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Abstract

Recursive and sequential estimation procedures are applied
te each of two long annual data series on the logarithm of real per
capital U.S. GNP, each of which includes the Great Depression. The
recursively-calculated Augmented Dickey—Fuller statistic for a unit
root, and several sequentially-calculated F-type statistics for
structural breaks, are compared with critical values appropriate to
such sets of statistics. The results for the long data series are
consistent with those found on shorter (post-war) data sets; we do
not find statistically significant evidence of a trend break.



A number of recent papers, in particular Stock and Watson
(1986) and Perron and Phillips (1987), test the hypothesis that the
logarithm of real per capital gross national product (GNP) in the
United Stales follows a stochastic trend by testing for a unit root in
Jeviations from a deterministic trend. Both papers employ
non-paramelric variants, developed hy Phillips (1987), Perron and
Phillips (1988) and Perron (1988, 1989), of the Dickey--Fuller (1979)

test for a unit root.

Stock and Watson (1986) extract a 1.5% annual trend growth
to induce an approximately driftless series, and use a form of Lhe
test that does not allow for a fitted trend. Perron and Phillips
(1987) use a more general version of Lhe lest which accomodates a
non-zero drift. Non-parametric tests have been proposed as way of
taking account of Lhe preseonce of autocorrelations in the
first-differenced representation of the process. However, recent work
by Schwert (1989) suggests that such non-parametric corrections do not
perform well even in large samples. The simulations in Schwert (1989)
show that Ffor some (especially MA) error processes, the non--parametric
variants of the Dickey-Fuller tests are characterised by low power and
incorrect sizes, in samples as large as 1000, and that the use of the
Augmented Dickey-Fuller (ADF) test is to be preferred to the use of

non-parametrically corrected Dickey -Fuller test statistics.

Stock and Watson (1986) consider three separate real per
capital GNP series and test for the existence of a unit root in
eachl. The tests are conducted in different sulr--samples and the
results are varied. They conclude that there is little or no evidence

against a unit root in the post-1919 sub-samples.



Perron and Phillips (1987), using the more general version
of the test, conclude that using the N-P series does not allow
rejection of the null hypothesis of a unit root either before or after
World War IIl. The F-S series permits rejection of the null on

pre-World War LI data but not on the post-World War II data (rejection

The purpose of this paper is to re-examine the previous
evidence in the detail allowaed by recursive estimation procedures. A
line of argument initiated by Perron (1989), states that tests for a
unit root which use lhe full sample are biased in favour of accepting
the unit root hypothesis if the series has a structural break at some
intermediate date. Such structural breaks may take the form of changes
in the mean level of a series or changes in trend growth rates. Thus
while a series may be stationary around a broken m2an or a broken
trend, (that is, the mean or slope coefficient takes on two or more
different values in diffeirent parts of Lhe sample, and the deviation
of the series from this changing trend is stationary in each of the
sub--samples), standard unit root Lest which do not take account of
these breaks occuring in sub-samples of the series will be dogged by
low power. By standard unit root tests we mean those proposed by

Dickey and Fuller (1979) and Fuller (1976).

Perron (1989) proposed modifying the standard Dickey—-Fuller
test by including dummy variables in the Dickey--Fuller regression in
order to allow for a break in the trend and mean. He computed critical
values appropriate to this modified regression and, using the new
critical values, found in favour of a structural break in a majority

of the time series investigated earlier by Nelson and Plosser (1974).

An imper-tant criticism of the Perron approach, identified
originally by Christiano (1988) was that the break date in the series
was assumed by Perron to be known so that thre is a pre-test bias in

the testing procedure which should be accounted for. In general, it is



more reasonable not to assume a priori knowledge of the break date but
rather to allow its estimation to be part of the empirical exercise.
This is the view taken by Christiano (1988) and is also the premise of
the present paper. To endogeneise the choice of the break date it
seems natural, following Christiano, to pay attention to maximum o
minimum values in a sequence of test statistics constructed through

the two procedures described below.

Recursive procedures for testing for a unit root or a
structural break have their most natural uses in this setting. Such
tests date, in their modern form, to Brown, BDurbin and Evans (1975)
and their use of the cumulative sums of squares statistic, and Quandt
(1960). Recent papers by Kramer, Ploberger and Alt (1988) and
Ploberger, Kramer and Kontrus (1989) have extended the Brown, Durbin
and Evans analysis to dynamic models. Christiano {1988) and Banerjee,
l.umsdaine and Stock (1989) (BLS henceforth) deal with the case where,
under the null hypothesis, the data generation process is assumed to

have a unit root.

Two different clases of statistics are computed to test for
the presence of a unit root in the N-P and F-S series. The first
class, commonly termed "recursive statistics", consists of a sequence
of statistics which 1is constructed by incrementing the sample,
starting from some minimum size, by one data point at each stage of
Lhe recursive procedure. The recursive algorithm estimates the same
regression using each of these nested samples, given the minimum
sample size required Lo estimate the first regression in the sequence.
The critical values of the test statistics used for this class of

tests are given in BLS (1989).

The second class, termed "sequential statistics", uses a
sequence of statistics computed by using the full sample at each
stage. The regressions in this second sequence differ from each other

in postulating varying dates for the break. The first regression in



the sequence uses a postulated break date of ko, where 1 < k0 < T,
with sucessive regressions in the sequence postulating ko, k0 +1,....,
T - k0 as dates for the break. Some of the critical values used for
these tests appear in Christiano (1988) and in BLS (1989). We provide

additional critical values in section 3 of this paper.

Section 2 describes the recursive and sequential tests in
some detail. Section 3 describes this asymptotic properties and
provides appropiate critical valuesz. Section 4 presents the results
of the tests when applied to the N-P and F-S series, and section 5
concludes. In view of the criticisms in Schwert (1989) we limit the
discussion to extended versions of the Augmented Dickey-Fuller tests
and do not compute any non—parametric versions.

‘A word on the notation 1is necessary. The symbo]"“w)“
denotes woak convergence of Lhe associated probability measures, and
"Z" signifies equality in distribution. Stochastic processes such as
Brownian molion with unit variance on [0,1] and on its sub~intervals
indexed by & are written as B and p-dim Brownian motions as B
Similarly, integrals such as féB(r) dr, Jor(8) dr, J;B(r) dr, etc.
are written simply as J'(l) B, _I'(l) r B, _I'; B, etc. All limits given are

as the sample size T -> wo.

2. Unit Roots and Recursive Estimation

Consider the c¢ase where, under the null hypothesis, a
univariate process is postulated to have a non-zero drift and a unit
root; one possible alternative hypothesis is that the series is a
stationary autoregressive process of order p + 1 with a non-zero drift
and a linear trend. Other alternative hypotheses considered in this
paper are those of statiomarity of the autoregressive process about a
broken trend or a broken drift or of the series being driven by a unit
root in one part of the sample and by a trend-stationary process in

the other‘3 .



The null hypothesis can be tested using either the point
estimate of the first autoregressive coefficient or its regression
t-statistic. As it is well known the distributions of both statistics,
for a given finite sample size and asymptotically, are non-normal and
have been tabulated by Ffuller (1976) and Dickey and Ffuller (1979).

. . . . 4
Specifically, the model underlying the test for the unit root is

P
= u + Bt + € Y 4 F jEZ “j ﬁyt—j + ey (1)

ﬂyt

with yt, in this paper, representing the legarithm of real per
capital GNP. If there is a unit root then a, = 0, and this is the

null hypothesis. We take €, to be iid with variance ui.

Se now turn te a discussien of the recursive and sequential
testing precedures which we shall use to test for a unit rovet in the

N-P and f~S series.

2.1. Recursive Tests

. . T {E '
The sequence of recursive slatistics {w }, , {T }T
1 t0 1 to

and
T
t

{02} is computed according to a standard algorithm (see, e.g., Harvey
[0}

(1981)); {al} is the sequence of OLS estimates of the coefficients, {Tl}

is the t-statistic on  a {Gi} is Lthe sequence of an

1J
estimator of the standard errour of Lhe et's, and to is the
smallest sample used for estimation (i.e., the sample size used for

initializatien of the recursive procedures). Examinatien of {Tl}
will give us evidence about the possibility that the time series is
goveried by a unit roet in seme part of the sample while it follows a

stationary process in anolher patt of the sample.
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We will show that although, for any given sample size, the
t-statistics have the usual Dickey-Fuller distributions, there will
be a different critical value for the maximum of minimum of the
t-statistics over the sample; in any given sequence of t-ratios the
probability that the minimum of this sequence will 1lie below the
standard Dickey-Fuller critical wvalues 1is greater than the nominal
size of the test. Thus the use of the Dickey-Fuller critical values is
prone to lead Lo excessive rejection of the unit root hypothesis. BLS
(1989) tabulate some critical values by Monte Carle simulation, which

are reproduced in section 3 below.

2.2. Sequential Tests

A. This test uses the following T«Zko regressions6

P
ﬂyt =p+ Bt +a U Y Lk + Y, L) + L e, Ayt_j+ e, (2)

j=2
where Plt(k) 2 ti(tyk), sz(k) = ¥(t3k), 1(.) being an
indicator function, for t = k, k+1,...,T and k = ko, k0+1,,.., Tuko.

Model (2) represents and trend and mean discontinuous break
at time ko. Under the null hypothesis, m1=Y1=Y2=0, and
8=0, since under HO' the limiting distributions are invariant to
the value of B. The sequential test therefore consists of computing
the F-statistics

and/or for

FYl:YZ:O le:B:Yl:WZ:O
each regression, where each regression differs from any other only in
the postulated break date. Non-zero values of Yl and/or YZ are
an indication of a structural break in the data series (Yz for a
mean break, Yl for a break in the trend). Again, while for any
given break at date k (postulated independently of the data) the
F-statistic has the standard F-density, in any given sequence of F's
the probability of Fmax exceeding the standard 5% (10%) critical

values is in excess of 5% (10%).
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B. Sequential Test for Shift in Trend (BLS (1989))

This test considers the model as in (2) bul with
Flt(k):(t—k)](t;k) and TZt(k)zo, representing a continous
trend with a kink at date k.

In the spirit of Christiano's test, we estimate the T--2k0
regressions given by moving the trend-shift sequentially for k:k0 to
k=T—k0. Under the null hypothesis, m1=71:72:0. Thus for
each of the m:;zk regressions the F-statistic FYI:YZ:almO is

computed and F , the maximum of this sequence of F-statistics 1is

compared with the appropiate critical values given below.

C. Sequential Test for Jump in Trend (BLS (1989))

This final class of tests is computed as in B above but
with rlt(k)=l(t;k) and FZt(k)zo, since we are testing for a

shift in the mean of the series without change of slope in the trend.

3. Asymptotic Distributions and Critical Values

3.1. Recursive Tests

The analysis focuses on the properties of the estimators
and test statistics in model (1) under the null e, =0. Because
of the wunit root under Ho, it is very convenient to use the
transformation suggested in Sims,Stock and Watson (1990), so that
under HO’ (2) can be rewritten as

Ay, =6'2Z + & (3)
where Zy =[z%, 7%, z3, z%1; © = [a', ©;, a1, ©4] with « =[az...ap]

where Z} =(8 yg_1 — B...., O yg_p-i)', 2§=1, Z§=(y¢-it) and 2§ =t
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L |
such that & = ub with b = (1 - L ai) , the unconditional mean under HO'
2

Also let E Zi Zi' = Qp. The transformed regresso?s are linear

combinations of the original regressors with different stochastic

orders of convergence. So define the scaling matrix YT = diag (TI/2 I

T1/2, T,T3/2) partitioned conformably with Zt and ©. Since the

’

recursive regressions take place over the samples going from 1 to
k (== ko,..., T), define &=k/T, and the recursive OLS estimator of

the coefficient vector is

n [T8] _y [T18]
6@y =1L 2,2, 0L 7,0y, (4)
where 0 < 80 ¢ 8§ ¢ 1. Thus
T LB(BIw Ohuie Gkl B8 5
L B8) ~ ©) = V.(8) 8. (8) (5)
I Ly 18]
where VT(S) = TT ? Zt—l Zt—l TT and @T(G) = YT E Ztul €,

There are analogous expressions for a general irecursively
computed Wald statistics and for the Dickey-Fuller t-statistic testing
the hypothesis that almo. Suppose Lhat the Wald statistic tests
the g hypothesis ROz:r where, without loss of generality, the

hypothesis are ordered so that the first restrictions involve

.. 4
coefficients on Zi (and perhaps Zi, Zi, Zt)’ the
next restriccions involve coefficients on Z2 (and perhaps Z

t t
and Zi), and so forth. The test statistics that we will consider

are

| . | (167 T
F(8) = (RO(8)=r)" [R( f Z, 4 2L D7 RIT(RO(E)-T)  (6)
33 A2.1/2

tpe(8) = T & (8)/[V(8)" 5] ™)
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where 35(8) is the estimator of o: computed using
the residuals estimated through the [T8]-th observation and

vT(s)1J denotes the (i,j) element of vT(a)‘l.
Then the asymptotic behaviour of the recursive estimators
and test-statistics are summarized in the following Theorem (proofs in

Appendix).

Theorem 1: Suppose that U is generated by model (1), then

a) IT(é(a)me) > O%(8) = V(8) #(6)

b) Under the null R(O©)

]
=

FT(B) -> [R ©%(8)]" [R")‘l'\l(s)m1 R"\“]_1 [R 6*(8)]/02 = OFX(8)

c) Under the null @, = o

£ (8) —> 0%, (8)/[0% v(8)**1/2

where V(8) and $(8) are partioned conformably with TT and

5(5) = as[ﬂélz B(§)', b B(8), b /2 [B(8)>-8], & B(S) ;g B]"

Vll =0, 8 Qp, Vlj =0 (j = 2,3,4)
V.. =68, V.. =0bf Bdr V. =82/2
22 = 90 Va3 T OB g BAN Voy =
2 .2 8 2 8 .3
V33 = ag_ b IO B, V34 = g o IO r B, qu = 0. /43

Table 1, taken form BLS (1989), reproduces the 5% (10%9

critical values for four statistics: the full sample Dickey-Fuller
max

test (8=1), Lthe maximal Dickey-Fuller statistic (t ). the

min
minimal Dickey-Fuller statistic (t ) and the spread between the
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maximal and minimal statistics (tdlrf
. . . diff | . .
experimentation in BLS show that t ! is more powerful but its size

). The Monte Carlo

is substantially larger than the level, so that care is needed in the

interpretation of the results with this statistic.

3.2 Sequential Tests

The model considered is (2) which under the null that

Smmlelefao can be reparameterised as in (3) with
1 3 o 4

Zg, Zt‘ Zt defined as above, and Zt_r1t+1(k)’
Zt:r2t+1(k)' The corresponding scaling matrices are,

according to each case:

a) T? = diag (772 I p/2 32 3/2 0 L1/2,
B) .rT _ diag (Tl/z Ip; Tl/Z’ T, T3/2, T3/2)
c) r$ = diag (r'/? I 2 ¢, 32 (V2

The estimators and test statistics are computed using the
full T observations, for kxko,... kao. For k/T > &, the

process of these sequential statistics is given by

8(s) = (£ z,_ (761 2, (7811 " (£ z,_,[T6] 8 y,] (8)

Louis -1 =
T(0(8)-0) = v, (&) = ¥.(8) (i =A,B,C) (9)

F1(8) = [R8(8)-r1'[R(E Z,  [T6] z}_ [T61) 'R'17'[RE(8)-rl/o® (10)

where all the sums go from 2 to T and 0<80s651_80<1

As in the recursive statistics case, the asymptotic
representation of these processes can be summarized in the following

theorem.
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Theorem 2: Suppose that yt is generated by model (2) with
Bﬂalzylxyzzo, then

a) In case A, T0(8(8)-8) ~> U(8) " ¥(8), where

¥(8) = ofa/%8(1)", B(1), bo/2(82(1)-11, B(1)-fy B, B(8)-1;B, B(1)-8(8)]

2 ,
Ull—oe Qp ; Ulj =0 (j =2,3...,6)
U, =1; U =obfl; U =1/2; U = (1-62)/2; U, = 1-8
g9 V121 Ve Fe¥ g e Ve = * Vog T LT + Y26 <
2. 27 34 1 1 1
U33 = b oEIoB s U = GbIO rB; U35 2 cbISFB, U36 = Ub!aB,
U = 1/3; U = (1-63)/3; U, = (1-62)/2
44 * Yas * Yae
U = (1-6%)/3; U = (1-82)/2; U = 1-6
55 ! 56 ‘766 T

b) In case B, r?(é(&)_e) - U(8)"} ¥(68), where

a1/
¥(8) = olQ

B(1)', B(1), bo/2(8”(1)-11, B(1)- [gB, (1-8) B(1)- f;B]
and U is a(5x5) matrix with elements as in case A except that
U,. = o [(1-8) B(l)—-J'1 B]; U,. = (1~83)/3 - (5~63)/2
35 © Y § "1 UYas T
C, A -1
c) In case C, YT(8(8)~6) -> U(8) ¥(8), where

¥(8) = U[Q;’Z B(1)', B(1), bo/2[82(1)-1], 3(1)_;ée, (1) - B(0)]

. . th
and U is as in case A, except Lhat the 5L coluwn and row of Lhe

matrix are eliminated.
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The result provides joint wuniform convergence of all
estimators and test statistics, including Wald tests as in Theorem 1.
Accordindly we use simulations to compute the critical values of the
distribution of Fmax in the sequence of regressions given by model
(2). The critical values, in case A, are given in the second and third
columns in Table 2, for sample sizes of 50, 100 and 150 in their 2 an
4 d.f versions and are consistent with those reported by Christiano
(1988) for a sample size of 152, using a bootstrap method. This table
again reflects the relative insensibility of the critical values to
changes in the sample size. The critical values, in cases B and C, are
presented in the third and fourlh columns in Table 2 respectively and
again we rely upon the insensitivity of these critical values in

applying them to both F-S and N-P series.

Note finally, that although the results in both theorems
are stated for the null model in which aI:O and B=0 (also
Y1=Y2:0 in Theorem 2, the results are sufficiently general to
handle the case where Imll<1. 8#0 (Ylaéo, Y2;60) as noted by BLS (1989).
In this case naturally the result on tDF(S) does no longer hold,

since its distribution is standard.

4., Empirical Results

Figures 1 and 2 plot the Nelson-Plosser and
Friedman-Schwartz real per capital GNP series. As is clear from
inspection of these figures, the two series are well, but not
perfectly, correlated over the periods in which they overlap. We begin
our analysis of these series by reporting the full-sample estimates of

the Augmented Dickey-Fuller regression applied to each (with one lag):

Nelson-Plosser (1911--1970)

Oyg = 1.278 + 0.0035t — 0.182y¢_; + 0.410 Ayy_y (11)
(3.05) (3.02) (3.05) (3.39)

s = 0.059; LM(5) = 2.52; N(2) = 3.61; ARCH(5) = 1.94; H(6) = 10.81
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Friedman—~Schwartz (1871-1975)

Dyy = 1.474 + 0.0037t — 0.226yt_1 + 0.2470y¢.) (12)
(3.93) (3.81) (3.89) (2.55)

s = 0.061; LM(5) = 8.50; N(2) = 24.35; ARCH(5) = 6.79; H(6) = 12.15

Absolute values of t-ratios are in parentheses; s denotes the standard
error of the regression; LM(q) is the Lagrange Multiplier test against
an AR(q) or MA(q) in the disturbance (see Godfrey (1978)); N(2) is the
Jarque-Bera (1980) normality test; ARCH(g) is Engle's (1982) test
against Sth order ~ ARCH distrubances; H(.) 1is White's (1980)
heteroskedasticity test. In cach case the statistic is asymptotically

distributed xz with the number of degrees of freedom bracketed.

Using Fuller's critical values of ~-3.50 and --3.45 for the
t-ratios on &1 in (4) and (5) respectively, we can reject the null
hypothesis of a unit root on the full sample for the F-S series, but
not for the shorter N-P series. There are, however, several features
of these results which lead us to consider a further examination of

the data.

First, as Figures 3 and 4 show, the t-ratios change
substantially, particularly in the vicinity of the Great Depression,
so that the inference with respect to the null of a unit root would
change over the sample. One could possibly argue, following Perron,
that a structural break could account for the low absolute values of
these statistics in the vicinity of 1930 in each series. Second, in
the case of the F-S series the null hypothesis of normality of the
residuals is rejected. This suggests that the Dickey~Fuller critical
values will not be precisely appropriate, these values having been
computed using a data generation process which incorporated normal
errors. Since the realised statistic for the F-S series does not
exceed the %% critical value by a large margin, the test cannot be
deemed conclusive. Moreover, as this skewness—kurtosis normality test

is very sensitive to a few especially large deviations, it is
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conceivable that a structural braeak or trend shift in the series could
also account for the normality test result. lour Lhese reasons, we test

for structural breaks below.

From BLS we take the c¢ritical values for the maximum and
minimum Dickey and Fuller statistics observed over a set of successive
samples. The sample size of 100 is close to the size of the -8 dala
sat and may also realiably be used te conduct inference in Lhe shorter
N~P series, since the critical values are not very sensitive to

changes in the sample size.

on the N--P sample, the minimum of the t-statistics is ~3.80
in 1924; on the -8 series Lhe minimum is -3.89 in 1975, wilh a local
minimum in 1930 of -3.76. From the values in Tlable 1, it is clear that
these are very close to the 10% critical values. Bearing in mind the
nen-nermality in the F-$ series that makes literal application of
these critical values hazardous, we may have some suggestive ovidence
against the hypothesis of a wunit root, but not a firm rejection.
However, Lhe maximum values of the t-statistics are ~1.36 and ~1.68
whereas the difference t-statistics are 2.44 and 2.21 respoctively, in

both cases non rejecting the null hypothesis.

Figures 5 and 6 plot Christiano-type F-statistics with 2
d.f. for the trend and wean break. The maxima are 8.19 in 1939 for the
N--P series, and 6.07 in 1930 for the F-S series. Neilher of these is
significant at even the 10% level, under Lhe null of a randoem walk
model with no break, and for a joint alternative of trend and mean

break.

In order to be confident in the result of this structural
break test (since it 1s not possible to be certain that the stochastic
trend is a better characterisation of the data than a deterministic
trend), we might algo want to compute the critical values for Lhe 2

d.f. test under the null hypothesis of stationary deviations from a
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deterministic trend (again following Christiano). We do so in Table 3.
The form of null hypothesis chosen is based upon the regressions (3)

and (4): Y, = 1 +0.003t + 0.8y is a fair approximation

t-1 *¢
to these results and to those of models which drop the term in
Aytwl' on both data sets. The initial observation is again chosen

to be a fixed constant.

Again, the test statistics just given are lower than the
critical values. For neither of the null models, then, can we conclude
that there is a structural break. The t-statistics in the unit root
tests reported earlier can therefore be interpreted in the usual way;
a structural break is not a persuasive explanation for any failures to

reject the unit root model.

Similarly, Christiano~type F--statistics with 4 d.f. are
computed, with maximal values of 13.75 and 14.10 for the N-P and F-S

series, both values being highly non significant.

Sequential statistics for the alternative of a trend break
against the null of no break in each of the series are plotted in
Figures 7 and 8. The maxima of the F-statistics are 5.73 in 1932 for
N--P, and 6.61, also in 1932, for F-S. Again, neither is significant at
even the 10% level, using the BiS critical values (reproduced in Table

2 above).

Finally, sequential statistics for the alternative
hypotyhesis of a mean btreak are repotted in figure 9 and 10. The
maxima are 6.87 in 1938 (N-P) and 6.63 in 1938 (F-S). Once again, the

statistics offer no slatistically significant evidence of such a break.

5. Conclusion

In summary, we are able to reject the null hypothesis of a

unit rowot only for lhe full F-S sample, although we give reasons for
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interpreting this rejection cautiously; the recursive test statistics
come close to rejecting this null as well. There is much less eviden-e
againslt the null hypothesis of no structural break, whether or not the
null also incorporates a difference-stationary or trend-stationary
process for GNP; although the statistics used for testing the break
have their largest values in the neighbourhood of 1930's, they do not
reach even our 10% Monte Carlo critical values for these tests. This
finding allows us to interpret lhe recursive t-statistics at face

value, putting aside the possibility of a break.

In classical statistics, the investigator is viewed as
using data to test an hypothesis formed independently of the data on
which it is to be tested. When the hypothesis undaer test is chosen
based on the data, it is clearly relatively easy to find one which

will not be rejected on the given sample.

In the case of at least some hypotheses relating to real
per capita GNP, particularly those involving structural breaks, it is
a little difficult to imagine an investigator in the purely classical
position; the general features of the data are well known. An
hypothesis such as HO: a structural break in GNP took place c¢. 1930
seems very likely to have been influenced by knowledge of the data. It

is with this in mind that sequential tests are applied here.

Clearly an investigator in the classical position, with the
a priori hypothesis that there was a structural break in GNP c¢. 1930,
would reject a null of no break; the corresponding F-statistics exceed
5% critical values by a comfortable margin. However, for the perhaps
more realistic test, that of the hypothesis that a break took place
somewhere on the sample -~ so that we do not use our knowledge of the
data ("pre-test" examination) to choose the break point - - rejection
of the null of no break is not possible at conventional levels, in
spite of the appearance of some fairly large statistics. Thus, these
relatively long dala sets confirm the results found by Christiano

(1988) and BLS (1989) for post-war data sets.
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Appendix

for convenience it is assumed that yozo and that €y

Yo
being drawn from a stationary distribution and to €, being a

is iid(O,oz). Both  assumptions can be generalised, to

martingale difference sequence (MSD) with at least bounded fourth

moments, at the cost of complicating the algebra.

Proof of Theorem 1

a) Without loss of generality it 1is assumed that p=0. Let r=[T8]

r e
and define the sequence of partial scems ST(6)= L €, The functional
1

Central Limit Theorem implies that ST(G) —-> o B(8§). Then let

p .
(L) = (1 - I e L)1 and write y, = C(1) S, + CH(L) e, where C¥(L)

2
. ) _ . . . . ~1/2
has all its roots outside the unit circle. It follow that T
y. -> obB(é) with b = C(1). Because the sample size is 1 to

k (k:ko...T), there 1is wuniform convergence of each element of-
§T and VT in (0,8). Then apply the following lemma in Stock
(1987):

Lemma: Let Y. be an I(1) time series with a Wold representation

given by ytxc(l) St + C¥(L) st, then

i T2y o ey’ 5 e
€
.. -1 2 2
ii) T L Vg & C(1) oe/2 [B"(1)-1]
iii) 732 5 ¢ - [B(1) - rl B}
11 Et 08 o

Lo obtain all the stochastic limiting distributions in Llhe text,

except §1 and Vll’ interchanging the (0,1) integral limits by .
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1 4 .
(0,8). Because o1 e} is a MSD with SUp(Zitwlet < o, it follows
that QIT(S) ~> 0o, Q; 2 Bp(8), i.e a p-dim. Brownian motion with
covariance o, E zi zt' = oi Qp. Finally the deterministic

components such as V and V are obtained as [ d s,

2 22° V24 44
J sds and J s"ds with integral limits between O and §.

b & c) Given the converygence results in (a) and that 32(5) -> 02, both
limiting distributions follow directly from Theorem 2 of Sims,

Stock and Watson (1990).

Proof of Theorem 2

a) The proof is similar to the proof of Theorem 1 except that now the
sample size goes from 1 to T. The terms involving rlt(k) and

th(k) such  as Vs and V6 follow directly. For example
2 T ~3/2 T
Lt 1(t3k) €, = T Lt €, wich implies integral limits goiny
1 k

3/

M

¥ pren(esn1?
1

from § to 1. The deterministic components such as USST(S)mT"
. - 1 2
tend in limit to JS s ds etc.

b & c) The argument for both cases is similar to that for case 1.
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Footnotes

. These are the friedman and Schwartz (1982) annual series from

(1869-1975) (a modified version of the Kuznets (1961) series, the
Nelson and Plosser (1982) annual series from 1909 to 1970
(constructed by the US Dpt. of Commerce) and the National Income
and Product Account series. Only the first two, which we refer to
as F-8 and N-P, are used here; the NIPA series starts only in 1929,
and 1is therefure not long enough for examination of the Great
Depessien when allewance 1is made ferr 1initialization of the

recursive procedures.

. This section relies wupon results in BLS (1989) where weaker

conditions are assumed for the disturbance et.

This is, of course the alternative considered by Christiano (1988)

and Perron (1989).

. Which may differ from the data generation process itself.

Banerjee et al. (1990) provide an approximate algorithm to compute
critical wvalues for the Dickey-Fuller statistic in recursive

samples.

Where T 1s the total sample minus the two observatiens lost in
estimating two lags. This sample is further trimmed by two

observations at each end.
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TABLE 1
Recursive Unit Root Tests: Critical Values
(2.000 Replications)
5% (10%) Critical values

T tDF(l) tmin max tdif’f

100 ~3.45(~3.15) -4.13(-3.88) -1.93(-2 21) 3.37(2.95)
250 ~3.43(-3.13) -4.07(-3.80) ~-1.88(-2.14) 3.36(2.98)
500 ~3.42(~3,13) -4.,10(-3.82) -1.88(~2.14) 3.45(3.01)

Note: Critical values for tgp(l) taken from Table 8.5.2 in Fuller (1976); lhe critical

values for the remaining t-statistics taken from Table 1 in BLS (1989), generated
by Lhe null model Ayy = ey, with 0.25 ¢ & ¢ 1.

TABLE 2
Sequential Tests for Trend and Mean Break (Cases A, B, C):

Estimated Critical values (Null incorporates a stochastic trend)
(2.000 Replications)
5% (10%) Critical Values

T A(2) A(4) 8(3) c(@3)

50 12.11(10.81) 20 38(18.13) 17.63(15.16) 18 73(16.02)
100 12.32(10.91) 20.31(18.11) 16.74(14.30) 18.40(15.92)
150 12.15(10.90) 20.29(18.12) 16.39(13.85) 18.50(16.06)

Note: The entries -we computed using dala generated by the null model Qyy = ¢
for 0.10 ¢ & ¢ 0.90, A(2) and A(4) refer to tests wilh 2 and 4 d.f.
respeclively, whereas 8(.) and C(.) have 3 d.f.
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TABLE 3

Sequential Tests for Trend and Mean Break (Case A): Estimated Critical Values

(Null incorporates a deterministic trend)
(2.000 Replications)

T/size 10% 5% 1%
50 9.1 10.7 13.7
100 8.4 9.8 11.7

Note: The entries were cumputed using data generated by the null model y4:=1+0.003t+0.8
yto for 0.10¢8¢0.90
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Figure 5
N-P: F-TESTS FOR TREND AND MEAN BREAK
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Figure 7
N-P: F-TESTS FOR TREND BREAK
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N-P: F-TESTS FOR MEAN BREAK
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