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Abstract

We apply discrete probability forecasts to the expectations of monetary policy rate 

changes, both in the United States and in the euro area. By using binomial trees from 

options theory, forecast distributions are derived from the instantaneous forward yield 

curve, based on interest rate swaps. We then use a non-randomised discrete probability 

forecast evaluation that confirms the presence of a systematic upward bias, consistent 

with the presence of a term premium. Consequently, we propose a bias-correction 

methodology to increase the accuracy of the density forecasts regarding monetary policy 

expectations. This research provides pivotal insights into understanding and improving 

predictive tools in monetary policy forecasting.

Keywords: discrete probability forecast, monetary policy decisions, interest rate 

expectations, binomial tree.

JEL classification: C53, C58, G12, G17.



Resumen

En este documento se usan proyecciones de probabilidad discreta para las expectativas 

de los tipos de política monetaria en los Estados Unidos y el área del euro. Utilizando 

árboles binomiales a partir de la teoría de opciones, se derivan representaciones para 

las distribuciones de probabilidad utilizando la curva de rendimiento a plazo instantánea, 

determinada a partir de los swaps de tipos de interés. Posteriormente, evaluamos las 

proyecciones de probabilidad discreta utilizando una metodología no aleatorizada, que 

confirma la existencia de un sesgo sistemático al alza, coherente con la presencia de 

una prima a plazo. En consecuencia, proponemos un método para la corrección de este 

sesgo que permite aumentar la precisión de las expectativas de la política monetaria. 

Este trabajo proporciona los conocimientos fundamentales para comprender y mejorar 

las herramientas predictivas relacionadas con la política monetaria.

Palabras clave: proyecciones de probabilidad discreta, decisiones de política monetaria, 

expectativas de tipos de interés, árbol binomial.

Códigos JEL: C53, C58, G12, G17.
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1 Introduction

The realm of central banking hinges on the effective use of monetary policy
tools to achieve predefined targets primarily associated with inflation and un-
employment (Friedman, 1995). Chief among these tools is the official policy
rate, a powerful determinant of the broader economic landscape influencing
price levels, bond markets, and the banking system (Svensson, 2012). How-
ever, it’s not merely the actual decisions concerning policy rates that hold
significance, but also the anticipation of future shifts in the official interest
rate that shapes medium and long-term rates and have been the objective of
the central banks use of Forward Guidance as a non-conventional monetary
policy tool (Bernanke, 2020). Consequently, generating precise measures of
these expectations is a crucial aspect for monetary policy makers and ana-
lysts, who can predict market reactions to monetary policy decisions, assess
the efficacy of their communications related to the forward guidance of the
monetary policy, and accordingly adapt their messages. This paper address
this necessity by employing binomial trees to obtain discrete probability fore-
casts of monetary policy rates, and address the presence of an unobserved
term premium, using the evaluation of those forecasts for generating unbi-
ased predictions. Therefore, we enrich existing literature by offering both an
evaluation mechanism and bias-corrected estimates.

Forecasting serves as an indispensable tool for economists and policy
makers, aiding in informed decision-making. Historically, point forecasts,
providing merely mean or median estimates, were prevalent. However, they
offer limited insights, failing to account for forecast uncertainty or poten-
tial alternate outcomes. Consequently, literature has expanded beyond these
to encompass density forecasts (Diebold et al., 1998) and interval forecasts
(Christoffersen, 1998). Density forecasts associate probabilities with various
potential outcomes, while interval forecasts allocate a given probability (for
instance, 95% predictive intervals) to a range of forecasts.

These sophisticated evaluation techniques for density and interval fore-
casts have found wide applicability across diverse fields within economics and
finance. For example, risk management extensively employs these tools via
Value at Risk measures (Berkowitz, 2001; Lopez, 2001; Engle and Manganelli,
2004), contributing to a more comprehensive understanding of risk scenarios.
Similarly, in Option Pricing, the full distribution of the underlying asset is
essential (Hull and White, 1987), and these forecasts add significant value.
Further, they are increasingly being used in inflation forecasting (Gimeno and
Ibáñez, 2018; Hilscher et al., 2022), as well as in the burgeoning literature
on Growth at Risk (Adrian et al., 2019; Chavleishvili and Manganelli, 2019;
Plagborg-Møller et al., 2020; Brownlees and Souza, 2021; Carriero et al.,
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2022).
Although density forecasts offer more comprehensive insights than point

forecasts, the evaluation mechanisms appropriate for the latter, such as those
proposed by Diebold and Mariano (2002), do not apply to density forecasts.
Diebold et al. (1998) have thus introduced a potent tool for assessing the
accuracy of density forecasts, the probability integral transform (zt). This
corresponds to the cumulative density function of the probability for a spec-
ified value yt. Employing this transformation allows for testing whether es-
timated probabilities match the actual ones by verifying if zt adheres to a
uniform distribution. This method has been widely adopted for evaluating
density forecasts across various domains: volatility models (Andersen et al.,
2003), exchange rates (Patton, 2006), interest rates (Diebold and Li, 2006),
GDP (Caselli et al., 2020), GDP growth and unemployment (Bowles et al.,
2011), inflation (Clements, 2006; Galbraith and van Norden, 2012), or oil
prices (Mazzeu et al., 2019).

While the evaluation of density forecasts offers substantial benefits, its
application requires the forecast densities to be continuous. This require-
ment often clashes with practical situations where forecast distributions are
inherently non-continuous, such as in the case of yield discrete forecasts. For
example, questions like ’Who will win the next election?’ or ’Will there be
a recession next quarter?’. In such scenarios, the probability integral trans-
form framework from Diebold et al. (1998) is not directly applicable. More
precisely, the forecast pertains to the probability of occurrence of a particular
binary or discrete event. Numerous studies (e.g., Estrella and Hardouvelis,
1991; Estrella and Mishkin, 1998; Chauvet and Potter, 2002; Liu and Moench,
2016) have adopted probit models to estimate economic recessions. Galbraith
and van Norden (2011) explored the adequacy of recession forecasts from the
Survey of Professional Forecasters (SPF) and determined the continuous con-
ditional expectation function. Similarly, predicting election outcomes, where
each candidate is given a probability of victory, serves as another instance
of discrete probability forecasting (e.g., Wolfers and Zitzewitz, 2004; Erikson
and Wlezien, 2008; Rothschild, 2009). Authors, such as Czado et al. (2009)
or Kheifets and Velasco (2017), have developed methodologies to evaluate
discrete densities as well as continuous ones, serving as the foundation for
the methodology adopted in this paper.

Monetary policy expectations hold considerable significance for various
economic agents and financial analysts. Consequently, their frequent moni-
toring becomes crucial for central banks. Bauer and Rudebusch (2016) high-
light the importance of monetary policy expectations as they convey infor-
mation about participants’ view of the future path of policy rates. In that
sense, it reflects what the market expect about the next monetary policy
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actions, which can be understood as rate cuts or hikes, depending on the
current economic environment. The provision of a probability distribution
function for policy rates, as exemplified by the Federal Reserve Bank of At-
lanta, provides a comprehensive view. It yields market-implied probabilities
for the three-month average fed funds rate, conveying information beyond
just the average expected value. The function also delineates the 5th to 95th
percentile region and the density distribution of potential interest rate val-
ues. Financial data providers like Bloomberg or Thomson Reuters have also
entered this space, generating policy rate probabilities for multiple Central
Banks. Specifically, they procure probability estimates from fed fund futures
(for the US) and Overnight Indexed Swap (OIS) rates available in each mon-
etary policy area. However, the objective variable forecast (i.e., monetary
policy rate changes), follows a discrete distribution, since monetary policy
moves in discrete changes on days of monetary policy meetings.

This paper makes three significant contributions. Firstly, we devise a
clear and consistent methodology to derive the discrete probability forecasts
of market participants, implicitly embedded in fixed income market prices.
This approach offers a direct insight into the expectations implicit in market
dynamics. Our second contribution is the evaluation of the forecasting accu-
racy of these subjective discrete probability forecasts. Indeed, we applied the
methodology employed by other authors such as Czado et al. (2009) for the
transformation of continuous forecasts into discrete ones. This examination
brings to light the upward bias present as a consequence of the inherent risk
aversion of investors and provides an estimate of their magnitude. Providing
evaluation of the entire forecast distribution rather than a point or interval
is more accurate (Berkowitz, 2001), since it produces additional information
about the size or magnitude of the forecast error. Precisely, our last con-
tribution is using this information to propose a correction for these biases
in discrete probability forecasts, caused by the term premium. This cor-
rection allows for the extraction of unbiased, objective measures of market
participants’ expectations concerning the trajectory of monetary policy.

2 Obtaining Monetary Policy Forecasts

2.1 Sources of data

The computation of expectations for monetary policy rates is of extreme
importance for financial market participants, economists and central banks,
and different type of measures can be used. The first group refers to financial
market-based indicators, and the second one to market participants’ surveys.
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In the first group, one can refer to model-based measures where interest rate
expectations are estimated through models that use financial market data
as input. Our paper focus on the first group and, more precisely, on the
use of swaps of policy rates both in the euro area and the United States.
This technique is widely used by different market data providers, such as
Thomson Reuters or Bloomberg, who provide probabilities of interest rate
change expectations using financial derivatives, mainly overnight index swaps
(OIS) and options (for the US).

An Overnight Index Swap (OIS) is an interest rate derivative where two
agents agree to exchange fixed and floating payments during the life of the
contract. The floating leg corresponds to short term rates, such as the effec-
tive federal funds rate (EFFR) for the US or the €STR for the euro area.
It is computed as the accrued interest of investing a notional amount on an
overnight rate and repeating this strategy during the life of the contract.
The fixed leg is the agreed rate, called OIS rate, so that it represents a good
proxy for the expected policy rate evolution (Lloyd, 2018).

OIS rates can be obtained from financial market providers and for differ-
ent tenors, ranging from the one-week to 30 years’ maturity. They are heavily
traded by market participants because they are a very useful tool to change
the duration risk of the assets and liabilities, without adding credit risk (no
initial payment required) and low counterparty risk (further reduced by the
use of margin calls). More precisely, bid-ask spreads, commonly used as a
measure of liquidity have been relatively low over time, especially for some
specific maturities. Figure 1 shows bid-ask spreads distribution along time
for given maturities and both the Euro Area and United States. The bid-ask
spreads are well below the 2 basis points (bp), with the median spread stays
around 0.7 bp in both areas.

OIS rates have been widely used as a proxy for interest rate expectations
by several authors. For instance, Taylor and Williams (2009) state that they
can be used to measure the average expectation of overnight interest rates
during a certain period, equal to the maturity of the swap. Moessner and
Rungcharoenkitkul (2019) evaluate how the market reacts to economic news
in the United States based on estimated probabilities of hitting the zero lower
bound (ZLB) derived from OIS. Additionally, Bauer and Rudebusch (2013)
employ overnight index swaps to analyse the signalling effect (i.e., change
in expected path of future short-term rates) after different large-scale asset
purchase (LSAP) announcements.

Therefore, in this paper we use OIS rates to obtain the spot yield curve
for each maturity, using the approach of Gimeno and Nave (2009) to obtain
the Svensson (1994) yield curve (Figure 2, top). This way, we can obtain the
forward instantaneous yield curve, that we are going to use (in a first stage)
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as a proxy of the expected interest rates path in any given date. Thus, to
derive probabilities from these expected paths of short term rates, we need
to transform the instantaneous forward rate into a Binomial Tree (Figure
2, bottom), which are commonly used for Option Pricing, in order to get
probabilities of monetary policy changes from the Forward Curve.

2.2 From forward rates to binomial trees

Cox et al. (1979) introduced a simple discrete-time model for valuing finan-
cial options. The value of the options is related to underlying price evolution,
which is unknown, but the authors assume the stock price follows a multi-
plicative binomial process over discrete periods. Following this approach, the
price of the asset (St) in the following period (t+1) can take two possible val-
ues: St+1 = u · St (where u > 1, implying that the underlying price S would
go up), with probability p and St+1 = d · St (where d < 1, implying that the
underlying price S would go down), with probability 1− p. The multiplica-
tive model implies repeating the binomial process at each period, to ensure
that the tree is recombinant (i.e., d = 1

u
, so d · u = 1). That way, possible

outcomes for asset prices will be increasing over time (i.e., there would be
three possible values for St+2 ∈ {2d · St, St, 2u · St}, four possible values for
St+3 ∈ {3d · St, d · St, u · St, 3u · St}, and so on). When used for stocks, this
framework implies transforming a continuous process (stock prices evolution)
into a discrete one, by arbitrarily reducing the time intervals, and to simplify
evolution of prices into two only possible outcomes (up and down, regardless
of the magnitude of those changes).

In the case of movements in the monetary policy rates, we have three huge
advantages of using such procedure, relatively to stock prices. First, we know
exactly when the changes will be (i.e., every time there is a monetary policy
meeting), so the time intervals are not arbitrary, but known in advance. Sec-
ond, the instantaneous forward rate provides with the expected (i.e., mean)
evolution of the underlying asset. And third, changes in the interest rates
are of discrete magnitudes. Although this magnitude has changed with time,
we can approach market expectations with the size of the changes based on
previous decisions.1 More precisely, in our assessment, we will assume that

1Additionally, it is worth noting that, along history, central banks used to announce
rate changes of equal or similar size within each monetary policy stance period (Figure
3. In the Euro Area, the magnitude of interest rate changes has been mainly of 50 bps
during the period before the Global Financial Crisis, but they were lowered afterwards to
25 bps. Later, and coinciding with the inception of Global Financial Crisis, the European
Central Bank temporarily increase the size of the changes to 50 bps. Finally, after the
introduction of negative rates in 2014, the size of policy rate changes was lowered to 10
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3. In the Euro Area, the magnitude of interest rate changes has been mainly of 50 bps
during the period before the Global Financial Crisis, but they were lowered afterwards to
25 bps. Later, and coinciding with the inception of Global Financial Crisis, the European
Central Bank temporarily increase the size of the changes to 50 bps. Finally, after the
introduction of negative rates in 2014, the size of policy rate changes was lowered to 10
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the expected size of the change is equal to the last observed rate change.
We can see this assumption is reasonable as the size of the changes tend to
be somewhat constant over certain periods of time, related to the monetary
policy stance (Figure 3).

The computation of such binomial tree (Figure 2, bottom) can be done
as follows. First, one need to get the expected variations derived from the
change in the forward curve between each monetary policy meeting. This
arises from the definition for the forward curve at a future meeting (ft+1),
which can be understood (under a risk neutral perspective that we will relax
in a later section) as the sum of all possible values of the monetary policy
rates i ∈ {1 : T} on that meeting (yt+1,i) multiplied by the probability (pt+1,i)
associated to each rate (Equation 1),

ft+1 =
I∑
i

yt+1,i · pt+1,i (1)

To transform equation 1 into the first step in a binomial tree, we need to
identify two assumptions. First, that there are only two potential outcomes
possible, which in the monetary policy case will be either maintaining the
monetary policy rates unchanged or moving them. For the following meeting,
with a horizon of less than six weeks, markets have a clear expectations of
the direction of this change in case there is one, either hike or cut, and
they never find in a situation where they give options to both hike and
cut rates. Thus our two options will be hike/maintain or cut/maintain,
depending on the direction of the change. We will obtain the direction of
the change for each specific meeting from the slope of the forward curve (i.e.,
if ft+1 − ft > 0 → changet+1 = hike; if ft+1 − ft < 0 → changet+1 = cut).
Second, we need to determine the size of the change (i.e., δ, so δt+1 = δ if
changet+1 = hike and δt+1 = −δ if changet+1 = cut) to the size of the last
observed change in monetary policy rates, since monetary policy decisions
tends to have an inertia in those changes. Using those assumptions, we can
simplify equation 1, into equation 2,

ft+1 = (ft + δt+1) · pt+1 + ft · (1− pt+1) (2)

where ft, ft+1, and δ are known, while pt+1 (i.e., the probability of a
change of monetary policy rate at meeting in t+ 1) can be directly deduced
(Equation 3),

bps. Similarly, the Federal Reserve Board has been adjusting the dimension of changes to
monetary policy stance. Therefore, one can observe the most predominant size of changes
to be of 25 bps, with the exception of the accommodating monetary policy period.
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pt+1 =
ft+1 − ft

δt+1

(3)

The same procedure can be repeated for each subsequent meeting (Figure
4),

ft+2 =(ft + δt+1 + δt+2) · pt+1 · pt+2+

(ft + δt+1) · pt+1 · (1− pt+2)+

(ft + δt+2) · (1− pt+1) · pt+2+

ft · (1− pt+1) · (1− pt+2)

(4)

By restricting future monetary policy movements to have the same size,
we obtain a recombining binomial tree with three potential values two meet-
ings ahead. That is, if δt+1 and δt+2 have the same sign (i.e., δt+1 = δt+2),

ft+2 =(ft + 2δ) · pt+1 · pt+2+

(ft + δ) · (pt+1 · (1− pt+2) + (1− pt+1) · pt+2)+

ft · (1− pt+1) · (1− pt+2)

while if δt+1 and δt+2 have different sign (i.e., δt+1 = −δt+2),

ft+2 =(ft + δ) · pt+1 · (1− pt+2)+

ft · pt+1 · pt+2) + (1− pt+1) · (1− pt+2)

(ft − δ) · pt+2 · (1− pt+1)

Once we have obtained the value of pt+1 from equation 3, we can solve
equation 4 to obtain pt+2. Thus, recursively, we can obtain the probability of
a change in the monetary policy rate for each meeting pt+h. This way, we can
obtain a set of probabilities for each meeting {ph}Th=t+1, associated to a set
of feasible values {. . . 2δ, δ, 0,−δ,−2δ, . . . }, with h referring to the h-meeting
ahead to be forecast. Therefore, this approach produce a universe of fore-
casts, evaluated at each point in time (t) and for each meeting ahead. Annex
A provides the pseudo-code for obtaining this sequence of probabilities.

This set of predictions is based on conditional information, which means,
all forecasts rely on given information until t− 1. We follow previous litera-
ture (e.g., Christoffersen, 1998; Diebold et al., 1998; Engle and Manganelli,
2004), who propose the use of conditional density forecasts. This means the
assessment of density forecasts for a given period of time (t) should only
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consider known information until t− 1. For instance, Engle and Manganelli
(2004) analyze the way to assess the performance of VaR estimates using vari-
ables known at time t − 1. Additionally, they stated that, if the estimated
model is equal to the true data, the assessment function should be identically
and independently distributed (i.i.d.). Independence property refers to the
absence of serial auto-correlation across time, which implies forecast bias do
not depend on previous errors estimation.

3 Discrete Probability Forecasts

3.1 Density Forecasts

Once we have a candidate probability forecast as the one we got from pre-
vious section 2.2, we need to evaluate the accuracy of such probabilities.
Following Diebold et al. (1998), let {ϕt(yt|Ωt)}mt=1 be the sequence of ac-
tual (unobserved) conditional densities governing a series yt (in our case,
the probabilities assigned by market practitioners of future monetary pol-
icy movements); where Ωt is the available information at time t. Let also
{pt(yt|Ωt)}mt=1 be the corresponding sequence of one-step ahead density fore-
casts we want to evaluate (the probability estimates described in previous
section 2.2); and {yt}mt=1 the realizations from the process (the changes in the
monetary policy rates by central banks).

The null hypothesis we would want to test is that the proposed density
forecasts (pt) correspond with the actual densities (ϕt), that is,

H0 : {ϕt(yt|Ωt)}mt=1 = {pt(yt|Ωt)}mt=1

The main challenge of testing this hypothesis is that we only have one
observation of yt for each moment of time t, and a full density distribution
for each moment. Thus, to evaluate this hypothesis, we need to use the
probability integral transformation (PIT), e.g. the likelihood of observing a
lower probability than the observed one, being the probability measured by
the probability forecast (Rossi, 2014),

zt =

∫ yt

−∞
pt(x)dx = Pt(yt), (5)

where, for each realization yt, zt is the cumulative probability according
to the density forecast pt. This transformation produce a uniformly dis-
tributed variable zt, from yt regardless of the type of original distribution of
yt (Rosenblatt, 1952). Thus, assuming that the density forecast is continuous
(which is a required condition to be able to get zt), Diebold et al. (1998) show
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consider known information until t− 1. For instance, Engle and Manganelli
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tual (unobserved) conditional densities governing a series yt (in our case,
the probabilities assigned by market practitioners of future monetary pol-
icy movements); where Ωt is the available information at time t. Let also
{pt(yt|Ωt)}mt=1 be the corresponding sequence of one-step ahead density fore-
casts we want to evaluate (the probability estimates described in previous
section 2.2); and {yt}mt=1 the realizations from the process (the changes in the
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The null hypothesis we would want to test is that the proposed density
forecasts (pt) correspond with the actual densities (ϕt), that is,
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The main challenge of testing this hypothesis is that we only have one
observation of yt for each moment of time t, and a full density distribution
for each moment. Thus, to evaluate this hypothesis, we need to use the
probability integral transformation (PIT), e.g. the likelihood of observing a
lower probability than the observed one, being the probability measured by
the probability forecast (Rossi, 2014),

zt =

∫ yt

−∞
pt(x)dx = Pt(yt), (5)

where, for each realization yt, zt is the cumulative probability according
to the density forecast pt. This transformation produce a uniformly dis-
tributed variable zt, from yt regardless of the type of original distribution of
yt (Rosenblatt, 1952). Thus, assuming that the density forecast is continuous
(which is a required condition to be able to get zt), Diebold et al. (1998) show

9
that zt is a variable with a uniform distribution under the null hypothesis
(H0 → {zt}mt=1 ∼ U [0, 1]), but not under any other alternative distribution.

Thus, if the null hypothesis holds (i.e., the density forecast corresponds to
the actual distribution), we would obtain an outcome of the zt transformation
following a uniform distribution. By contrast, if the density forecast departs
from the true density, we will have zt values that are clearly non-uniform.
For instance, if we observe a distribution of zt where too many values are
accumulated in the left side, this would imply that the forecast density is
giving lower probabilities to the smaller values than would be needed, thus
indicating an upward bias in the distribution. In a similar vein, an accumu-
lation of values on the right side of zt would imply a downward bias in the
density forecast. A distribution of zt that has too many values in the center
of the distribution implies that the variance is lower than estimated, while
if they are concentrated in the extremes, implies a higher variance or fatter
tails than forecast.

One of the great advantages of this density forecast evaluation is, pre-
cisely, that in addition to testing the accuracy of the forecast, it also gives
information of the causes of the eventual rejection of the null hypothesis of
correct forecast (e.g., what are the deviations from the uniform distribution),
as we will show in section 4. Furthermore, this information is also useful to
correct any bias in the original density forecast, as we will later discuss in
section 4.1.

3.2 Discrete Probability Forecasts

The density forecast evaluation methodology described in previous section
3.1 is built around the continuity of the cumulative density distribution,
that allows the transformation in equation 5 to be a bijective function (i.e.,
Yt ↔ Zt) and produce zt to have a uniform distribution under the null
hypothesis. However, as we showed in section 2, in the case of monetary
policy changes, the movements are discrete, and the probability distributions
are discontinuous by nature, with several possible values of zt for the same
value of yt (i.e., Yt ← Zt, for any given zt, we can figure out the value of yt,
but for a given yt, monetary policy rate, there are multiple valid zt). For this
reason, in this section we need an alternative transformation to equation 5
for computing the PIT for discrete density forecasts that allows us to perform
the evaluation proposed by Diebold et al. (1998) in these discrete cases.

To illustrate the proposed methodology, let’s suppose a discrete probabil-
ity forecast for the distribution of monetary policy interest rates for a given
central bank meeting as the one shown in Figure 4. The horizontal axis
show each possible realization of yt (i.e., the possible values of future interest
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10rates) while the vertical axis represents cumulative probability densities for
each yt. In this example, two possible rates are shown: e.g., maintaining
and hiking the monetary policy rate, with probabilities of .6, .4 respectively.
In this situation, if we finally observe an unchanged policy rate, we would
have to impute a value to zt that could be any value between Pi−1 = .0 (i.e.,
the probability of a rate cut) and Pi = .6 (i.e., the accumulated probability
of unchanged rates). Thus, under a discrete density forecast, zt ∈ [Pi−1, Pi]
would be unidentified.

Authors, such as Brockwell (2007) or Liesenfeld et al. (2006) have pro-
posed techniques to overcome this problem, obtaining a randomized PIT (zt)
using equation 6,

zt = wt · (Pi − Pi−1) + Pi−1, (6)

where wt is a random variable that we set to follow a standard uniform distri-
bution (wt ∼ U [0, 1]). That way, one can transform the discrete probability
function into a continuous form and test for the accuracy of the predictions.
To increase the precision and avoid that in different evaluations we obtain
different outcomes, we need the simulation to be of a large enough magni-
tude. Nevertheless, this option implies an additional source of noise and is
computationally cumbersome.

For those reasons, authors like Czado et al. (2009) or Kheifets and Velasco
(2017) propose a non-randomized and uniform version of the PIT histogram.
That means the Conditional Cumulative Density Function (CDF) can be
computed based on the observed value of yt, for {u} ∈ [Pi−1, Pi],

u = {Pi−1 +∆p, Pi−1 + 2∆p, . . . , Pi}, (7)

where we set ∆p = .001 · (Pi−Pi−1))
2. This way, we obtain density functions

for the forecast referred to each moment in time t and for a given meet-
ing ahead h. Later on, we obtain the aggregated CDF for all the period.
The formula shown in equation 7 let us obtaining the zt for the unidenti-
fied interval, i.e., zt ∈ [pi−1, pi] following an uniform distribution and avoid-
ing randomized bias. In the case of the previous example (i.e., Figure 4),
we would obtain the following zt values: if we observe an unchanged rate,
zt = {.0006, .0012, . . . , .6}; if there is a rate hike, zt = {.6004, .6008, . . . , 1};
while if we observe a rate cut, zt would be a series of 0.

With this transformation, we are back to the situation where zt would
have a uniform distribution under the null hypothesis that the estimated

2We approach the non-randomized PIT based on 1000 possible realizations of u com-
pressed between Pi−1 and Pi. Therefore we set ∆ equal to 1/1000 · (Pi − Pi−1)).
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probability forecast {pt(yt|Ωt)}ht=1 is equal to the underlying distribution of
the variable of interest {ϕt(yt|ωt)}ht=1. Using this approach, we can compare
the observed function with a uniform distribution U [0, 1]. Annex B shows the
pseudocode used for this procedure of obtaining the probabilities of monetary
policy rates for future meetings.

Figure 5 (upper panels) shows potential outcomes for the cumulative dis-
tributions of zt in case of an overestimation of the probability of maintaining
rates in the previous example (i.e., real probability-green- equal to .4 instead
of the forecast-red-.6). In this case, we would be expecting less hikes than
observed, so the PIT will go below the diagonal (black) that would be the
ideal scenario of perfect forecast. In the case of the central panels of Fig-
ure 5 we show the opposite situation, where we have an underestimation
of the probability of maintaining rates in the previous example (i.e., real
probability-green- equal to .8 instead of the forecast-red-.6). Here, since we
would expect more hikes than observed, the PIT will go above the diagonal
(black). Finally, in the lower panels we show two extreme outcomes: i) failure
to predict rate cuts (green), which would be signaled by an excess of zeros in
the distributions, and ii) a failure to predict rate hikes (red line), which will
result in an excess of ones.

3.3 Multi-period Forecasts

The previous discussion on both density forecasts (section 3.1) and discrete
probability forecasts (section 3.2), are valid when the observations (t) are
independent. We can assume that this is the case, when we are using one
period forecasts (i.e., from meeting to meeting). However, if we want to
evaluate longer horizons, we have an additional difficulty, since in that case,
we cannot use overlapping forecasting horizons (i.e., t → t+2, t+1 → t+3)
and claim that the forecast observations remain independent. Diebold et al.
(1998) propose to use non-overlapping horizons (i.e., t → t+2, t+2 → t+4).
This solution has a cost in terms of the number of observations available to
perform the forecast evaluation, which can become so critical to make it
unfeasible for larger horizons.

To overcome this difficulty, we propose to use the conditional forecasts.
This implies, that instead of trying to predict the probabilities of rate move-
ments between t and t+ h with the information available at t, we will com-
pute/evaluate the probabilities of rate movements between t+h−1 and t+h
with the information available at t. According to Diebold et al. (1998), the
independence property can be extended to a sequence of conditional densi-
ties as forecasts contain past information. In that sense, conditional density
estimations for {y}ht=1 can be understood as the joint distribution of density
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functions from t = 1 to h, where h refers to the meeting ahead date.

f(yh, . . . , y1|Ω1) = fh(yh|Ωm) · fh−1(yh−1|Ωh−1) · · · f1(y1|Ω1) (8)

Thus, using the binomial trees (section 2.2) we have the probabilities of
hike, cut, and maintain for each independent horizon h. So this individual
situations (represented in figure 6) are the ones we will evaluate for horizons
greater than one meeting ahead. Figure 6 shows the path of interest rate
probabilities based on the binomial tree (red line), the observed monetary
policy rate decisions (black line) and the evaluation according to conditional
probabilities (green line) for the second and third meeting ahead, respectively.
The evaluation of the density forecast for the 2 meeting ahead (left-hand side)
considers the observed path until t+ 1 where two probabilities arise: cut or
maintain. Oppositely, if one follows the binomial tree (non-conditional prob-
abilities), the estimations show 3 possible outcomes. Similarly, the evaluation
of the third meeting ahead (right-hand side) will account for known informa-
tion until the previous period. In this case, the number of possible outcomes
is shortened by the observed interest rate direction. The same procedure
is repeated for the forty future meetings ahead, roughly equivalent to five
years. Using these forecasts, we can maintain evaluations of non-overlapping
periods, without any sensible loose of observations.

4 Monetary Policy Forecast and Evaluation

In this section we evaluate the discrete probability forecasts obtained from
section 2.2 using the transformation presented in section 3.2 and 3.3. As
defined previously, PIT is computed as the cumulative probability evaluated
at the observed monetary policy rate change. Our assessment includes inter-
est rate expectations for each of the Monetary Policy Meetings in the period
between January 1999 and June 2023 held by both the ECB and the FOMC.
Therefore, we compare the estimated probabilities of maintaining, cutting
or hiking with information in t (i.e., the day of the last observed monetary
policy meeting) about the actual decision taken in the meeting in t+1. This
way, we obtain the probability distributions (zt+1), following equation 7 de-
tailed in the previous section, and comparing them with the actual decisions
produce the PITs.

Top left charts of Figure 7 shows the evaluation of the probability forecasts
in both the euro area (blue) and the US (green), for the decisions on the
next meeting. The X axis represents the PIT of the cumulative probabilities
of a uniform distribution, the one you would expect in case of a correct
probability forecast. The Y axis represents the PIT of the forecast cumulative
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probabilities. Therefore, a correct probability forecast would imply a line
over the bisectrix in the chart. A line below the bisectrix would imply a
downward bias in the forecasts, where there would have been given excess
probabilities to the cut (vs. maintain) and maintain (vs. hike). By contrast,
a line above the bisectrix would imply an upward bias in the forecasts, where
the forecasts are assuming too high probabilities for maintain (vs. cut) and
hike (vs. maintain). The latter is what we observe both for the euro area
and the US.

The same procedure can be applied to longer horizons. The only caveat
is that we have to evaluate, not the movement between t and t+ h, but the
movement between t + h − 1 and t + h with the information available in
t, to ensure the independence of each of the forecasts. The outcome of the
evaluation of these forecasts are presented in Figure 7 for the decisions on
t+2 (top right), t+4 (center left), t+8 (center right), t+16 (bottom left) and
t + 40. Taking into account that the meetings have a frequency of roughly
6 weeks, these horizons represents a quarter, a semester, a year, two years
and 5 years ahead. As was the case with the next meeting decision forecast,
we also observe an upward bias in the probability forecast. More relevant is
that the bias slightly but monotonically increase with the horizon. This is
specially driven at the beginning of the distribution (i.e., at the zero of the
X axis), implying the presence of a substantial amount of cases where the
final decision is a cut in the monetary policy rate, while we were predicting
a maintain or hike decision.

This result is not unexpected, since it is completely consistence with the
presence of a risk premium in the OIS curve to compensate those insuring for
the uncertainty on future monetary policy rate evolution. This uncertainty
(and, thus, the risk premium) will be higher, the longer the maturity. The
main consequence of this risk premium is specially an underestimation of
rate cuts, that will be higher, the longer the horizon. The conclusion from
this evaluation is that these forecasts cannot be trusted if applied without a
correction for the upward bias.

4.1 Bias Correction

In previous sections, we have provided the methodology to compute discrete
probability forecasts as well as the assessment of its performance, showing
that they produce upward biased predictions, especially for longer horizons
(see Section 4). This outcome is reasonable, taking into account that interest
rate expectations are obtained directly from OIS curves and, therefore, they
include an unobserved term premium component by nature. Thus, we can
consider them to be the risk-neutral probabilities of monetary policy changes
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(i.e., PQ). Ideally, we would like to transform these PQ into objective prob-
abilities (i.e., PP ).

In fact, the density forecast evaluation originally proposed in Diebold
et al. (1998), also allows for an easy estimation of the correction of bias in
the distribution. In our case of discrete probability distributions, all we need
is using the observed distribution of zt, as a correction for the probability
forecast. That is,

PPt(yt) = PQt(yt) · qt(PQt(yt)), (9)

where PQt(yt) are the original (risk-neutral) probabilities we have com-
puted in section 3.2, PPt(yt) would be the objective (unbiased) probabilities,
while qt(PQt(yt)) is the function that allows going from the Q measure to the
P measure. Following Diebold et al. (1998), we propose to use qt(zt) (where
zt was the observed cumulative distribution of monetary policy outcomes) as
a proxy to qt(PQt(yt)), where

qt(zt) =
zt(yt)

PPt(yt)
.

Thus, qt(zt) is the bias correction based on the distribution of zt computed
in the earlier section for forecasting evaluation. Therefore, if discrete proba-
bility forecasts are correct, and zt is equal to a uniform distribution U(0, 1),
then no correction is needed (qt(zt) = 1) and PPt(yt) = PQt(yt). Otherwise,
if PQt shows and upward bias, then qt(zt) > 1, and PPt(yt) > PQt(yt), giving
more probability for the cut and maintain options. By contrast, in the case of
a PQt with a downward bias, then qt(zt) < 1, and PPt(yt) < PQt(yt), giving
more probability for the maintain and hike options.

the correction qt(zt) can be obtained as the likelihood of observing a lower
probability than pi using (non corrected) density forecasts as plotted in figure
7.

This way, we are able to get corrections for any given interest rate forecast
based on a sample of density forecast previously evaluated. Additionally,
once we use estimated bias correction to get probability forecasts, the same
procedures to evaluate the uniformity of the resulting PIT can be applied.
Annex C show the prodedure to obtain this bias correction.

Going back to the example in figures 4 and 5, we have a case where we
have forecast that the monatery policy rate would be maintained with a 60%
probability and hiked with a 40% probability (see figure 4). Continuing with
the upward bias example (see figure 5 upper row), if we observe that the zt
for maintaining is 80% then q(z) = .8

.6
, and PP (maintain) = .6 · .8

.6
= .8.
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Using this process we can correct the upward biases that we originally
have. In order to do so, we use a jacknife procedure, were for each monetary
policy decision and horizon, we compute zt with all the other observations
available. Then we use, for each case, the corrected PPt . Figures 8 and
9 shows the result of this correction (blue lines) of the original probability
estimates (red lines) in the euro area (left) and United States (right) for
different meeting-ahead forecasts (1, 2 and 3 in 8, and 8, 16, and 40 in 9).
Visually, we can see the bias correction density forecast follow an uniform
distribution and this result can be confirmed based on Kolmogorov-Smirnov
tests for comparing two distributions both for the euro area and the US
(Table 1).

The results suggest our methodology provides more accurate forecasts, in
the sense that bias correction densities follow a uniform distribution. More-
over, we are able to enhance the estimates not only for short-term horizon
forecasts but, more importantly, for longer horizons. For instance, in the
previous section, we highlighted the result that forecasts do not assign any
probability to interest rate reductions, especially for long-term horizons in
the US. However, the corrections obtained for the 8, 16, and 40 meeting
ahead suggest rate cuts are also likely to be observed. We also show that
corrected probabilities perform well in both areas.

The improvement of our estimates can be confirmed based on a forecast
evaluation along time, which is provided in Figures 10 (for the euro area) and
11 (for the US). These charts show the difference between direct estimations
of the PIT and the bias corrected PIT, so that they can be interpreted as
the improvement given by of our predictions. The gain after bias corrections
is averaged for each meeting ahead and shown in Table 2, pointing to lower
errors after correcting for risk premium bias.

In the euro area and for short-period horizons, we can observe downward
corrections are higher for the period of the Global Financial Crisis and up
to the introduction unconventional monetary policy, meaning that forecasts
pointed to higher interest rates than the observed ones. For longer horizons,
the upward bias is especially relevant after the Zero Lower Bound (Figures
10 and 11).

In the US, upward bias for short-period horizons are observed at an earlier
stage for the Global Financial Crisis compared to the euro area and from 2013
onward following the announcement of Federal Reserve Board normalisation
plans. For long term forecasts, we can observe a similar pattern along time
but higher bias correction.

As a consequence, we can visually confirm that corrected probabilities
are more accurate as they do not assign higher probabilities to lower or
higher possible outcomes. Moreover, valid corrections have been obtained
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that manage to capture both the sign and the magnitude of the bias in each
region and for each monetary policy ahead.

4.2 Practical applications

This section offers an illustration of some indicators of relevance for monetary
policy decisions that can be obtained through the proposed methodology. In
2022, central banks started monetary policy normalisation, which conveys
an upward sloping expected path of policy rates. In that context, corrected
probabilities forecasts offered in the previous sections can be translated into
several indicators such as the expected path of interest rates, terminal rates
or interest rate probabilities. They provide useful information such as when
the hiking cycle could end (i.e., the terminal rate) in a context of tightening
monetary policy, which level would be reached or even, the pace for rates
going down afterwards.

As stated in equation 1 of section 2.2, forward rates can be defined as
the sum of all possible rates multiplied by the probability associated to each
rate. Therefore, we are able to get forward curves after applying the bias
correction to the risk neutral probabilities, as derived in section 4.13 The
obtained forward curves can be understood as the projected path of policy
rates, i.e., the expected evolution of overnight rates (DFR, for the euro area
and EFFR in the US) for a given horizon of time as shown in Figure 12.

Therefore, these projections provide useful additional information for eco-
nomic agents and central banks, e.g., which are market expectations for
policy rates at each point in time, based on known information and more
importantly, excluding possible risk bias.

Additionally, financial markets have been recently monitoring terminal
rates. Terminal rates offer an insight of the policy rate to be reached at
the ending point of the hiking (or cutting) cycle, mathematically obtained
as the peak (or local maximum) of the forward curve. According to Figure
12 and considering OIS rates as of June 14th, 2023 for the euro area, the
ending point of the hiking cycle would have been reached in December 2023,
pointing to a terminal rate of 3.86%, using direct estimation and 3.76%
after correcting for the upward bias. Terminal rates expectations experienced
upward pressure later in July, approaching 4%. For the US, the end of the
hiking cycle was expected at an earlier stage than for the euro area, more
precisely, to be reached in September (with data as of June) and implying
a policy rate of 5.31% after bias correction. Later on, hawkish messages

3For figures 12-17, we have first compute unconditional probabilities based on the
binomial tree and later we applied the corrections based on the obtained PIT for each
meeting ahead.
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obtained forward curves can be understood as the projected path of policy
rates, i.e., the expected evolution of overnight rates (DFR, for the euro area
and EFFR in the US) for a given horizon of time as shown in Figure 12.

Therefore, these projections provide useful additional information for eco-
nomic agents and central banks, e.g., which are market expectations for
policy rates at each point in time, based on known information and more
importantly, excluding possible risk bias.

Additionally, financial markets have been recently monitoring terminal
rates. Terminal rates offer an insight of the policy rate to be reached at
the ending point of the hiking (or cutting) cycle, mathematically obtained
as the peak (or local maximum) of the forward curve. According to Figure
12 and considering OIS rates as of June 14th, 2023 for the euro area, the
ending point of the hiking cycle would have been reached in December 2023,
pointing to a terminal rate of 3.86%, using direct estimation and 3.76%
after correcting for the upward bias. Terminal rates expectations experienced
upward pressure later in July, approaching 4%. For the US, the end of the
hiking cycle was expected at an earlier stage than for the euro area, more
precisely, to be reached in September (with data as of June) and implying
a policy rate of 5.31% after bias correction. Later on, hawkish messages

3For figures 12-17, we have first compute unconditional probabilities based on the
binomial tree and later we applied the corrections based on the obtained PIT for each
meeting ahead.
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offered by central bank speeches suggested a later ending of the hiking cycle
(November) meaning an increase in the terminal rate of 10 bps (to 5.41%).
In both areas, premium bias corrections used to obtain risk-neutral forward
curves lead to similar expected rates in the very short horizon but differences
intensify between risk-neutral and biased curves for medium and long-term
projections.

Not only the value or moment of time of the terminal rate is relevant, but
the changes in these terminal rates over time are also a relevant indicator to
follow. Figure 13 shows its behaviour during 2023 for both direct estimation
and corrected forward curves. In the two regions, terminal rates have followed
an increasing trend in 2023, with the exception of the Sillicon Valley Bank
crisis event in march, which involved a significant reduction (more than 100
bps) in terminal rates.

Interest rate probability densities and fan charts at a given point in time
can be also an useful tool, conveying information about the dispersion or un-
certainty around estimates. Figures 14 and 15 shows probabilities assigned to
each rate and for each meeting ahead according to known information until
July 13th, 2023. For the computations, we distinguish between both direct
estimates and risk neutral probabilities. According to section 2.2, the range
of potential values expand for longer horizon projections and the compari-
son of bias and corrected density functions highlights two facts previously
mentioned. First, corrected probabilities involve a shift to the left of the dis-
tributions, which means that corrected estimates give higher probabilities to
lower rates. Second, corrected probabilities expand the set of possible values,
assigning non-zero probabilities for the three options for rate changes, i.e.,
cut, hike and maintain.

In a similar vein, Figures 16 and 17 for the euro area and the US, re-
spectively, show the range of all possible values for policy rate expectations
based on three different estimation dates: November 2021 (before starting
the hiking cycle), June 2023 (before June central decisions) and July 2023.
The procedure to construct these fan charts departs from probability density
functions (PDF) as shown in Figures 14 and 15 to get the values lying inside
the interval defined by percentiles [10-90] of the distribution. The analysis of
different monetary policy contexts, such as, before (i.e., 2021) and during the
hiking cycle (i.e., 2023), suggests uncertainty around policy rates increases
during the hiking periods both in the short and long term.
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5 Conclusion

The estimation of monetary policy rates is of extreme importance for financial
participants and Central Banks. For that reason, one should ensure that
forecasts are correctly estimated and calibrated to correct possible bias, if
needed. In that sense, we propose a complete methodology which has been
proved to perform well.

First, we described how to generate probability estimates using market-
based models that permit to extract forecasts for a wide range of meetings
ahead. Secondly, we employ statistical procedures based on the work by
Diebold et al. (1998) to evaluate the performance of such estimates. Thirdly,
we have developed a methodology that permits not only assessing whether or
not, density forecasts are correctly estimated, but we are also able to compute
the sign and the size of the bias. Regarding to this, we managed to overcome
one of the assumptions conveyed in Diebold et al. (1998), i.e., the continuity
of the probability function. Therefore, we contribute to existing literature
applying a new technique to transform a discrete probability function into a
continuous one. As far as we know, our work constitutes the first piece of
paper that propose such methodology to evaluate and calibrate interest rate
expectations. Last, but not least, we produce bias corrected density forecasts
that perform well and accomplish our main objective.

This paper contributes to existing literature in several ways. First, we
are able to improve probabilities assigned by market practitioners of future
monetary policy movements as biased estimates are quantified for different
forecast horizons, which permits obtaining risk neutral probabilities. Second,
we provide a new methodology for researchers in the field of estimating the
decomposition of interest rate into the expectations and term premium factor.
Third, as estimating and correcting the upward bias present in monetary
policy expectations, we are able to expand the binomial tree approach and
make it closer to a trinomial tree.

We are aware our paper has certain limitations. For example, we have
assumed that estimation bias is constant over time so that they do not vary
depending on the economic environment. However, one could think this is
not always the case, and therefore, future work could be developed in order
to incorporate dynamic corrections.

Going forward, our paper can be extended in several ways. For instance,
the described methodology could be employed to other type of economic and
financial forecast that do not follow a continuous function. Additionally, our
work does not aim to provide an economic meaning for the estimation bias
obtained in this paper. In that sense, further work could be developed to
analyze the relationship of the bias with other variables of uncertainty or risk
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A Binomial tree from forward OIS curves

The following pseudocode is used to generate the probabilities for the mon-
etary policy meetings according to the binomial tree as explained in section
2.2.

# Pseudocode Procedure for Obtaining Monetary Policy Forecast

# Step 1: Define values of variables

size change = last observed rate change

num meetings = number of future meetings

meeting dates =vector with dates of future meetings

forward rates = vector of forward rates

# Step 2: Compute changes in forward rates between meetings

change forward = forward rates(1:num meetings)-forward rates(0:num meetings-1)

# Step 3: define potential states of the monetary policy rate in the first meeting

rate changes1(1)=size change*sign(change forward(1)

rate changes1(2)=0

# Step 4: Obtain probabilities for each state

probabilities1(1)=change forward(1)/(size change*sign(change forward(1))

probabilities1(2)=1- probabilities1(1)

# Step 5: Repeat steps 2-4 for each future meeting

for meeting in range(2, num meetings):

marginal prob change = change forward(meeting)/

(size change*sign(change forward(meeting))

rate changes meeting = { rate changes meeting-1

size change*sign(change forward(meeting)) }
solve [ rate changes meeting* prob changes meeting == change forward meeting]

endfor

B From discrete to continuous PIT
This pseudocode offers the procedure to transform a discrete PIT into a continuous one as explained in
section 3.2

# Pseudocode Procedure for continuous densities and evaluation Monetary Policy Forecast

# Step 1: Define values of variables

prob cut t m=matrix with probabilities rate cut time t meeting ahead m

prob maintain t m=matrix with probabilities rate maintain time t meeting ahead m

prob hike t m=matrix with probabilities rate hike time t meeting ahead m

change observed t m=matrix with observed rate change time t meeting ahead m

where each row represents a point in time and each column the meeting ahead

u=uniform vector of size 1000 defined on the interval p i to p i-1

Pi = probability of observed outcome

Pi−1 = probability of a lower rate with respect to observed outcome.

i.e., cut if observed outcome is maintain and maintain if observed outcome is hike

PIT t=CDF for one period

PIT=CDF for all periods

num meetings = number of future meetings

num periods = number of periods

for meeting in range(1, num meetings):

# Step 2: Compute PIT at time t

# Step 2.1.: Create the vector u
different options depending on the observed outcome:

i.e. cutting rates refers to negative change observed t m

i.e. maintaining rates refers change observed t m = 0

i.e. hiking rates refers to positive change observed t m

# Step 2.2.: Compute PIT for rate cut

if change observed t m<0 and prob cut t m=0

PIT t = 0
else if change observed t m<0 and prob cut t m>0
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PIT t = u = {0, 0 + delta, 0 + 2delta, ..., pi}
where delta equal to 1/1000 ∗ (pi)
# Step 2.3.: Compute PIT for rate maintain

if change observed t m=0 and (prob cut t m+prob maintain t m)=0

PIT t = 0
else if change observed t m=0 and (prob cut t m+prob maintain t m)>0

PIT t = u = {Pi−1, Pi−1 + delta, Pi−1 + 2delta, ..., pi}
where delta equal to 1/1000 ∗ (pi)
# Step 2.4.: Compute PIT for rate hike

if change observed t m¿0
PIT t = u = {Pi−1, Pi−1 + delta, Pi−1 + 2delta, ..., pi}
where delta equal to 1/1000 ∗ (pi)
else if change observed t m¿0 and prob hike t m=prob maintain t m)
PIT t = u = {0, 0 + delta, 0 + 2delta, ..., 1}
# Step 3: Compute PIT for all periods

PIT={PIT 1,PIT 2,PIT 3,...,PIT T}
where T refers to number of periods evaluated

# Step 4: Evaluate PIT

plot PIT and do Kolmogorov-Smirnov test to check if PIT follows a uniform distribution,

as shown in figure 7 and table 1

endfor

C Bias Correction
This pseudocode offers the procedure to offer bias corrected probabilities as shown in section 4.1

# Pseudocode Procedure for Monetary Policy Forecast correction

# Step 1: Define values of variables

prob cut t m=matrix with probabilities rate cut time t meeting ahead m

prob maintain t m=matrix with probabilities rate maintain time t meeting ahead m

prob hike t m=matrix with probabilities rate hike time t meeting ahead m

prob cut t m RN=matrix with corrected probabilities rate cut time t meeting ahead m

prob maintain t m RN=matrix with corrected probabilities rate maintain time t meeting ahead

prob hike t m RN=matrix with corrected probabilities rate hike time t meeting ahead m

PIT=CDF for all periods as obtained in Annex2

PIT corrected=CDF for all periods with bias corrections

num meetings = number of future meetings

num periods = number of periods

# Step 2: Corrected probabilities

for meeting in range(1, num meetings):
prob cut t m RN=sum(PIT<=prob cut t m)/size(PIT)

prob hike t m RN=sum(PIT>=(prob cut t m+prob maintain t m))/size(PIT)

prob maintain t m RN=1-prob cut t m RN-prob hike t m RN

# Step 3: Repeat forecast evaluation to obtain PIT corrected as described in steps 2-4 of

Annex B.

endfor
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PIT t = u = {0, 0 + delta, 0 + 2delta, ..., pi}
where delta equal to 1/1000 ∗ (pi)
# Step 2.3.: Compute PIT for rate maintain

if change observed t m=0 and (prob cut t m+prob maintain t m)=0

PIT t = 0
else if change observed t m=0 and (prob cut t m+prob maintain t m)>0

PIT t = u = {Pi−1, Pi−1 + delta, Pi−1 + 2delta, ..., pi}
where delta equal to 1/1000 ∗ (pi)
# Step 2.4.: Compute PIT for rate hike

if change observed t m¿0
PIT t = u = {Pi−1, Pi−1 + delta, Pi−1 + 2delta, ..., pi}
where delta equal to 1/1000 ∗ (pi)
else if change observed t m¿0 and prob hike t m=prob maintain t m)
PIT t = u = {0, 0 + delta, 0 + 2delta, ..., 1}
# Step 3: Compute PIT for all periods

PIT={PIT 1,PIT 2,PIT 3,...,PIT T}
where T refers to number of periods evaluated

# Step 4: Evaluate PIT

plot PIT and do Kolmogorov-Smirnov test to check if PIT follows a uniform distribution,

as shown in figure 7 and table 1

endfor

C Bias Correction
This pseudocode offers the procedure to offer bias corrected probabilities as shown in section 4.1

# Pseudocode Procedure for Monetary Policy Forecast correction

# Step 1: Define values of variables

prob cut t m=matrix with probabilities rate cut time t meeting ahead m

prob maintain t m=matrix with probabilities rate maintain time t meeting ahead m

prob hike t m=matrix with probabilities rate hike time t meeting ahead m

prob cut t m RN=matrix with corrected probabilities rate cut time t meeting ahead m

prob maintain t m RN=matrix with corrected probabilities rate maintain time t meeting ahead

prob hike t m RN=matrix with corrected probabilities rate hike time t meeting ahead m

PIT=CDF for all periods as obtained in Annex2

PIT corrected=CDF for all periods with bias corrections

num meetings = number of future meetings

num periods = number of periods

# Step 2: Corrected probabilities

for meeting in range(1, num meetings):
prob cut t m RN=sum(PIT<=prob cut t m)/size(PIT)

prob hike t m RN=sum(PIT>=(prob cut t m+prob maintain t m))/size(PIT)

prob maintain t m RN=1-prob cut t m RN-prob hike t m RN

# Step 3: Repeat forecast evaluation to obtain PIT corrected as described in steps 2-4 of

Annex B.

endfor
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Table 1: Test for uniform distribution. Direct and bias correction forecasts.
Kolmogorov-Smirnov for two distributions

Meetings ahead Direct estimation Bias correction
(euro area) h-test p-value h-test p-value

1 0.192 0.00 0.00 0.97
2 0.179 0.00 0.00 0.97
4 0.180 0.00 0.00 0.97
8 0.194 0.00 0.00 0.97
16 0.242 0.00 0.00 0.98
40 0.230 0.00 0.00 0.98
48 0.227 0.00 0.00 0.98
56 0.186 0.00 0.00 0.98

(United States) h-test p-value h-test p-value
1 0.167 0.00 0.00 0.97
2 0.134 0.00 0.00 0.97
4 0.190 0.00 0.00 0.97
8 0.218 0.00 0.00 0.97
16 0.269 0.00 0.00 0.98
40 0.245 0.00 0.00 0.98
48 0.316 0.00 0.00 0.98
56 0.417 0.00 0.00 0.98

The Kolmogorov-Smirnov test compares to distributions, where the null hypothesis

corresponds to the two distributions been equal, while the alternative hypothesis is that

the samples comes from different distributions. We compare both the inverse CDF of

the bias correction PIT (N [µPITcorrected, σPITcorrected]) and the direct estimation PIT

(N [µPITdirect, σPITbiased]) with the inverse CDF of a N [µuniform, σuniform]. If the value

of the h-test is equal to 0, it means that PIT follows a uniform distribution, and 1 otherwise.
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Table 2: Comparison between mean error for direction estimation bias and
corrections

Meetings ahead Direct estimation Bias correction
(euro area)

1 0.133 0.108
2 0.127 0.103
4 0.134 0.109
8 0.149 0.111
16 0.180 0.119
40 0.177 0.127
48 0.167 0.120
56 0.147 0.114

(United States)
1 0.108 0.093
2 0.098 0.084
4 0.145 0.121
8 0.165 0.131
16 0.204 0.156
40 0.171 0.126
48 0.176 0.131
56 0.202 0.137

The table compares the CDF for different meetings ahead for both the biased and the

corrected probabilities.
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Figure 1: Bid-ask spread for OIS rates
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Figure 2: Forward (blue) and spot (red) yield curve (top) and transformation
of the forward curve (blue) into a binomial tree of potential monetary policy
rate paths (red) where vertical lines (dashed black) represent future monetary
policy meetings (bottom) (for June, 6th 2019)
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Figure 3: Historical size of monetary policy changes for the ECB (top) and
the Fed (bottom) from year 2000 to 2021.
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Figure 4: Discrete Probability Forecast example.
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Figure 5: Potential outcomes for the Discrete Probability Forecast evalua-
tion. In both graphs, black diagonal line represents uniform distribution
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Figure 6: Conditional Probabilities and Discrete Probability Forecast. Red
lines show possible outcomes from the binomial tree in t, black lines shows the
observed path, and green lines the conditional probabilities to be evaluated.
MA refers to Meeting ahead.

(a) 2 Meetings ahead (b) 3 Meetings ahead
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Figure 7: Empirical evaluation of discrete probability forecasts
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Figure 8: Correction of Discrete Probability Forecasts
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Figure 9: Correction of Discrete Probability Forecasts (cont.)
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Figure 10: Prediction corrections over time (euro area)

The chart shows the difference between corrected PIT and direct estimated PIT, where

higher values show higher upward bias.
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Figure 11: Prediction corrections over time (United States)

The

chart shows the difference between corrected PIT and direct estimated PIT, where

higher values show higher upward bias.

39



BANCO DE ESPAÑA 40 DOCUMENTO DE TRABAJO N.º 2438 

Figure 12: Expected path of monetary policy rates

Figure 13: Terminal rates
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Figure 14: Probability distribution (PDF) for each meeting ahead: euro
area
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Figure 15: Probability distribution (PDF) for each meeting ahead: United
States
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Figure 16: Fan charts: policy rate expectations for the euro area

The area in light blue show expected policy rate lying in the in-

terval of percentiles 10,90 of the estimated PDF. Dark blue lines

show the forward curve, that represents the expected mean rate.

43



BANCO DE ESPAÑA 44 DOCUMENTO DE TRABAJO N.º 2438 

Figure 17: Fan charts: policy rate expectations for the US

The area in light blue show expected policy rate lying in the interval of percentiles 10,90 of

the estimated PDF. Dark blue lines show the forward curve, that represents the expected

mean rate.
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