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Abstract
This paper reconsiders the determination of asset returns in a model with Kreps-
Porteus generalized isoelastic preferences where returns seem governed, if one only
looks at Euler equations, by a combination of the two most common measures of
risk—covariance with the market return and covariance with consumption. Follow-
ing Campbell (1994), we go beyond Euler equations, and derive an approximate
consumption function in order to explicitly take into account the links that the
consumers' optimal behavior establishes between market returns and consumption.
Arguing that wealth is essentially unobservable, we use this consumption function
to eliminate the rate of return on wealth from our approximate asset pricing formu-
las, and show that asset returns are determined by a generalized consumption
CAPM that prices any asset as a function of its conditional covariances with current
and future consumption. This generalized consumption CAPM is derived for ho-
moskedastic and heteroskedastic consumption processes, and is applied, to illustrate

the role of temporal risk aversion, to the equilibrium term structure of real interest

rates.






1. INTRODUCTION

Thus paper is motivated by two observations.

First, according to Kendrick (1976), non-human wealth represented only 47% of total
wealth in the United States in 1969. Moreover, total business wealth amounted at the
same date, at market value, to only 21% of total domestic wealth. Moreover, in 1990,
the market value of corporate stocks was $b4,165 billions of dollars, while residential
mortgages represented $b2,924, corporate bonds $b987, US Federal, state and local
securities $b2,705. Even if one excludes human capital, there is therefore much more to
wealth than stocks, and much more to the rate of return on wealth than the rate of return
on the stock market. And the rate of return on the stock market—the measure of the rate
of return on wealth used by most of the capital asset pricing literature—is in all likelihood
a very poor proxy for the rate of return on wealth.

Second, many authors seem to have forgotten that two of the main contenders in the
search for the explanation of excess returns—the static (or market) capital asset pricing
model (SCAPM) and the consumption capital asset pricing model (CCAPM)}—are not
independent and unrelated models. Regardless of the view one takes on the exact degree
of rationality of consumers, the length of their economic lifetime, or the completeness of
markets, there must be some link in equilibrium between consumption and asset returans,
between quantities and prices. In the simplest case that we will explore in this paper—the
complete markets, representative agent framework—thislink has a name: the consumption
function. The reason for the neglect of the consumption function is obvious: itis difficult to
solve for itin interesting problems. But technical difficulties are no valid reason for sticking
with Euler equations when their sole consideration leads one to mistakenly believe that
there is no theoretical link between the two measures of risk represented by covariance of
asset returns with the wealth return and consumption.

In this paper, we attempt to take these remarks seriously. We develop an equilibrium
capital asset pricing model based on Kreps-Porteus preferences—as exposed in Epsteinand
Zin (1989), Ciovannini and Weil (1989) and Weil (1990)—in which the marginal rate of
substitution between any two periods depends both on the rate of growth of consumption
but also on the rate of return on wealth between these periods. But, contrary to previous
authors with the glaring exception of Campbell (1994), we make explicit {albeit through an
approximaton) the link between consumption and wealth return to fully characterize the
determination of equilibriumn excess returns.

Although our paper conforms to Campbell’s philosophy—we go beyond Euler equations



by using an approximate consumption function— it takes a different perspective on the
goals to be achieved. Campbell’s objective is to use the consumption function to eliminate
consumpton from hus asset pricing expressions, or, as he puts it, to compute asset prices
“without consumpton data”. His rationale is that aggregate per capita consumpton of
non-durables and services 1) is a poor measure for the consumption of market participants,
and 1i) 1s subject to measurement and tme-aggregation errors. As a result, he derives
expressions for excess returns that look like a generalized version of the market CAPM.

Our view, suggested at the outset, is that, from a data perspective, the difficulties involved
with measuring the rate of return on wealth are as large as, if not larger than, those
involved with measuring the consumption of market participants.! Therefore, we reverse
Campbell’s method and eliminate the rate of return on wealth from our asset pricing

expressions, and we obtain expressions for excess returns that resemble a generalized
version of the consumption CAPM.

Moreover, from an equilibrium perspective, and in the tradition of Lucas (1978) or
Mehra and Prescott (1985) but without the “fruit tree” imagery, we wish to be able to price
any asset-and endogenously determine the distribution of its equilibrium returns solely as
afunction its payoff and of consumption. This is required if we want to be able to price the
stock market as a subset of wealth, and to accurately characterize the implications of this
class of models for the equity premium, as distinct from the “wealth premium” implicitly
computed by the authors who identify wealth to stocks. Itis also necessary to study the
equilibrium term structure of interest rates—an exercise that highlights, in the spirit of
Dreze and Modigliani (1972) but in equikibrium, the role of temporal risk aversion.

The paper is organized as follows. We present the model, and the most general impli-
cations of the elimination of the rate of return on wealth, in section 2. We then turn, in
section3, to the determination of assetprices ia a world with a homoskedastic consumption
process, postponing to section 4 the analysis of equilibrium with heteroskedastic consump-
ton. In section S, we examine the implications of our model {for the term structure of real
interest rates. The conclusion offers directions for future research.

!In another paper, Campbell (1993) attempts to circumvent the absence of data on the rate of cetucn on
human wealth by assuming that human wealth is constant fraction of total wealth, and that its requrn can be
approximated by a linear function of labor income growth. Since human wealth is not the only component

of wealth for which no data are available, this is only a partial solution to the data difficulties which motivate
us.



2. THE MODEL

The economy consists of many identical infinitely-lived consumers. All wealth is assumed
to be tradable. Let W, denote wealth at time ¢, and R,,, the rate of return on the “wealth
portfolio” between dates ¢ — 1 and ¢. Wealth can be accumulated in many forms, among
which money, stocks, bonds, real estate, physical and human capital. The rate of return
on wealth will be, in equulibrium, the rate of return on this exhaustive “market portfolio.”

A representative consumer faces the following budget constraint:

Wt+1 = Rw.t+1(Wt o Ct)- (21)

In addition, our consumer’s initial wealth is given, and she faces a solvency constraint to
rule out Ponzi games.

Following Epstein and Zin (1989) and Weil (1990), we assume that consumers have
Kreps-Porteus generalized isoelastic preferences (GIP) with a constant elastcity of sub-
stitution, 1/p, and a constant (but in general unrelated) coefficient of relative risk aversion,

7, for timeless gambles. These preferences can be represented recursively as

Vo= {(1 = B)CI™* + B(Ex Viyn) %} (2.2)

where 0 < 8 < 1, V, is the agent’s utility at time ¢, C; denotes consumption, the operator

E. denotes mathematical expectation conditional on information available at ¢, and the
parameter

8
)

0=(1-7)/(1-p)
measures the departure of the agents’ preferences away from the time-additive isoelastic

expected utility framework. Thus, when § = 1, the preferences in (2.2) reduce to the
standard time-additive isoelastic expected uulity representation.

2.1. The Euler equation. Epstein and Zin (1989) have shown that for any asset with

gross rate of return R; 4+ between dates ¢ and t + 1 the following Euler equation must be
satisfied:

Cenr]™*
E, {Bo [‘%‘1] Ri-.tl-l—l '.t+1} =1 (2'3)

Assume that consumption and asset returns have a joint conditional lognormal
distribution.? - Then, taking logs on both sides of (2.3) and subtracting the version of

2This assumption will, again, be validated in equilibrium.



(2.3) that holds for a safe one-period bond with gross rate of return Ry, we obtain the
familiar® expression for the excess return on any asset:

Tiit

A p0cics + (1 — 0o, (2.4)

Biriger = Lk 25

where lowercase letters denote the logarithm of their uppercase counterpart, and where
Opq,+ denotes the conditional covariance at ime ¢ betweenrandom variables p;4+1 and g41-

This equation is often interpreted? as implying that, for GIP preferences, excess returns
are determined by a combination of the CCAPM and of the SCAPM. This is misleading,
since consumption and the return on wealth (or ¢, and ¢3,¢) In general depend on each
other, through the behavior of forward-looking, optimizing consumers.

2.2. The (approximate) relation between consumption and asset returns. To make
explicit the link between consumption and the rate of return on wealth, and to obtain as
a consequence more meaningful asset pricing formulas, one must go beyond the Euler
equation and use the information provided by the propensity to consume about the link
between consumption and the rate of return on wealth. This objective unfortunately
requires that we get around the difficulty that the consumption function cannot in general
be derived analytically under uncertainty.

To circumvent this difficulty, we proceed as in Campbell (1994), and log linearize the
budget constraint. Let

A= Ct/ W,
denote the consumption-wealth ratio, and
X1 = Cean/Ce

represent the rate of growth of consumpton. The budget constraint (2.1) can then be
rewritten as:

X1
i 2.5
R»u.r,t-l-l A:+1(A;_1 _ l) ( )
or, in logarithms,
T+l = Teg1 — Gea1 — log(e™™ —1). (2.6)

3See, for instance, Giovanaini and Weil (1989).
4See, for instance, Epstein and Zin (1989) or Giovannini aad Weil (1989).



Taking a firstorder Taylor expansion of log(e™* —1) around the unconditdonal mean
of the logarithm of the consumption-wealth ratio,® we obtain the following approximate
log-linear budget constraint:

1
Twt+l = Tpp1 — Gy + Eaa —k (2.7

where k and § (0 < § < 1) are two easily computed linearization constants.®
Equation (2.7) implies that

St41 Twt+1 = Seq1(Tesr — @) (2.8;

where, for any random variable g,4, the surprese operator S is defined as

St+1 qi+1 = E:+1 Ger1 — By Jt41 = Q41 — E, Jt+41-

An implication of (2.8) is that, if the budget constraint is satisfied, the conditional
covariance of any asset return with the rate of return onwealthiis just the difference between,
one the one hand, the conditonal covarnance of this asset’s return with consumption and,

on the other hand, the conditional covariance of this asset’s return with the propensity to
consume. Namely,

Tiyt = Tic,t — Tia,t- (29)

2.3. Eliminating the rate of return on wealth. To eliminate the rate of return on wealth,

it suffices to use (2.9) to substitute out of (2.4) the term that involves the wealth return.
Rearranging, one obtains

Oit,t
2

Equation (2.10) highlights two important special cases that are explored systematically in
Giovannini and Weil (1989):

Eirite1 —Trenn = —

+ 1Tice + (6 — 1) Tias- (2.10)

e in the expected utility case (8 = 1), equation (2.10)1s the excess return equation
characteristc of the CCAPM.

¢ when the consumption-wealth ratio is constant (a; = a for all t), equaton (2.10)
implies that asset returns must also conform to the CCAPM, but that model should

$Throughout, we assume stationarity. The assumptioa that log coossumption-wealth ratio is stationary is
validated in equilibaum.
§The coastant 6 is equal to 1 — exp(E(a)], and the constaat £ is equal tolog(6/1 — 6) + (1/6) E(a).



then be equivalent to the SCAPM, since consumption growth and the rate of return
on wealth are then perfectly correlated.”

2.4. The consumption-wealth ratio. The expression for excess returns in (2.10) is sull
non-operational, for the extra-term introduced by GIP preferences, ..« depends onthe the
propensityto consume. Wenowtake up the taskofcharacterizingthe optimal consumption-
wealth ratio.

From the version of the Euler equation (2.3) that holds for the wealth return. it follows
that, when 6 # 0,

0
Ecryier = —logB+ pEi 2440 — 3 Vary (741 — PTe41) (2.11)
Now, from (2.7),
1
EtTwier = Ee i — Er g + gat —k (2.12)
Va-rt(""w,t+1 b P$t+1) = Va,rg(a¢+1 - (1 - P)-’Et+1)- (2-13)

Substituting (2.12)and (2.13) into (2.11) yields

7
as 6 (k — logﬂ + Eg[aq.l - (1 - p)zH.l] - 5 Va.r,[ag.H — (1 - p)xtﬂ]) . (21‘})

Consistent with our approach that seeks to express all variables in terms of consumption,
we interpret (2.14) as a difference equation in the a@’s driven by the z’s. Under the
transversality condition lim,—.o0 6*a¢4s = 0,% (2.14) implies that

Sk o 0 _ &= .
Q= — — (1 — p) Eg z 6JIg+j - Eg Z&J Va.rH_,-_l Zt4y (215)
1 - 5 =1 2 j=1
where
zg=ar — (1 — p)ze. (2.16)

Two remarks are 1n order. First, (2.15)does not provide the solution for the consumption
wealth ratio as a function of consumption and preferences, since a; conditional second
moments appear on the righthand side. But as we shall see below, (2.15) does provide a
clue as to the functional form of the solution. Second, uniqueness of the solution (when the
solution exists) is guaranteed by the fact that the transversality condition, the Eulerequation

7See, for instaace, the budget consteaint (2.6).
3This condition is also used by Campbell (1994).
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and the budget constraint (all of which are imbedded in (2.15)) are jointly necessary and

sufficient for a unique solution to the optial consumption problem we are approximating.

2.5. The equilibrium concept. To proceed beyond (2.15) and to solve for the
consuinption-wealth ratio, we need to make distributional assumptions on the consump-
tion growth process, and more specifically on its conditional second moments. There are
two ways to view these distributional assumptions, and two associated interpretations of
the results of the model.

One can either take a general equilibrium perspectve, and imagine as in Lucas (1978)
that output is non storable manna falling from a tree. In Lucas’ economy, consumption is
equal to output, and the stochastic process we assume for consumption is just given by the
exogenous stochastic process followed by output. In this perspective, our model provides
approximate, but explicit, forrnulas for general equilibrium asset prices in a Kreps-Porteus
version of the Lucas model, and an analytdcal method to understand the numerical results
in Weil (1989).

Or, alternatively, one can take a partial equilibrium perspective, and note that, for any
given consumpuon process, one can always compute the asset prices that are consistent with
the hypothesis that consumers behave optimally, and satisfy their budget constraints, their
solvency constraint and their Euler equations. In this perspective, our model has obviously
nothing to say about the determinaton of quanaties: it just takes the consumption process
from the data, and focuses instead on the determination of prices.’

While we prefer the second, partial equilibrium interpretation (it has the merit of not
implying that consumption should be equal to output, and of being more forthright as
to its conceptual limitadons), the reader may choose to adopt instead the first, general
equilibriumn interpretation. Nothing in our analysis hinges on the view one takes. As a
matter of fact, we will refer from nowon to “equilibrium” returns: the reader s free to think
of them as general or partial equilibrium returns. What matters, however, is that we take
consumption as given, and not the equilibrium rate of return on wealth as in Campbell
(1994).

With these methodological caveats in mind, we are nowready to turn to the determination
of equilibrium returns. We examine two cases in the next two sections. First, a case
in which log consumpuon growth is conditionally homoskedastc. Second, a case in

which consumption is conditionally heteroskedastic and follows an AR(1) process with

®Oae can of arurse reinterpret the models of Lucas(1978) or Mehra and Prescort (1985) in thatway.
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GARCH(1,1) disturbances.

3. EQUILIBRIUM RETURNS: HOMOSKEDASTIC CONSUMPTION

Suppose the log consumption growth and the conditional mean of future log consump-
tion growth are jointly conditonally homoskedastic, so that the conditonal variance of
consumption growth, its conditional covariance with future expected consumption growth

and the conditional variance of future expected consumption growth are constant over
time.

3.1. The propensity to consume. When conditional second-order momenss are con-
stant, it is straightforward to check that the solution to (2.15) is simply

a = g — (1 - p) Eg ZgJIg+’ (3.1)

=1

where the constant g is given by

5 8(1 —p)?
g= 1—_—3 [k—logﬂ—(—in(Ucc+Ghﬁ+20ch) )

and where o4, and o, respectively denote, under the notation

o .
hts1 = B¢ Z 8 Terisen,
i=1
the conditional variance of expected discounted future consumption growth, and the
conditional covariance between consumption growth and expected discounted future con-
sumption growth.

The interpretanon of (3.1) is straightforward. High expected future consumptionstems,
given current wealth, from high expected future returns on wealth. If the elastcity of
intertemporal substitution is large (p < 1)—i.e., if substitution effects are swonger than
income effects—our consumer reacts to high expected future returns by consuming less,
so that the consumption-wealth ratio declines. If, on the other hand, the elastcity of
intertemporal substitutionis small (p > 1), high expected future consumptionis associated
with an increase in the propensity to consume. These results are standard and intuitive.

Note that, as a result of (3.1), homoskedasticity of consumption growth and future
expected consumption growth implies homoskedasticity of the consumption wealth ratio.

-12-



3.2. The rate of return on wealth. From (2.7) and (3.1), the equilibrium rate of return
on wealth 1s equal to

Twetl = U+ pTepr + (1 — p) Ser Z 8 Tetien, (3.2
j=0
where
. 6(1 — p)?
u=—ing~ (o 4 aun 20, (3.3)

Equation (3.2) enables us to compute, date by date and state by state, the equilibrium
return on wealth from consumption data alone. This equilibriurm rate of return on wealth
has to be understood as the return on wealth which supports, under the assumption that
the model is true, the consumption process as an equilibrium consumption path. In

other terms, equation (3.2) allows us to reconstruct the unobserved return on wealth from
observed consumption data.

An implication of equation (3.2) s that:

Eirutr =u+ pEizeqa. (8.4)

As a consequence, in this homoskedastic world, the conditional expected return on wealth
mustbe higher, fora given(positive) conditional expectedrate of growth of consumption, the
lowertheelasticity of intertemporal substitution—i.e, the higher p. Asunder certainty, thisis

required to convince consurmners to overcome in equilibrium their distaste forintertemporal
substitution.

3.3. Excess returns. It follows from equaton (3.1) that surprises in the propensity to
consume are given by

(o
St+1at41 = —(1 = p) Senn Z 8T eqjr1s (3.5)
=1
so that the conditional covariance between the return on any asset and the marginal
propensity to consume is

Gie = —(1 — p)oin (3.6)

where ¢;, denotes the conditional covariance between the returnon asset : and expectations
of future (discounted) consumption growth.

Therefore, substituting (3.6) into (2.4), the equilibrium excess return on any asset satisfies

Tii -
Eirits1 = Tre1 = g + 90 + (7 — p)oin- (3.7)

-13-



According to this expression, the excess return on any asset depends on its own variance (a
Jensen’s inequality term), on its conditional covariance with contemporaneous consump-
tion, and on its conditional covariance with future consumption. To understand (3.7), it
1s best to think of time as consisting of three dates: today, tomorrow, and the day after
tomorrow (or future), and to examine separately the three terms o, Yox, and —pgia that
govern excess returns.

An asset with g;c > 0 1s an asset whose return between today and tomorrow tends to
be high (low) when consumption tomorrow is high (low). Holding such an asset in one’s
portfolio makes it difficult to smooth consumption over states of nature. Therefore, risk
averse investors require a premium over the riskless returnto hold this asset. This premium
is larger the larger the consumers’ aversion to substitution over states of nature, ie., the
larger their coefficient of relative risk aversion -y. The presence of the term yo,. on the
right hand-side of (3.7) thus reflects our consumer’s aversion to substitution over states
of nature.

An asset with g;;, > 0 is an asset whose return between today and tomorrow tends to
be high (low) when there are good (bad) news about consumption the day after tomorrow.
Such an asset is not attracuve, as it provides, say, more wealth tomorrow when good
news about future consumption make 1t less desirable to be able to save for precautionary
motives.!? As a result, our consumers require a premium to hold this asset, and the term
Y04 reflects the desire of our consumers’ precautionary saving motive.

However, an asset with o;, > 0 is desirable for consumers who dislike fluctuations of
consumption across dates, as holding such an asset smoothes the intertemporal consump-
tion profile. Therefore, the more consumers are averse to intertemporal substtution (the
larger p), the more willing they are to hold an asset with ¢;x > 0, and the smaller the
excess return required in equilibrium to induce consumers to hold this asset. This explains

the presence of the — pois term, which reflects our consumers’ aversion to intertemporal
substitution.

Two special cases of (3.7) are worth noting:

e When~ = p, the precautionary saving and intertemporal substitution effects cancel
out. Itis thus an unfortunate feature of standard isoelastic preferences that they
hide two fundamental determinants of equilibrium excess returns.

e Whenvy = 0andp > 0,i.e.,whenconsumers havenodesiretosmoothconsumption

190ur consumers, because they have rsk preferences with constant relative sk aversion, do save for
Precautionary motives and have decreasing absolute prudence.

~14-



over states and do not engage in precautionary saving,!* excess returns can well
be negative when o;» < 0. There is nothing pathological about this: Dreze and
Modigliani (1972) have taught us aboutthe temporal dimension of risk aversion. A
zero aversionto atemporalrisk (y = 0)does not imply a zero risk premium aslong as
one is not indifferent to intertemporal substitution(p > 0). It is, therefore, another
unfortunate feature of standard isoelastic preferences that they associate zero risk

aversionto atemporal gambles with zero aversion to intertemporal substitutionand
thus to zero risk premia: this is simply not a general result.

Finally, one should also note that, in contrast with the excess return equaton derived
by Campbell (1994), (3.7) does assign a role to the intertemporal elasticity of substitution
in the determination of equilibrium excess returns. This is because the covariances that
appear in (3.7) are covariances with consumption. Loosely speaking, expressing excess
returns, as Campbell does, as a function of covariances with market returns “hides” the p
coefficient into the covariance terms since an implication of (3.2) is that, for j > 1,

St41 Twtwj = PSts1 Tewj- (3.8)

Thus, it is misleading to say that aversion to intertemporal substitution plays no role in
the determination of excess returns. When one takes an equilibrium perspective, excess
returns are not independent of the elasticity of intertemporal substitution because this
parameter affects both, equilibrium consumption and the equilibrium portfolio return.
Furthermore, when one takes consumption and not the return on wealth as given, p does
appear directly in the excess return expression.

3.4. The excess return on wealth. We now turn to the computation of the equilibrium
excess return on wealth. From (3.2),

Sea1 Twert = Sea1 Teer + (1 — p) St 9 67 Teqjpr. (3.9)
i=1
As a consequence,
Owe = Cec + (l - p)Uch (310}
Owh = Teh + (1 = p)onn (3.11)
(3.12)

1Both the second and third derivatives of the risk utility fiunction are zerowhean y = 0.
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Substituting into (3.7), we obtain the following formula for the equilibrium excess return
on wealth (up to a Jensen’s inequality term brought for clarity to the left-hand side):

Eit1 Twit1 — Therr + Oww/2 = y(0ce + (1 — ploa) + (7 — p)loew + (1 — p)ownl.
(3.13)
When returns are 1.1.d., all the terms involving h are zero, and the rate of return on wealth
1s equal to yo .. regardless of whether the expected utility restriction is satisfied: the excess
return on the wealth portfolio is then determined solely by risk aversion and the variance
of consumption growth. This is not surprising, as tme—and thus the coefficient aversion
to intertemporal substitution, p—is essentially irrelevant in an 11.d. world. As soon as we
depart from the 1.1.d. world, however, the “wealth premium” depends on both aversion to
risk and aversion to intertemporal substitution.!?
Note that the rate of return on wealth is simply, from (2.1), the rate of return on a claim
to aggregate consumption—a concept that has, in general, little to do empirically with the
rate of return on the equity traded in the stock market.!?

3.5. Prices. One should note that the expression in (2.10) does not provide us with a
formula to compute the equilibrium excess return on an asset as a function of its payoff
structure, the consumption process and preferences. The reason 1s, of course, that the
endogenous return r; appears in the conditional second order moments on the right-hand
side of (2.10). To find such a bona fide asset pricing formula, we first need to consider
how the return on an asset depends on its price and the dividends (payoffs) it distributes.

Let p;, denote the log of the (cum dividend) price-dividend ratio of asset ¢ at ime t,'*
and d; the log rate of growth of the dividends paid off by asset ¢ between dates t and ¢ + 1.
Then, by definidon, the log return on asset : satsfies the identity:

Tit+l = digq1 + pierr — log(e”" —1). (3.14)

Following Campbell and Shiller (1988), we assume that the log dividend growth process

is stationary and use a Taylor expansion similar to the one applied above to the budget
constraint to find that

1
Tite1 = digg1 + Pieer — §Pie ki, (3.15)
12S{milar results are noted in Weil (1989).

!3The two concepts are however identically theoretically in the Lucas (1978) or Mehra and Prescott
(1985) models.

14That is, tie log of the cum dividend price minus the log of thedividend.

~16-



where k; and 6; (0 < 5 < 1) are two linearization constants. Since wealth is simply an asset
that distributes a dividend equal to per capita aggregate consumption, the approximate
budget constraint (2.7) is but a special case of (3.15) with d;; = z¢, piy = —as, §; = 6, and
ki =k.

Now, it follows from (3.7) that, because of homoskedasticity, the expected rate of return
on asset 1 differs from the expected rate of return on wealth only by a constant, call it ;.-

E¢ritr1 = Eeru g1 + Tiwe (3.16)

Therefore, applying conditional expectations to both sides of (3.15), substituting (3.16) into

the resulting expression, and iterating (3.15) forward using the the property that bubbles
are infeasible in this economy, we find that

&; >
Pit = _(k:’ + W{w)m + Ez Z 5;3[d.‘,g+s Ed Tw,g+,]. (317)
1 s=1

As a consequence,

Se1 Pres1 = Ser1 9 6 dieass1 — Tweasri]s (3.18)
s=1
so that, using (3.8),
St+1Pit+1 = Set1 25: [di,:+s+1 - Pl‘w,t+a+1]- (3.19)

s=1
Now, from (3.14),
Set17ie41 = Ser1dies1 + Seq1 Piretr-

Therefore, from (3.19), we find that

Se41Titr1 = Ser1 diser1 + Sen Z 6:ditrst — PSea1 9, 8T etar1. (3.20)

s=1 s=1
The interpretation of (3.20) is straightdforward. Good news about the rate of return on
asset? can come from good news about tomorrow’s dividends or future dividends (the first
two terms on the right-hand side). Or they can come from news that future consumption
growth will be low (the third term on the right-hand side), since, by (3.8), bad news about
future consumpton growth translate, in equilibrium, into news that future returns will be
low, and, therefore, into news that the present discounted value of future dividends is high.
The more averse the consumers are to intertemporal substitution (the larger p), the more

sensitive equilibriurn returns are to changes in consumption growth, and the more bad
news about future consurmption means good news for current returns.

-17-



Equation (3.20) immediately implies that

Tie = gd;c + O-fic = po-h,‘c| (821)
ik Odih + Ofh — POhiky (3.22)

with the notation

o0 . o0 .
— 3 - i
fiern 2B ) 8ldigyin and A = B Y Slzein
=1 i=1
Thus, for instance, o4,. measures the conditional covariance between expected discounted
future dividend growth of asset i and tomorrow’s consumption, while o, measures the
conditional covariance between two differently discounted expectations of future consurmnp-

tion.

Substituting(3.21) and(3.22)1nto (3.7), and collecting terms, we find that the equilibrium

excess return on any assett is given by

EiTigt1 —Trer1 = V0dic+ (v = pP)odn

+

V0t + (7 = p)osin
— plvonie + (7 — p)onl- (3.23)

Equation (3.23) computes the equilibrium excess return on asset 7 solely as a function of the
moments of this asset’s dividend growth process and of the consumption growth process.
The interpretation of (3.23) runs, of course, very much along the lines of the interpretation
of (3.7). We showed in (3.7) that there are three behavioral determinants of excess returns:
aversion to risk, prudence, and aversion to intertemporal substitution. The excess return
equation (3.23) simply shows that each of these behavioral determinants applies to the
each of the events, described in (3.20), associated with good news about the return on asset
i: news that tomorrow’s dividends will be high, that future dividends will be high, or that
future consumptiongrowth will be low.

To complete the computation of equilibrium prices, all that would remain to do is to
subtract from (3.23) the equilibrium excess return on wealth computed in (3.13): tbis
would yield the constant difference, 7y, between the rate of return on asset ¢ and the rate
of retirn on wealth. Using the expression in (3.2) for the rate of return on wealth, and

substituting the just computed s, into (3.17), would yield tbe (approximate) equilibrium
price of asset .
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4. EQUILIBRIUM RETURNS: HETEROSKEDASTIC CONSUMPTION

In this section, we extend the results of the previous section by showing how the main
result derived in the homoskedastic case—the generalized CCAPM of (3.7)—generalizes
when the log of consumption growth follows an heteroskedastic process.

Since solving equation (2.15) when consumption follows an arbitrary heteroskedastic
process is a formidable task (it requires computing conditional moments of conditonal
moments of conditional moments etc.), and rather than attempting the impossible,!> we

parameterize the heteroskedasticity by assumning that log consumption growth follows an
AR(1) process with GARCH(1,1) disturbances:

Tig1 =  a+bre+u (2.1)
Utg1 ™~ |t /\[(0; dcc.t)

2
Ocet = Qo+ oy + 020cciy

We will use three properties of GARCH processes that are proved in Restoy (1991).1¢
If two random varables have a joint normal conditdonal distribution whose second order
moments follow GARCH processes analogous to (4.3), then:

Property 1 : Today’s conditional expectation of products of powers of tomorrow’s
conditonal second order moments is a polynomial in today’s conditional second
order moments.

Property 2 : Today’s conditional covariance between products of powers of tomor-
row’s conditonal second order moments is a polynomial in today’s conditional
second order moments.

Property 3 : Today’s conditional covariance between one of these random vari-

ables tomorrow and product of powers of tomorrow’s conditional second order
moments 1S zero.

4.1. The consumption-wealth ratio. Properties 1 and 2 immediately imply that the
solution to (2.15) (1.e., the equilibrium consumption wealth ratio) can be written as

§b x ;
ae=n-—(1- p)T:"s—bIz + ZCJ‘UE’:.:: (4.3)
i=1

15Atleastimpossible to us.
16The straightforward proofs can be found there in Lemmas 1,2, and 3.
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where the constant n and the {; coefficients—which are, as we shall see below, uninstructive
and irrelevant for excess returns—can be computed as in Restoy (1991).

To understand this equation, it is best to compare it with (2.15). The term in z¢ on
the righthand side of (4.4) represents the expected present discounted value of future
consumption, which isjust a linear function of current consumption growth because of the
AR(1) process followed by consumption growth. The polynomial in the current conditional
variance of consumption is present by virtue of Properties 1 and 2, which guarantee that
the last term in (2.15) can be expressed in the form, given in (4.4), of a weighted sum of
powers of the the current conditional variance of consumption.

42, Excess returns. Property 3 implies

Cov, (ri.t+1; Z Cjaic.t+1) =0.

=1

As a consequence, from (4.4) and (4.2),

§b
= 1—_—6—b0','¢,g. (45)

Oia,t

This is an important result because it embodies the fundamental insight that, for our
AR(1)-GARCH(1,1) process, returns are only able to predict future conditional means
of consumption growth but carry no information about the future conditional variances.
Therefore, the (; parameters are irrelevant when it comes to computng excess returns, and
the parameters of GARCH process do not matter for excess returns! Indeed, subsututing
(4.5) into equation (2.10), one obtains

i &b
Eerigsr —rren = —%" 4 Il = P)l—:‘ﬁ Tict: (4.6)

Because of Properties 1 to 3, this expression is almost identical formally to the one we
would have obtained, in (3.7), for an AR(1) process with homoskedastic errors. Because
of the autoregressive nature of consumption growth, the only conditional moment that
matters for excess returns is the current conditional covariance between asset returns and
consumption. But the one crucial distincton is that excess returns now vary over time,
reflecting the time variation of the conditional variance of log consumption growth.

While one might be tempted to conclude from (4.6) that this model is observationally
equivalent to a standard CCAPM model with coefficient of relative risk aversion (or inverse
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of the elasticity of intertemporal substitution)

,7’ =+ ('\/ — p)éb/(l - 5b)7

this would be mistaken. If v is small relative to p and consumption growth is highly
persistent, the implied v might well be negative, and the excess return on an asset might
be negative when the conditional covariance between that asset’s return and consumpton
1s positive.

A particular case is when the consumption growth rate is not persistent (b = 0), but
exhibits conditional heteroskedasticity of the GARCH form. From (4.6), that assumpuon
impliesthatthe CCAPM’s excess returns expression holds. Similarly,equations{2.9), (4.1}
and Property 3implythattheSCAPMalsoholds. Thisresultshows how i.i.d. consumption
growth (as in Kocherlakota (1990)) is a sufficient but not necessary distributional assump-
tion to get observational equivalence between SCAPM, CCAPM and the excess return
expression associated to the model with GIP preferences. Notice however that, even in
this case, it is not true that elasticity of intertemporal substitution is irrelevant to determine
asset prices as long as it affects the equilibrium rate of return on wealth.

S. TEMPORAL RISK AVERSION AND THE TERM STRUCTURE OF REAL INTEREST RATES

The previous sections have highlighted in several instances the fact that risk neutrality
towards timeless gambles does notimply, as is widely believed, thatexcess premiashould be
zero for all assets regardless of their maturity. Aswe emphasized above, this result is special
to the ime- and state-addiuve expected utility case—for, in that case, neutrality towards
vmeless risks coincides with indifference to the date at which one consumes, and thus to
the irrelevance of the ume dimension of risk. In more general setups, this coincidental
result does not carry over, and there is no presumption that risk premia should be zero at
all matunines when consumers are neutral towards timeless risks.

To highlight the phenomenon of temporal risk aversion, we now return to the ho-
moskedastic case!” and characterize the equilibrium term structure of real bond returns

under the assumption that the log consumption growth process follows an homoskedastic,
AR(1) process:

Tepr = a+bTe+ s (5.1)

5c,t+1 Nlt JV(O,O'CC). (52\

17"Computations are more tedious, butthe results not more instructive, in the heteroskedastic case.
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We consider pure discountbonds matuning j > 1 periods from now, i.e., riskfree claims
that promise to pay one unit of the consumption good in every state of nature j periods
from now. Let R,(j) denote the gross one-period return at time ¢ on a bond of maturity

7.8 Itis straightforward to showthat R.(j) must satisfy the following Euler equation:

{W H X1+k H Ro e+k} (R = 1. (5:3)

Similarly, the return on a j-period rolling over short strategy must satisfy
A j-1
E, {ﬁje H Xt+p: H th +k H Rt+’=(1)} =1 (54)
k=1 k=1 =0

In the appendix we show that, under the same joint lognormality assumption we used
above, the Euler Equation correspondiag to the j-period bond can be written as.

r) = —logf + pS(a,b.j) + PT(h, )z,
+ %{W—A(b,j) o+ 1”_“5‘;]2}% (55)
where
Ste,8.0) = S7 25 - bll'_f] , 56)
T = 57
A(b,j) = %él %—bg— [1 +2b l_bj;k} (5.8)

Equation (3.5) allows us to draw (approximate) yield curves for pure discount bonds. In
this homoskedastic world, those yield curves would be flat if consumptonisi.i.d. (b = 0)
and/or agents have an infinite elastcity of intertemporal substitution (p = 0).

In the appendix we also show that the rolling over short strategy yields a return which

can be written as the return on a - period bond plus a term premium. This term premium
has the form:

—

18The one-period rate of retucn att on a bond maturingatt + 1, R¢(1), is simply what we called eaclier
Rf.t+1‘

1-1

6b (b,j—l)(j—l)-}-[ 5 "]Zb! el = bk}(s.g)

1-—6b 1-—02
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The term premiumis a complex functon of the persistence parameter b and the preference
parametersy and p. Underthestandard time-additive expected utility preferences, the term
premium is zero if agents are nsk neutral—because zero risk aversion is then associated
with zero aversion to intertemnporal substitution (y = p = 0). In general, however, a
zero coefficient of relative risk aversion for timeless gambles does not imply a zero term
premium. By contrast, if agents have an infinite elasticity of intertemporal substitution
(p = 0), the term premium is zero in equilibriumn regardless of the value of the coefficient
~: when consumers do not care when they consume, the rate of return on a long bond and
on the corresponding rolling over short strategy must be identcal. Finally, note that the
term premium is, of course, always zero if consumptionisz.i.d.

6. CONCLUSION

Wehave shown in this paper that the equilibrium capital asset pricing model thatemerges
from Kreps-Porteus GIP preferences can be written—both 1in the case of homoskedasuc
and in the case of AR(1}GARCH(1,1) consumption—as a generalized CCAPM in which
both aversion to risk and to intertemporal substitution matter for excess returns. This
generalized CCAPM features, relative to the standard CCAPM, an extra term that captures
the effects on excess returns of a possible correlation between an asset return and news
about future consumption, and that reflects the interaction between precautionary saving
and consumption smoothing. Because of the presence of this extra term, the predictions of
thus generalized CCAPM can be quite different from and richer than those of the standard
CCAPM. For instance, the equilbrium excessreturn on an asset whose return is positively
correlated with consumpton might well be negatve . . . .

A second contribution is that we have derived approximate equilibrium asset pricing
formulas that can be used to price explicitly any assetsolely as a function of the conditional
moments of its dividend process and of consumption. In particular, these formulas make
it possible to compute, albeit approximately, the predicted excess on equity—as distinct
from the rate of return of a claim to aggregate consumption that is computed in most of the
asset pricing literature. This should help shed new light on the long-standing debate on
the equity premiuri and riskless rate puzzles. These formulas also show how to compute
the otherwise unobservable rate of return on wealth from consumption data alone. This
method could be applied empirically to charactenze the ttue implicatons of the SCAPM
when the rate of return on wealth is inferred from consumption data instead of being
measured as the rate of return on the stock market.
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Third, a comparison between Campbell’s (1994) paper and our paper shows that,
because consumption and market CAPMs are related through the consumption function,
thereisalotoflatitude in the way excess returns are expressed, depending on which variable
is taken as primitive. In a sense, all consumption based CAPMs can be re-expressed as
market based CAPMs, and vice-versa. This fundamental arbitrariness simply reflects the
duality between quantities and prices.

Fourth, our paper clarifies the often forgotten role of temporal risk aversion for equilib-
rium asset prices: excess returns are in general not zero, and the yield curve for real bond
returns is not flat, when the consurmers are neutral towards timeless risks.

Finally, this paper should be viewed as our contribution to a budding branch of
literature®® that attempts, through approximations, to provide an analytic understand-
ing of the workings of models that usually must be solved numerically. This approach
make it possible to unify theoretical results and numerical insights.

APPENDIX: COMPUTING THE RETURN ON A j-PERIOD BOND AND THE J-PERIOD TERM
PREMIUM

Using the lognormality assumption, we can'write

J j
jre(d) = —30logB+pOE. D zeyk — (0 —1)Ee > ruwisk

k=1 k=1

1 2 :
-5 [pﬁz Var, <Z $:+k) +(6 - 1) Var, (Z ru,,H,k)

k=1 k=1

+ 2p(6 — 1) Cov, (i T4k, i Tw.¢+k)] (A1)

k=1 k=1

Similarly, under the lognormality assumption, equations (A.1) and (5.4) yields

j-1

2 Brenn(l) = jre(d) + TP(5), (A2)

=0

19See Kimball [1992], Campbell [1992).
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where

TP(j) = —Var‘ Zr¢+k 1)] + p8 Cov, l:Z rerk(1), Z I,+k]
k=0 k=1
(0 - 1) COV: [)Z_: rt+k(1)’ Z): TW,t+k] (A3)
k=0 k=1

is the j-period term premium.
For the homoskedastic AR(1) process given in (5.1), (3.2) and (3.3) specialize to

=
Twi+l = U+ pTip1 + T';’ St41 Zeea, (A4)
where
_ (1 —p)* 1
u=—logp . 1= 6b) (A.5)
Equation (A.4) implies that
)
Twtti = BeTwes; = (P + m%) (@45 — Ee Te45). (A6)
Therefore,
E, Z Tuerk =Uj + P Eq Z Tetks (A7)
k=1 k=1
)
Van (Z rw,g.'.k) (P 4+ — :b) Vatrt (Z xt-{-k) 3 (AB)
) ) o
COVg Z Ttk z Tw.t+k (p + 6b) Va.l'g Z ek | - (Ag)
k=1 k=1 =1
Now, ’
J J
EtZI¢+k = Eg Z [a(l +b6+---+ kal) + bk.'l:g]
k=1 k=1
= j[S(a,b,5) + T(b,5)zel, (A.10)
where
. 1 a [. 1=¥ b1—¥
S(a’bd):;l—b[}_bl—b] and T(b ]):;ﬁ

When consumption growth isiid. (b = 0), S(a,0,j) = a and T(0,5) = 0, while for
one-period bonds (j = 1), S(a,b,1) = aandT(b,1) = b.
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Moreover,

;]
Var, (Z rH_k) Z Vare(zi4k) + 2 Z Z Cove(Zesk, Test)- (A.11)

k=1 k=1 I=k+1
But

% k=1 bﬂk
Va-rg(It+k) = Va.l': (b T+ Z b.’ﬁclﬂ,k-,) = --—-b?—acc, (Al2)

s=0 Lo
and, for! > &k,

Cove(Tesk,zear)

{—k—1
-k
Cov, (zH-ihb Tetk Z bsﬁc,m—s)

=0
5=F Var(zesx)

" 1 - b2k
= b-* 7 e (A.13)
Therefore,
7 j 1 — b2k J 1 — b2k
aTt zIz+k = Z Ucc-l'?Z Z b= kW
k=1 k=1 - k=1 l=k+1 -
1 - b2k b2k I Ik
= kz: = +2 Z 1 — b2 Z b Occ
=1 I=k+1
= jA(b,J)Ucc, (A14;
where

B RN b—*
Ab, = - 2 .
(5.4) ]?;;1—52 {H_bl—b]

Whenconsumption growthisi.id. (b = 0), A(0,7) = 1,whileforone-period bonds(j = 1),
A(b1) =1,

Substitudng (A.7), (A.8), (A.9), (A.10) and (A.14) into the Euler equation for j-period
bonds (A.1), using (A.S) and rearranging, one obtains

r(j) = —logB+ pS(a,b,5)+ pT(b:5)z
1 Tlp—7)l—17) . p12
+ 3 {-—(1—_5—1,)2— — A(b,7) [ 5b] } Teer (A15)

which s the expression for the return on a j-period bond given in (5.5).
Now,from equation (5.5)the return on a 1-period bond is

r¢(1) = —logB + pa + pbz, + M, (A.16)
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where

_ =71 -1) 7=p\? -
54—5{—77:357——(P+Tj5>}0w (A7,

Then, from equations (A.3), (A.9), and (A.16) the j-period term premium can be written as
. 1 1-
TP(j) = pb{—ipb-i-p@—(ﬂ- 1) (p ab)}Var‘ (ZIH-I:)
it
+ pb {p9 —(6-1) ( + ——) } Cov, (I,_,.,, ka) . (A18;}

Then, using equations (A.13) and (A.14) and rearranging,

TP(j) = pb[ =2 a5 16 - 1

'—k]'_b \
1-66]26' —& (A.19;

which coincides with expression (5.9) in the text.
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