to define the projections of state variables onto yt:

Ỹt+1|t ≡ E
(
Ỹt+1

∣∣ yt
)
= Ψ̃Ỹt|t−1 + κ̃ εt , (A.105)

=
(
I − Ψ̃L

)−1

κ̃ εt , (A.106)

and y∗t+1|t ≡ E
(
y∗t+1

∣∣ yt) = y∗t|t−1 + κ∗ εt , (A.107)

⇔ (1− L) y∗t+1|t = κ∗ εt , (A.108)

where κ̃ and κ∗ are steady-state Kalman gains for each component of the state vector. The lag

operator L is understood to shift both the timing and conditioning sets of the projections, as in

L · Ỹt|t = Ỹt−1|t−1 and analogously for y∗t|t and εt. To derive the steady-state Kalman gains,

17Reflecting the timing assumptions in our state space model, yt is captured only by t + 1 state variables. These
assumption reflect the data flow of economic data releases relative to the SPF at time t+ 1.
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consider the following state space:

St+1 =



Ỹt+1

y∗t+1


 = ASt +Bwt+1 , wt ∼ N (0, I) , (A.109)

yt = CSt+1 , (A.110)

with

A =



Ψ̃ 0

0 1


 , B =



Σ̃

1/2
0

0 τw


 , C =


e1 1


. (A.111)

And the Kalman gains are obtained as follows:

κ =



κ̃

κ∗


 = V C′ (C V C′)

−1
, (A.112)

where V solves the following Riccati equation:

V = A

V − V C′ (C V C′)

−1 C V

A′ +BB′ . (A.113)

To derive the univariate innovations process for yt, note that the state equations imply Ỹt+1|t =

Ψ̃Ỹt|t−1 and y∗t+1|t = y∗t|t−1. With yt = εt + e1 Ψ̃ Ỹt|t−1 + y∗t|t−1, we obtain:

(1− L)yt =


1− (1− κ∗) L+ (1− L) e1Ψ̃


I − Ψ̃L

−1

κ̃L


εt . (A.114)

To determine the number of MA lags on the right-hand side of (A.114), it is useful to note that for
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consider the following state space:

St+1 =



Ỹt+1

y∗t+1


 = ASt +Bwt+1 , wt ∼ N (0, I) , (A.109)

yt = CSt+1 , (A.110)

with

A =



Ψ̃ 0

0 1


 , B =



Σ̃

1/2
0

0 τw


 , C =


e1 1


. (A.111)

And the Kalman gains are obtained as follows:

κ =



κ̃

κ∗


 = V C′ (C V C′)

−1
, (A.112)
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Ψ̃ as defined in equation (8) of the paper, we have Ψ̃
H+1+j

= 0 for all j > 0:18

(
I − Ψ̃L

)−1

=
H+1∑
j=0

(Ψ̃L)i ⇒ Ψ̃
(
I − Ψ̃L

)−1

L =
H+1∑
j=1

Ψ̃
j
Lj . (A.115)

In total, it follows that there are H + 2 MA lags on the right-hand side of (A.114), and the process

of yt is an integrated moving-average (IMA) process with integration order of one and H MA lags,

or, in short, IMA(1, H + 2). As discussed above, there is some choice in selecting the length, H ,

of the cyclical state vector, Ỹt, used to track the term structure of SPF consistent forecasts. As

shown here, this choice of H is reflected in the number of MA lags in the model-implied univariate

process for yt.

Moreover, it is straightforward to verify that for all j < H + 2 we have e1Ψ̃
j
= ej+1, where

ej is an H + 2 dimensional row vector that selects the jth row.19 Denoting the jth element of the

Kalman gain vector κ̃ by κ̃j ≡ ejκ̃, the IMA representation simplifies as follows:

(1− L)yt =

(
1− (1− κ∗) · L+

H+1∑
j=1

e1 Ψ̃
j
κ̃ · (Lj − Lj+1)

)
· εt (A.116)

=

(
1− (1− κ∗) · L+

H+1∑
j=1

κ̃j+1 · (Lj − Lj+1)

)
· εt . (A.117)

In the MDS model, the moving average coefficients in the IMA representation of yt thus cor-

respond to the Kalman gains involved in forming projections of trend and cyclical states that track

SPF-consistent expectations at different forecast horizons. When the trend gain, κ∗, is close to

zero, the unit-root factor (1 − L) nearly cancels on both sides of (A.117). Of course, the case of

κ∗ ≈ 0 corresponds to situations where the trend shock variance is negligible relative to the vari-

ability of cyclical shocks in the model, and yt is essentially a stationary variable, and its process is

18Recall that Yt contains not only forecasts for horizons h = 1, 2, . . . , H but also the nowcast and the lagged
realized value, yt−1, so that Yt has H + 2 elements, and the transition matrix Ψ̃ is of dimension (H + 2)× (H + 2).

19Reflecting differences in context, the definitions of selection vectors ej here and e(h) in Section III(b) are similar,
but differ in that e(h) is a column vector selecting the (k + 2)th element.
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close to an MA(H − 1). In terms of the level of yt we can also write:

yt =


1 +

H+1
j=1

κ̃j+1 · Lj


· εt + y∗t−1|t−1 , (A.118)

with y∗t|t = κ∗ ·
∞
j=0

εt−j. (A.119)

IV(b) Univariate process for yt implied by VAR model

The derivation of a univariate innovations representation for yt in the VAR model is similar to the

steps described above for the MDS case. The main difference is that (ignoring constants) the gap

process for Ỹt has a richer VMA representation:

Ỹt = Φ̃(L)−1 ε̃t , with Φ̃(L) =

I − Π̃L


I − Ψ̃L


. (A.120)

The roots of Φ̃(L) are the union of the roots of (I − Π̃L) and (I − Ψ̃L), and the former are

generally non-zero so that the VMA lags of Φ̃(L)−1 vanish only asymptotically. Nevertheless,

the derivation of the process for yt is isomorphic for the MDS case and results in the following

IMA(1,∞) representation:20

(1− L)yt =

1− (1− κ∗) L+ (1− L) e1


Π̃+ Ψ̃


Φ̃(L)−1κ̃L


εt . (A.122)

yt =

1 + e1


Π̃+ Ψ̃


Φ̃(L)−1κ̃L


· εt + y∗t|t−1 . (A.123)

20To derive the Kalman gains for the VAR model, we use the following augmented state space matrices:

A =



Ψ̃+ Π̃ −Ψ̃ Π̃ 0

I 0 0
0 0 1


 , B =


Σ̃

1/2
0

0 0
0 τw


 , C =


e1 0 1


. (A.121)
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IV(c) Estimates of the IMA process for yt

To illustrate estimates of the IMA process for yt, we compute impulse responses of yt in response to

an innovation of the IMA process (denoted εt in the derivations above). Figures A.15 through A.18

report these impulse responses for each variable, based on estimates from MDS and VAR models

and using data through 2019Q4 or 2024Q1. The estimates differ mainly across variables, and are

fairly unchanged when including or excluding data since the onset of the COVID-19 pandemic.

The general contours of the estimated impulse responses for each variable are also quite similar

using the MDS or VAR models.

By construction, all responses are equal to 1 on impact. For GDP growth and CPI and GDP

price inflation, the estimated responses then return within a couple of quarters to the (new) steady

state, which is barely changed for GDP growth and GDP price inflation. Even for CPI inflation,

a unit surprise in the realized data raises the endpoint of the term structure of expectations by no

more than 10 basis points. Of course, all three of these variables measure rates of change, and the

relatively low persistence embodied in their estimated impulse responses is consistent with that. In

contrast, the unemployment is a more persistent variable, which is also borne out by the estimated

hump shape in its impulse responses. In both the MDS and VAR models, the unemployment rate

response peaks about three quarters after impact and at responses that exceed the impact value by

about one to two fifths. For the MDS model, the peak of its hump-shaped response is followed by a

relatively gradual decline, that declines below 0.6 after only about 8 quarters. In contrast, the VAR

model generates a sharper peak in the unemployment rate response followed by a swifter decline

(reaching the new steady state after about 8 quarters).
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Figure A.15: Univariate process for yt (MDS, 2019Q4)
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Notes: Impulse responses of univariate innovations representation for yt implied by our state space
for the MDS model. Posterior median and 68% uncertainty bands obtained from data through
2019Q4. The dashed (orange) line depicts the shift in endpoint induced by an innovation to yt.
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Figure A.16: Univariate process for yt (MDS, 2024Q1)
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Notes: Impulse responses of univariate innovations representation for yt implied by our state space
for the MDS model. Posterior median and 68% uncertainty bands obtained from data through
2024Q1. The dashed (orange) line depicts the shift in endpoint induced by an innovation to yt.
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Figure A.17: Univariate process for yt (VAR, 2019Q4)
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Notes: Impulse responses of univariate innovations representation for yt implied by our state space
for the MDS model. Posterior median and 68% uncertainty bands obtained from data through
2019Q4. The dashed (orange) line depicts the shift in endpoint induced by an innovation to yt.
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Figure A.18: Univariate process for yt (VAR, 2024Q1)
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Notes: Impulse responses of univariate innovations representation for yt implied by our state space
for the MDS model. Posterior median and 68% uncertainty bands obtained from data through
2024Q1. The dashed (orange) line depicts the shift in endpoint induced by an innovation to yt.
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V Additional results

This section provides additional results, covering additional variables and further details that were

not shown in the paper for the sake of brevity. These include: tables of results for a sample ending

in 2019Q4, rather than the paper’s sample end of 2023Q4, for Mincer-Zarnowitz predictability

regressions (Tables A.7 and A.8, for models with and without noise), the relative accuracy of

forecasts from the MDS and VAR models (Table A.9), and coverage rates (Table A.10). Those

results are fairly similar to what is reported in the paper and above for data including the pandemic

sample. In addition, Table A.11 complements the results for the VAR model reported in the paper

(for the sample ending in 2023Q4), with similar results from the MDS model.

The results also include additional figures testing the uniformity of the empirical CDFs of PITs

for forecasts of CPI and PGDP inflation (Figures A.19 and A.20) and comparing cumulative log

scores — i.e., marginal likelihoods — of the MDS and VAR specifications (Figure A.21). In addi-

tion, Figure A.22 reports end-of-sample estimates, obtained from recursive out-of-sample forecast

simulations, of the MDS model’s shifting endpoints, y∗t , for each variable, that track closely ob-

served long-run forecasts from the SPF (these are 10-years-ahead average forecasts available for

GDP growth and CPI inflation). Figure A.23 reports similar estimates generated from the VAR

model.
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Table A.7: Predictability of SPF point forecasts (pre COVID)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 −0.66 −0.49 −0.03 −0.08 0.04 0.13 −0.11 −0.11 1.17 1.16 1.00 1.02 0.94 0.92 1.03 1.08
(0.43) (0.39) (0.07) (0.08) (0.11) (0.11) (0.44) (0.43) (0.16) (0.15) (0.01) (0.01) (0.05) (0.05) (0.18) (0.18)

h = 1 −0.49 −0.15 −0.07 −0.01 −0.02 0.13 −0.01 0.09 1.14 1.03 1.01 1.00 0.98 0.95 0.97 0.96
(0.35) (0.33) (0.09) (0.09) (0.08) (0.08) (0.16) (0.14) (0.12) (0.12) (0.02) (0.02) (0.03) (0.04) (0.07) (0.06)

h = 2 −0.09 0.21 −0.10 −0.05 0.13 0.26 0.12 0.16 1.00 0.90 1.02 1.01 0.92 0.84 0.92 0.94
(0.23) (0.21) (0.10) (0.10) (0.06) (0.07) (0.10) (0.12) (0.08) (0.07) (0.02) (0.02) (0.03) (0.03) (0.04) (0.05)

h = 3 0.14 0.31 −0.13 −0.08 0.11 0.22 0.15 0.21 0.94 0.86 1.03 1.02 0.93 0.86 0.91 0.91
(0.14) (0.12) (0.11) (0.12) (0.07) (0.08) (0.09) (0.09) (0.05) (0.04) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04)

h = 4 0.29 0.94 −0.18 −0.08 0.16 0.22 0.12 0.23 0.89 0.68 1.04 1.02 0.92 0.91 0.94 0.89
(0.12) (0.19) (0.11) (0.17) (0.07) (0.08) (0.09) (0.09) (0.04) (0.07) (0.02) (0.03) (0.03) (0.04) (0.04) (0.03)

y = 1 −0.24 −0.15 −0.17 −0.12 0.16 0.22 0.01 0.10 1.06 1.04 1.03 1.03 0.90 0.88 0.98 0.95
(0.30) (0.28) (0.09) (0.11) (0.07) (0.07) (0.12) (0.12) (0.10) (0.10) (0.02) (0.02) (0.03) (0.03) (0.05) (0.05)

y = 2 −0.19 −0.19 -0.27 −0.08 — — 0.64 0.94 1.07 1.07 1.03 1.00 — — 0.73 0.59
(0.13) (0.15) (0.11) (0.12) (0.36) (0.23) (0.05) (0.06) (0.02) (0.02) (0.16) (0.10)

y = 3 0.02 −0.10 0.52 −0.06 — — — — 0.99 1.04 0.86 0.99 — — — —
(0.19) (0.20) (0.16) (0.20) (0.07) (0.08) (0.03) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for
SPF forecasts at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient
estimates significantly different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2019Q4
(and as far as data for SPF forecasts at the different horizons is available).
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Table A.8: Predictability of SPF point forecasts (pre COVID, noise-free model)

intercept slope

RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 −0.66 −0.46 −0.03 −0.13 0.04 0.15 −0.11 −0.12 1.17 1.15 1.00 1.02 0.94 0.90 1.03 1.08
(0.43) (0.39) (0.07) (0.08) (0.11) (0.11) (0.44) (0.45) (0.16) (0.15) (0.01) (0.01) (0.05) (0.05) (0.18) (0.19)

h = 1 −0.49 −0.12 −0.07 −0.05 −0.02 0.09 −0.01 −0.01 1.14 1.02 1.01 1.01 0.98 0.94 0.97 0.99
(0.35) (0.32) (0.09) (0.09) (0.08) (0.09) (0.16) (0.14) (0.12) (0.11) (0.02) (0.02) (0.03) (0.04) (0.07) (0.06)

h = 2 −0.09 0.15 −0.10 0.00 0.13 0.12 0.12 0.17 1.00 0.93 1.02 1.00 0.92 1.01 0.92 0.92
(0.23) (0.22) (0.10) (0.13) (0.06) (0.10) (0.10) (0.10) (0.08) (0.08) (0.02) (0.02) (0.03) (0.05) (0.04) (0.04)

h = 3 0.14 1.74 −0.13 −0.16 0.11 1.10 0.15 0.61 0.94 0.35 1.03 1.04 0.93 0.41 0.91 0.75
(0.14) (0.15) (0.11) (0.24) (0.07) (0.07) (0.09) (0.18) (0.05) (0.06) (0.02) (0.05) (0.03) (0.02) (0.04) (0.07)

h = 4 1.65 1.76 −0.13 0.07 1.13 0.18 0.48 0.49 0.39 0.38 1.03 0.99 0.52 0.90 0.80 0.82
(0.19) (0.14) (0.12) (0.17) (0.16) (0.08) (0.15) (0.11) (0.07) (0.05) (0.02) (0.03) (0.07) (0.04) (0.06) (0.05)

y = 1 0.42 0.51 −0.16 −0.18 0.17 0.42 0.12 0.38 0.83 0.81 1.03 1.03 0.92 0.78 0.94 0.85
(0.17) (0.13) (0.13) (0.16) (0.08) (0.09) (0.09) (0.15) (0.06) (0.05) (0.03) (0.03) (0.04) (0.04) (0.04) (0.06)

y = 2 0.13 0.29 -0.33 −0.03 — — 0.98 1.20 0.94 0.89 1.05 0.99 — — 0.57 0.48
(0.10) (0.24) (0.08) (0.09) (0.32) (0.30) (0.04) (0.09) (0.02) (0.02) (0.14) (0.13)

y = 3 0.13 0.35 0.06 0.11 — — — — 0.94 0.87 0.97 0.97 — — — —
(0.16) (0.31) (0.22) (0.20) (0.06) (0.12) (0.04) (0.04)

Notes: Estimated slope coefficients of Mincer-Zarnowitz regressions for model-based predictions of next-quarter’s published values for
SPF forecasts at different forecast horizons. Heteroskedasticity-consistent standard errors in brackets. Bold font distinguishes coefficient
estimates significantly different from 0 (intercept) or 1 (slope) with a 10% confidence level. Evaluation window from 1990Q1 to 2019Q4
(and as far as data for SPF forecasts at the different horizons is available).
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Table A.9: Relative Forecast Accuracy of MDS vs VAR models (pre COVID)

RMSE CRPS

h RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

0 1.00 1.16 1.02 0.92∗ 1.00 0.96 1.01 0.94∗∗∗

1 1.00 1.06 1.00 1.01 1.00 0.96 0.99 1.01
2 0.99 1.01 0.98 1.01 0.99 0.96 0.97 1.01
3 1.00 0.99 0.98 1.00 1.01 0.96 0.97 1.01
4 1.00 0.99 0.99 0.99 1.00 0.97 0.98 1.01
5 1.01 1.00 1.00 0.99 1.02 0.99 0.99 1.00
6 1.01 1.01 1.01 0.99 1.02 1.00 1.00 1.00
7 1.01 1.01 1.00 0.98 1.01 1.01 0.99 1.00
8 1.01 1.02 1.00 0.98 1.01 1.02 0.99 0.99
9 1.00 1.02 1.01 0.98 1.01 1.02 1.00 0.99
10 1.00 1.02 1.01 0.99 1.00 1.02 1.00 1.00
11 1.01 1.01 1.00 0.98 1.00 1.01 0.99 1.00
12 1.01 1.01 1.01 0.98 1.01 1.01 1.00 0.99
13 1.01 1.00 1.01 0.98 1.01 1.00 1.00 0.99
14 1.01 1.00 1.01 0.98 1.01 0.99 1.00 0.99
15 1.01 0.99 1.01 0.97 1.02 0.99 1.00 0.99
16 1.02 0.99 1.01 0.97 1.03∗ 0.98 0.99 0.99

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast
horizons, h. Evaluation window from 1990Q1 through 2019Q4 (and as far as realized values are
available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors with
h+ 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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Table A.10: Coverage rates (pre COVID)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

PANEL A: MDS Model

0 47.50∗∗∗ 77.50∗∗∗ 88.33∗∗∗ 98.33∗∗∗ 57.50∗∗ 87.50 66.67 90.83
1 52.94∗∗∗ 78.15∗∗∗ 84.03∗∗∗ 98.32∗∗∗ 62.18 88.24 60.50∗ 87.39
2 52.54∗∗∗ 80.51∗∗ 82.20∗∗∗ 96.61∗∗∗ 62.71 88.14 62.71 88.14
3 49.57∗∗∗ 81.20∗ 77.78 94.87 64.10 90.60 64.10 88.03
4 56.90∗∗ 84.48 71.55 93.10 61.21 89.66 70.69 89.66
5 58.26∗ 87.83 70.43 93.04 60.87 91.30 69.57 89.57
6 57.02∗∗ 86.84 71.05 93.86 61.40 90.35 70.18 89.47
7 59.29∗ 88.50 68.14 92.92 61.06 94.69∗∗ 69.91 91.15
8 62.50 86.61 62.50 91.96 64.29 95.54∗∗∗ 71.43 91.96
9 61.26 87.39 57.66 91.89 66.67 94.59∗∗ 73.87 91.89
10 61.82 87.27 56.36 90.91 65.45 98.18∗∗∗ 74.55 91.82
11 63.30 87.16 55.96 90.83 68.81 98.17∗∗∗ 75.23 92.66
12 68.52 90.74 58.33 89.81 71.30 97.22∗∗∗ 74.07 92.59
13 67.29 88.79 57.94 88.79 74.77 98.13∗∗∗ 76.64 93.46
14 66.04 90.57 58.49 88.68 78.30∗∗ 98.11∗∗∗ 77.36 93.40
15 67.62 89.52 56.19 86.67 79.05∗∗ 98.10∗∗∗ 77.14 94.29
16 69.23 91.35 58.65 87.50 77.88∗ 99.04∗∗∗ 78.85 94.23

PANEL B: VAR Model

0 50.00∗∗∗ 81.67∗∗∗ 76.67∗ 96.67∗∗∗ 58.33∗∗ 87.50 66.67 92.50
1 56.30∗∗ 80.67∗∗∗ 79.83∗∗∗ 94.12 63.87 85.71 62.18 87.39
2 58.47∗ 83.90∗ 78.81∗∗ 95.76∗ 67.80 90.68 66.10 88.14
3 52.99∗∗∗ 82.91∗ 78.63∗ 94.02 67.52 91.45 67.52 90.60
4 57.76∗ 87.93 69.83 93.97 66.38 91.38 67.24 87.93
5 60.87 88.70 66.96 93.04 69.57 93.91 73.04 92.17
6 60.53 88.60 64.91 92.98 69.30 93.86 70.18 92.98
7 66.37 89.38 63.72 92.92 69.03 95.58∗∗ 70.80 92.92
8 64.29 88.39 60.71 91.07 71.43 94.64 74.11 91.96
9 64.86 87.39 56.76 90.99 72.97 92.79 72.07 92.79
10 65.45 89.09 56.36 89.09 71.82 96.36∗∗∗ 72.73 91.82
11 69.72 87.16 51.38∗∗ 87.16 76.15 97.25∗∗∗ 77.98 92.66
12 66.67 88.89 49.07∗∗ 86.11 75.93∗ 98.15∗∗∗ 75.93 93.52
13 72.90 88.79 47.66∗∗ 86.92 73.83 98.13∗∗∗ 76.64 92.52
14 70.75 91.51 48.11∗∗ 85.85 76.42 98.11∗∗∗ 76.42 93.40
15 68.57 91.43 46.67∗∗ 84.76 76.19 98.10∗∗∗ 76.19 94.29
16 71.15 91.35 46.15∗ 83.65 78.85∗ 99.04∗∗∗ 78.85 94.23

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample forecasts
at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2019Q4 (and as far as realized
values are available). Reflecting the availability of annual SPF forecasts, forecasts for inflation in CPI and
GDP prices are evaluated only up to h = 12, and h = 8, respectively. Significance assessed by Diebold-
Mariano tests using Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the
1%, 5%, and 10% level, respectively.
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Table A.11: Coverage rates (full sample)

RGDP UNRATE PGDP CPI

h 68% 90% 68% 90% 68% 90% 68% 90%

PANEL A: MDS Model

0 48.53∗∗∗ 78.68∗∗∗ 86.76∗∗∗ 96.32∗∗∗ 55.15∗∗∗ 83.09∗ 66.18 88.97
1 52.59∗∗∗ 77.04∗∗∗ 82.22∗∗∗ 97.04∗∗∗ 60.00∗ 83.70 59.26∗∗ 84.44
2 52.99∗∗∗ 80.60∗∗∗ 79.85∗∗ 94.78∗ 60.45 83.58 60.45 84.33
3 50.38∗∗∗ 81.20∗ 75.94 92.48 61.65 85.71 61.65 84.21
4 56.82∗∗ 82.58 71.21 90.15 59.09∗∗ 84.85 67.42 85.61
5 58.02∗∗ 84.73 69.47 89.31 57.25∗∗ 86.26 65.65 84.73
6 56.15∗∗ 84.62 69.23 89.23 56.92∗ 85.38 65.38 85.38
7 57.36∗∗ 83.72 66.67 88.37 56.59∗∗ 89.15 65.89 86.82
8 60.16 82.03 61.72 88.28 60.16 90.62 66.41 86.72
9 58.27∗∗ 82.68 57.48 88.19 62.20 88.98 68.50 87.40
10 59.52∗ 82.54 56.35 87.30 60.32 92.06 69.05 87.30
11 60.80∗ 82.40 56.00 87.20 63.20 90.40 69.60 88.00
12 65.32 86.29 57.26 86.29 65.32 89.52 68.55 87.90
13 63.41 84.55 57.72 86.18 68.29 90.24 70.73 88.62
14 62.30 85.25 58.20 86.07 71.31 90.16 71.31 88.52
15 62.81 85.12 57.85 84.30 71.90 90.91 71.07 89.26
16 65.00 86.67 60.00 86.67 70.83 90.83 72.50 89.17

PANEL B: VAR Model

0 50.00∗∗∗ 81.62∗∗∗ 76.47∗ 94.85∗∗ 55.88∗∗∗ 84.56∗ 66.18 91.18
1 55.56∗∗∗ 79.26∗∗∗ 77.78∗∗ 93.33 62.22 82.22∗∗ 60.74 84.44
2 58.21∗∗ 82.84∗∗ 77.61∗ 94.03 65.67 85.82 63.43 84.33
3 53.38∗∗∗ 82.71∗ 78.20∗ 91.73 64.66 86.47 64.66 86.47
4 56.06∗∗ 85.61 68.94 90.91 62.88 86.36 64.39 84.09
5 59.54 86.26 66.41 89.31 64.89 87.79 68.70 87.02
6 58.46∗∗ 86.15 63.85 88.46 64.62 87.69 66.15 88.46
7 64.34 86.05 62.02 88.37 64.34 89.92 65.89 87.60
8 62.50 84.38 60.16 87.50 65.62 88.28 68.75 86.72
9 62.20 83.46 56.69∗ 86.61 66.93 86.61 66.14 88.19
10 62.70 84.92 56.35∗ 85.71 65.87 89.68 67.46 87.30
11 66.40 83.20 52.00∗∗ 83.20 69.60 88.80 72.00 88.00
12 63.71 84.68 50.00∗∗ 82.26 69.35 89.52 70.16 87.90
13 69.11 84.55 48.78∗∗ 82.93 67.48 90.24 70.73 87.80
14 66.39 86.89 49.18∗∗ 82.79 69.67 89.34 69.67 88.52
15 64.46 86.78 48.76∗∗ 82.64 69.42 88.43 69.42 89.26
16 66.67 87.50 48.33∗ 81.67 71.67 90.00 71.67 89.17

Note: Coverage rates for uncertainty bands with nominal levels of 68% and 90% for out-of-sample forecasts
at quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized
values are available). Reflecting the availability of annual SPF forecasts, forecasts for inflation in CPI and
GDP prices are evaluated only up to h = 12, and h = 8, respectively. Significance assessed by Diebold-
Mariano tests using Newey-West standard errors with h + 1 lags. ∗∗∗, ∗∗ and ∗ denote significance at the
1%, 5%, and 10% level, respectively.
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Figure A.19: GDP price inflation PITs
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for inflation in
the GDP price index at selected quarterly forecast horizons. All forecasts are generated out of
sample by our MDS and VAR models, and evaluated over an evaluation window from 1990Q1
through 2023Q4 (and as far as realized values are available). 95% confidence bands for tests of
correct calibration from Rossi and Sekhposyan (2019); computed separately for each model, but
with nearly identical plot lines.
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Figure A.20: CPI inflation PITs
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Notes: Empirical cumulative distributions of probability integral transforms (PITs) for CPI infla-
tion at selected quarterly forecast horizons. All forecasts are generated out of sample by our MDS
and VAR models, and evaluated over an evaluation window from 1990Q1 through 2023Q4 (and
as far as realized values are available). 95% confidence bands for tests of correct calibration from
Rossi and Sekhposyan (2019); computed separately for each model, but with nearly identical plot
lines.
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Figure A.21: Log scores
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Notes: Figures show recursive means (across time) of the differences in 1-step-ahead log predic-
tive scores for the MDS less the VAR model (negative entries mean the MDS model has the better
score). These score differences are closely related to differences in log marginal likelihoods; the
likelihoods equal sums of 1-step-ahead log predictive scores. Shaded areas depict NBER reces-
sions.
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Figure A.22: Endpoint estimates (MDS)
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Notes: End-of-sample estimates of endpoints, y∗t , for the MDS model. Estimates reflect posterior
means and 68% bands, obtained from MCMC model estimates over growing samples (all using
data since 1968Q4), as used in our out-of-sample forecast simulations. For GDP growth and CPI,
corresponding long-run forecasts from the SPF (for 10-year ahead average growth) are shown as
well.
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Figure A.23: Endpoint estimates (VAR)
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Notes: End-of-sample estimates of endpoints, y∗t , for the VAR model. Estimates reflect posterior
means and 68% bands, obtained from MCMC model estimates over growing samples (all using
data since 1968Q4), as used in our out-of-sample forecast simulations. For GDP growth and CPI,
corresponding long-run forecasts from the SPF (for 10-year ahead average growth) are shown as
well.
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