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Abstract 
This paper reconsiders the determination of asset returns in a model with Kreps

Poneu
.
s generalized isoe1astic preferences where returns seem governed, if one only 

looks at Euler equations, by a combination of the two most common measures of 

risk-covariance with the market return and covariance with consumption. Follow

ing Campbell (1994), we go beyond Euler equations, and derive an approximate 

consumption function in order to explicitly take into account the links that the 

consumers' optimal behavior establishes bet�een market returns and consumption. 

Arguing that wealth is essentially unobservable, we use trus consumption function 

to eliminate the rate of return on wealth from our approximate asset pricing formu

las, and show that asset returns are determined by a generalized consumption 

CAPM that prices any asset as a function of its conditional covariances with current 

and future consumption. This generalized consumption CAPM is derived for ho· 

moskedastic and heteroskedastic consumption processes, and is applied, to illustrate 

the role of temporal risk aversion, to the equilibrium term .structure of real int�rest 

rates. 





1. INTRODUCTION 

This paper is motivated by two observations. 

First, according to Kendrick (1976), non-human wealth represented only 47% of total 

wealth in the United States in 1969. Moreover, total business wealth amounted at the 

same date, at market value, to only 21% of total domestic wealth. �loreover, in 1990, 

the market value of corporate stocks was $b4,165 billions of dollars, while residential 

mortgages represented $b2,924, corporate bonds $b987, US Federal, state and local 

securities $b2.70S. Even if one e.'Ccludes human capital, there is therefore much more to 

wealth than stocks, and much more to the rate of return on wealth than the Tate of return 

on the stock market. And the rate of return on the stock market-the measure of the rate 

of return on wealth used by most of the capital asset pricing literature-is in all likelihood 

a very poor proxy for the rate of return on wealth. 

Second, many authors seem to have forgotten that two of the main contenders in the 

search for the explanation of excess returns-the static (or market) capital asset pricing 

model (SCAPM) and the consumption capital asset pricing model (CCAPM)-are not 

independent and unrelated models. Regardless of the view one takes on the exact degree 

of rationality of consumers, the le!\,oth of their economic lifetime, or the completeness of 

markets, there must be some link in equilibriu,m between consumption and asset returns, 

between quantities and prices. In the simplest case that we will explore in this paper-the 

complete markets, representative agent framework-this link has a name: the consumption 

function. The reason for the neglect of the consumption function is obvious, it is difficult to 

solve for it in interesting problems. But technical difficulties are no valid reason for sticking 

with Euler equations when their sole consideration leads one to mistakenly believe that 

there is no theoretical link between the two measures of risk represented by covariance of 

asset returns with the wealth return and consumption. 

In this paper, we attempt to take these remarks seriously. We develop an equilibrium 

capital asset pricing model based on Kreps-Porteus preferences-as exposed in Epstein and 

Zin (1989), Giovannini and Wei! (1989) and Wei! (1990)-in which the marginal rate of 

substitution between any two periods depends both on the rate of growth of consumption 

but also on the fate of return on wealth between these �riods. But, contrary to previous 

authors with the glaring exception of Campbell (1994), we make explicit (albeit through an 

approximation) the link between consumption and wealth return to fully characterize the 

determination of equilibrium e.."Cce5S returns. 

Although our paper conforms to Campbell's philosophy-we go beyond Euler equations 
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by using an approximate consumption function- it takes a different perspective on the 

goals to be: achieved. Campbell's objective is to use the consumption function to eliminate 

consumption from his asset pricing expressions, or, as he puts it, to compute asset prices 

"without constunption data". His rationale is that aggre§3.te per capita consumption of 

non�urables and services i) is a poor measure for the consumption of market participants, 

and ii) is subject to measurement and time-aggregation errors. As a re.;ult, he derives 

expressions for excess returns that look like a generalized version of the mar�et CAPM. 

Our view, suggested at the outser, is that, from a data perspective, the difficulties involved 

with measuring the rate of return on wealth are as large as, if not larger than., those 

involved with measuring the consumption of market participants. 1 Therefore, we reverse 
CampbeWs method and eliminate the rate of return on wealth from our asset pricing 

expressions, and we obtain expressions for excess returns that resemble a generalized 

version of the consumption CAPM. 

Moreover, from an equilibrium perspective, and in the tradition of Lucas (1978) or 

Mehra and Prescott (1985) but without the "fruit tree" imagery, we wish to be able to price 

any asset·and endogenously determine the distribution of its equilibrium returns solely as 

a function its payoff and of COCl5umptiOn. This is required if we want to be able to price the 

stock market as a subset of wealth, and to a�ately characterize the implications of this 
class of models for the equity premium, as distinct from the "wealth premium" implicitly 

computed by the authors who identify wealth to stocks. It is also necessary to study the 

equilibrium term structure of interest rates-an exercise that highlights, in the spirit of 

Dreze and Modigliani (1972) but in equilibrium, the role of temporal risk aversioCL 

The paper is organized as follows. We present the model, and the most general impli

cations of the elimination of the rate of return on wealth, in section 2. We then turn, in 

section 3, to the determination of asset prices in a world with a homoskedastic consumption 

process, postponing to section 4 the analysis of equilibrium with heteroskedastic consump

tion. In section 5, we examine the implications of our modelIor the term structure of real 

interest rates. The conclusion offers directions for future research. 

1 In another paper, Campbell (1993) attempts to circumvent the absence of data on rpe rate of return on 
human wealth by assuming that human wealth is constant fraction of total wealth, and that its return can be 
approiimated. by a lineae function of labor income growth. Since human wealth is aot the only component 
of wealth for which no data ace available, this is onlra partial solution to the data difficulties which motivate 
us. 
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2. THEMODEL 

The economy consists of many identical infinitely-lived consumers. All wealth is assumed 

to be tradable. Let Wt denote wealth at time t, and Rw,t the rate of return on the "wealth 

portfolio" between dates t - 1 and t. Wealth can be accumulated in many forms, among 

which money, stocks, bonds, real estate, physical and human capital. The fate of return 

on wealth will be, in equilibrium, the rate of return on this exhaustive �market portfolio." 

A representative consumer faces the following budget constraint: 

(2.1) 

In additio!4 our consumer's initial wealth is given, and she faces a solvency constraint to 

rule out Ponzi games. 

Following Epstein and Zin (1989) and Weil (1990), we assume that consumers have 

Kreps-Porteus gene�alized isoelastic preferences (GIP) with a constant elasticity of sub

stitution, 1/ p, and a constant (but in general unrelated) coefficient of relative risk aversion, 

II for timeless gambles. These preferences can be represented recursively as 

(2.2) 

where 0 < /3 < 1, Vr is the agent's utility at time t, Ct denotes consumption, the operator 

Et denotes mathematical expectation conditional on information available at t, and the 

parameter 

B = (1 - 7)/(1 - p) 
measures the departure of the agents I preferences away from the time-additive isoelastic 

expected utility framework. Thus, when B = 1, the preferences in (2.2) reduce to the 

standard time-additive isoelastic expected utility representation. 

2.1. The Euler equation. Epstein and Zin (1989) have shown that for any asset with 

gross rate of return R.;,t+l between dates t and t + 1 the following Euler equation must be 

satisfied, 

E, {P' [C�:r" ��'�1R;.'+1} = L (2.3) 

Assume that conswnption and asset returns have a joint conditional lognormal 

distribution.' . Then, taking logs on both sides of (2.3) and subtracting the version of 

''This assumption will, again, be validated in equilibrium. 
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(2.3) that holds for a safe one-period bond with gross rate of return Rf,t+l> we obtain the 

familia.r3 expression for the excess return on any asset: 

(2.4) 

where lowercase letters denote the logarithm of their uppercase counterpart, and where 

CT pq.t denotes the conditional covariance at time t between random variables Pt+1 and qt+t· 
This equation is often interpreted" as implying that., for GIP preferences, ex.ces.s returns 

are determined by a combination of the CCAPM and of the SCAPM. This is misleading, 

since consumption and the
.
return on wealth (or Uic,t and CTiw,t) in general depend on each 

other, through the behavior of forward-looking, optimizing consumers. 

2.2. The (approximate) relation between consumption and asset returns. To make 

explicit the link between consumption and the rate of return on wealth. and to obtain as 
a consequence more meaningful asset pricing formulas, one must go beyond the Euler 

equation and use the information provided by the propensity to consume about the link 

between consumption and the rate of return on wealth. This objective unforrunately 

requires that we get around the difficulty that the consumption function cannot in general 

be derived analytically under uncertainty. 

To circumvent this difficulty, we proceed as in Campbell (1994), and log linearize the 

budget constraint. Let 

A, == C.;W, 

denote the consumption·wea1th ratio. and 

represent the rate of growth of consumption. The budget constraint (2.1) can then be 

rewritten as: 

(2.5) 

or. in logaritluns. 

(2.6) 

lSee, for instaace, Ciovanni.ni and Wei! (1989). 
"See, for instance, Epstein and Zin (1989) orCiovannini and Weil(1989). 
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Taking a first-order Taylor expansion of log( e-II., -1) around the Wlconditional mean 

of the logaritlun of the consumption-wealth ratio,s we obtain the following approximate 

log-linear budget constraint: 

where k and :; (0 < :; < 1) are two easily computed linearization constants· 

Equation (2.7) implies that 

where. for any random variable qt+h the su.rprise operator S is defined as 

(2.7) 

(2.8) 

An implication .,f (2.8) is that, if the budget constraint is satisfied, the conditional 

covariance of any asset return with the rate of return on wealth is just the difference between, 

one the one hand, the conditional covariance of this asset's return with consumption and, 

on the other hand, the conditional covariance of this asset's return with the propensity to 

consume. Namely, 

O'iw,t = O'ie,t - O'ia.,t· (2.9) 

2.3. Eliminating the rate of return on wealth. To eliminate the rate of return on wealth, 

it suffices to use (2.9) to substitute out of (2.4) the term that involves the wealth return. 

Rearranging, one obtains 

O'ii t ) Et Ti,t+! - TI,t+! = -2 + "'(O'ie,t + (8 - 1 Uia.,t· (2.10) 

Equation (2.10) highlights two imponant special cases that are explored systematically in 
Giovannini and Weil (1989), 

• in the expected utility case (8 = 1), equation (2.10) is the excess return equation 

characteristic of the CCAPM . 

• when the consu.mption-wealth ratio is constant (at = a for all t), equation (2. 10) 

implies that asset returns must also conform to the CCAPM, but that model should 

5Throughout, we assume Stationarity. The assumption that log ooosumption.wea1th ratio is stationary is 
validated in equilibrium. 

'The "''''tant 5 is equal to 1 - .xp[E(a)], and the coostaat k is equal to log(5/1 - 5) + (1/5)E(a). 
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then be equivalent to the SCAPM, since consumption growth and the rate of return 

on wealth are then perfectly correlated.7 

2.4. The consumption-wealth ratio. The expression for excess rerurns in (2.10) is still 
non-<>perational, for the extra-term introduced by GIP preferences, aia,t depends on the the 

propensity to consume, We now take up the taskor characterizing the optimal consumption

wealth ratio, 

From the version of the Euler equation (2.3) that holds for the wealth rerurn. it follows 

that, when I) #- 0, 

e Et Tw,t+!= -log j3 + p Et Xt+! - "2 Vart(Tw,t+1 - PXt+l) 
Now, from (2.7), 

1 Et Tw,t+! = Et Xt+1 - Et at+l + bat - k 
Var,(rw,'+l - PX'+l) = Var,(a,+! - (1 - P)X'+l). 

Substituting (2.12) and (2.13) into (2.11) yields 

(2.11) 

(2.12) 

(2.13) 

a, '" 8 (k -logp + E,[a,+! - (I - p)x,+!J- � Varda,+! - (1 - P)X,+!J) . (2.14) 

Consistent with our approach that seeks to express all variables in terms of consumption, 

we interpret (2,14) as a difference equation in the a's driven by the x's. Under the 

transversality condition lim,_= 8'a,+, = 0,' (2.14) implies that 

where 

8k = . e = .  
at = � - (1 - p) Et?: 8JXt+j - "2 Et?= 8) Vart+j_l Zt+j, 1 )=1 )=1 

z, '" a, - (I - p)x,. 

(2.15) 

(2.16) 

Two remarks are in order. First, (2.15) does not provide the solution for the consumption 

wealth ratio as a function of consumption and preferences, since at conditional second 

moments appear on the right-hand side. But· as we shall see below, (2.15) does provide a 

clue as to the functional form of the solution. Second, uniqueness of the solution (when the 
solution exists) is guaranteed by the fact that the transversality condition, the Euler equation 

7See, foe instance. the budget ronstcaint (2.6), 
'This ",nclicion is also used by CampbeU (1994). 
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and the budget constraint (all of which are imbedded in (2.15)) are joindy necessary and 
sufficient for a unique solution to the optimal consumption problem we are approximating. 

2.5. The equilibrium concept. To proceed beyond (2.15) and to solve for the 
consmnption-wealth ratio, we need to make distributional assumptions on the consump
tion growth process, and more specifically on its conditional second moments. There are 
two ways to view these distributional assumptions, and two associated interpretations of 
the results of the modeL 

One can either take a general equilibrium perspective, and imagine as in Lucas (1978) 
that output is non storable manna falling from a tree. In Lucas' economy, consumption is 
equal to output, and the stochastic process we assume for consumption is iust given by the 
exogenous stochastic process. followed by output. In this perspective, our model provides 
approximate. but explicit, fonnulas for general equilibriwn asset prices in a Krcps-Porteus 
version of the Lucas model, and an analytical method to understand the nwnerical results 
in Weil (1989). 

Or, alternatively, one can take a partial equilibriu.m perspective, and note that, for any 
given consumption process, one can always compute the asset prices that are consistentwith 
the hypothesis that consumers behave optimally, and satisfy their budget constraints, their 
solvency constraint and their Euler equations. In this perspective, our model has obviously 
nothing to say about the determination of quantities: it just takes the consumption process 
hom the data, and focuses instead on the determination of prices.9 

While we prefer the second, partial equilibrium interpretation (it has the merit of not 
implying that consumption should be equal to output, and of being more forthright as 
to its conceptual limitations), the reader may choose to adopt instead the firsL, general 
equilibrium interpretation. Nothing in our analysis hinges on the view one takes. As a 
matter of fact, we will refer from now on to <! equilibrium'" returns: the reader is free to think 
of them as general or partial equilibrium returns. What matters, however, is that we take 
consumption as given, and not the equilibrium rate of return on wealth as in Campbell 
(1994). 

With these methodological caveats in mind, we are now ready to turn to the determination 
of equilibrium returns. We examine two cases in the next two sections. First, a case 
in which log consumption growth is conditionally homoskedastic. Second, a case in 
which consumption is conditionally heteroskedastic and follows an AR(l) process with 

90ne can of course reinterpret the models of Lucas (1978) or Mehta and Prescott (1985) in that way. 
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GARCH(1, 1) disturbances. 

3. EQUILIBRIUM RETURNS, HOMOSKEDASTIC CONSUMPTION 

Suppose the log consumption growth and the conditional mean of future log consump
cion growth are jointly conditionally homoskedastic, 50 that the conditional variance of 
consumption growth, its conditional covariance with future expected consumption growth 
and the conditional variance of future expected consumption growth are constant over 
rime. 

3.1. The propensity to consume. When conditional second-order moments are con
stant, it is straightforward to check that the solution to (2.15) is simply 

"" 
at = 9 - (1- p) Et L"iXt+i 

j=l 

where the constant 9 is given by 

and where O'hh. and (fell. respectively denote, under the notation 

"" 
ht+l == Et+1 'LoiXt+i+l! 

;=1 

(3.1) 

the conditional variance of expected discounted future consumption growth, and the 
conditional covariance between consumption growth and expected discounted future con
sumption growth. 

The interpretation of (3.1) is straightforward. High expected future consumption sterns, 
given current wealth, from high expected future returns on wealth. If the elasticity of 
intertemporal substitution is large (p < 1 }--i.e., if substitution effects are stronger than 
income effec�ur consumer reacts to high expected future returns by consuming less, 
so that the consumption.wealth ratio declines. U, on .. the other han<L the elasticity of 
inteT\emporal substitution is small (p > 1), high expected future consumption is associated 
with an increase in the propensity to consume. These results are standard. and intuitive. 

Note that, as a result of (3.1), homoskedasticity of consumption growth and future 
expected consumption growth implies homoskedasticity of the consumption wealth ratio. 
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3.2. The rate of return on wealth. From (2.7) and (3.1), the equilibrium rate of return 
on wealth is equal to 

where 

� 
rw,t+l = U + PXtH + (1 - p) StH L 6iXI+i+1. 

;=0 

. O(l-p)' 
u = - In{3 -

2 
(er" + erhh + 2er,.). 

(3.2) 

(3.3) 

Equation (3.2) enables us to compute, date by date and state by state, the equilibrium 
return on wealth from consumption data alone. This equilibrium rate of return on wealth 
has to be understood as the return on wealth which supports, under the assumption that 
the model is true, the consumption process as an equilibrium consumption path. In 
other terms, equation (3.2) allows us to reconstruct the Wlobserved return on wealth from 
observed consumption data. 

An implication of equation (3.2) is that, 

(3.4) 

As a consequence, in this homoskedastic world, the conditional expected return on wealth 
must he higher, for a given (positive) conditional expected rate of growth of consumption, the 
lowerthe elasticityof intertemporal substitution-i.e, the higher p. As Wlder certainty, this is 
required to convince consumers to overcome in equilibrium their distaste for intertemporal 
substitution. 

3.3. E. .. cess returns. It follows from equation (3.1) that surprises in the propensity to 
consume are given by 

� 
StH at+! = -(1 - p) StH L 6;Xt+i+ll 

;::1 
(3.5) 

so that the conditional covariance between the return on �y asset and the marginal 
propensity to consume is 

Ui� = -(1 - p)Uih. (3.6) 

where Uih. denotes the conditional covariance between the.return on asset i and expectations 
of future (discounted) consumption growth. 

Therefore, substituting (3.6) into (2.4), the equilibrium excess return on any asset satisfies 

(3.7) 
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According to this expression, the excess return on any asset depends on its own variance (a 

Jensen's inequality term), on its conditional covariance with contemporaneous consump

tion, and on its conditional covariance with future consumption. To Wlderstand (3.7), it 

is best to thi.nk. of time as consisting of three dates: today, tomorrow, and the day after 

tomorrow (or future), and to examine separately the three terms ",(eric, ,O'ih, and -P(Jih that 

govern excess returns. 

An asset with (Jic > 0 is an asset whose return between today and tomorrow tends to 

be high (low) when consumption tomorrow is high (low). Holding such an asset in one's 

portfolio makes it difficult to smooth consumption over states of nature. Therefore, risk 

averse investors require a premium over the riskless return to hold this asset. This premium 

is larger the larger the consumers' aversion to substitution over states of nature, i.e., the 
larger their coefficient of relative risk aversion "'(. The presence of the term "'((Jic on the 

right hand-side of (3.7) thus reflects our consumer's aversion to substitution over states 

a/nature. 

An asset with (Jill > 0 is an asset whose return between today and tomorrow tends to 

be high (low) when there are good (bad) news about consumption the day after tomorrow. 

Such an asset is not attractive, as it provides, say, more wealth tomorrow when good 

news about future consumption make it less desirable to be able to save for precautio� 
motives.10 As a result, our consumers require·a premium to hold this asset, and the term 

"'((Jih reflects the desire of our consumers' precautionary saving motive. 

However, an asset with (Jih > 0 is desirable for consumers who dislike fluctuations of 

consumption across dates, as holding such an asset smoothes the intertemporal consump

tion profile. Therefore, the more consumers are averse to intertemporal substitution (the 

larger p), the more willing they are to hold an asset with (Jill > 0, and the smaller the 

excess return required in equilibrium to induce consumers to hold this asset. This explains 

the presence of the -P(Jih term, which reflects our consumers' aversion to intertemporal 

substitution. 

Two special cases of (3.7) are worth noting, 

• When"'( = p, the precautionary saving and intertemporal substitution effects cancel 
out. It is thus an unfortunate feature of standard isoelastic preferences that they 

hide two fundamental determinants of equilibrium excess returns . 

• When"'( = Oandp > Q,i.e.,when consurners havenodesiretosmoothconsumption 

l°Our oonsume�, because they have risk. preferences with oonstant relative risk. aversion, do save for 

precautiooary moci.ves and have decreasing absolute prudence. 
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over states and do not e%aage in precautionary saving. I I excess returns can well 

be negative when CTih < O. There is nothing pathological about this: Dreze and 

Modigliani (1972) have taught us about the temporal dimension of risk aversion. A 

zero aversion to atemporal risk ("'Y = 0) does not imply a zero risk premium as long as 

one is not indifferent to intertemporal substitution (p > 0). It is, therefore. another 

unfortunate feature of standard isoelastic preferences that they associate zero risk 

. aversion to atemporal gambles with zero aversion to intertemporal substitution and 

thus to zero risk premia: this is simply not a general result. 

Finally, one should also note that, in contrast with the excess return equation derived 

by Campbell (1994), (3.7) does assign a role to the inteI1emporal elasticity of substitution 

in the detenninaoon of equilibrium excess returns. This is because the covariances that 

appear in (3.7) are covariances with consumption. Loosely speaking, expressing excess 

returns, as Campbell does, as a function of covariances with market returns "hides n the p 
coefficient into the covariance terms since an implication of (3.2) is that, for j > 1, 

(3.S) 

Thus, it is misleading to say that aversion to intertemporal substitution plays no role in 

the determination of excess returns. When o
.
ne takes an equilibrium perspective, excess 

returns are not independent of the elasticity of intertemporal substitution because this 

parameter affects both, equilibrium consumption and the equilibrium ponfolio return. 

Furthermore, when one takes consumption and not the return on wealth as given, p does 
appear directly in the excess return expression. 

3.4. The excess return on wealth. We now turn to the computation of the equilibrium 

excess return on wealth. From (3.2), 

As a consequence, 

� 
St+l Tw,t+! = St+1 Xt+! + (1- p) St+! L 6ixt+i+l' 

;=1 

crwe = cree + (1 - p)creh 

"wh = "do + (1 - P)"hh 

11 Both thesec:ond and third derivatives of the risk. utility function are zero when "1 ;:::: O. 
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Substituting into (3.7), we obtain the following formula for the equilibrium excess return 
on wealth (up to a lensen's inequality term brought for clarity to the left-hand side), 

E,+! rw,'+! - r/,'+! + CJww/2 = ..,[CJ" + (1 - p)CJ"J + b - p)[CJ" + (1 - p)CJMJ. 
(3.13) 

When returns are i.i.d., all the terms involving h are zero, and the rate of return on wealth 
is equal to "'face regardless of whether the expected utility restriction is satisfied: the excess 
return on the wealth portfolio is then detennined solely by risk aversion and the variance 
of consumption growth. This is not surprising, as time-and thus the coefficient aversion 
to intertemporal substitution., p-is essentially irrelevant in an i.i.d. world. As soon as we 
depart from the i.i.d. world, however, the "wealth premium" depends on both aversion to 
risk and aversion to intertemporal substitution.12 

Note that the rate of return on wealth is simply, from (2.1), the rate of return on a claim 
to aggregate oonsumption-a concept that has, in general, little to do empirically with the 
rate of return on the equity traded in the stock market. 13 

3,5, Prices. One should note that the expression in (2.10) does not provide us with a 
fonnula to compute the equilibrium excess return on an asset as a function of its payoff 
structure, the conswnption process and preferences. The reason is, of cow-se, that the 
endogenous return Ti appears in the conditiocialsecond order moments on the right-hand 
side of (2.10). To find such a bona fide asset pricing formula, we first need to consider 
how the return on an asset depends on its price and the dividends (payoffs) it distributes. 

Let Pi.! denote the log of the (cum dividend) price-dividend ratio of asset i at time t,14 
and d;" the log rate of growth of the dividends paid off by asset i between dates t and t + L 
Then, by definition., the log return on asset i satisfies the identity: 

ri,!+! == di,!+1 + P',t+l - log(ePi" -1). (3.14) 

Following Campbell and Shiller (1988), we assume that the log dividend growth process '. 
is stationary and use a Taylor expansion similar to the one applied above to the budget 
constraint to find that 

(3.15) 

12Similac .results are noted in Weil (1989). 
13�e two OODcepts are however identically theoretioo.lly in the Lucas (1978) or Mehra and Prescott 

(1985) models. 
14That is, die log of the cum dividend price minus the log of the dividend. 
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where ki and adO < a, < 1) are two linearization constants. Since wealth is simply an asset 
that distributes a dividend equal to per capita aggregate consumption, the approximate 
budget constraint (2.7) is but a special case of(3.1s) with d;" = x" pi,' = -a" 8; = 8, and 
k; = k. 

Now, it follows from (3.7) that, because of homoskedasticity, the expected rate of rerum 
on asset i differs hom the expected rate of return on wealth only by a constant, call it ?riw: 

(3.16) 

Therefore, applying conditional expectations to both sides of (3.15), substiruting(3.16) into 
the resulting expression, and iterating (3.15) forward using the the property that bubbles 
are infeasible in this economy, we find that 

Pi,t = -(ki + ?riw) 1: a. + Et f ai[dj,t+s - Tw,t+sj, 
I ,=1 

As a consequence, 

so that, using (3.8), 

Now, from (3.14), 

= 

StH Pi,tH = StH L a;[dj,t+SH - rw,t+sHj, 
s=1 

= 

St+l Pi,tH = StH L 5t[di,t+Hl - PXw,t+SHj· 
,=1 

StH r i,tH = StH dj,tH + St+l Pi,tH' 

Therefore, from (3.19), we find that 
= = 

St+l Tj,t+l = St+l d;,tH + St+l L aid;,t+sH - P StH L aiXt+s+l. 
s=1 s=1 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The interpretation of (3.20) is straigbdorward. Good news about the rate of return on 
asset i can come from good news about tomorrow's dividends 'Or future dividends (the first 
two terms on the right-hand side). Or they can come from news that future consumption 
growth will be low (the third term on the right-hand side), sinoe, by (3.8), bad news about 
future consumption growth translate, in equilibrium, into news that future returns will be 
low, and, therefore, into news that the present discowned value of future dividends is high. 
The more ave�e the consumers are to intertemporal substitution (the larger p). the more 
sensitive equilibriwn returns are to changes in consumption growth, and the more bad 
news about future consumption means good news for current returns. 
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Equation (3.20) immediately implies that 

with the notation 

= 

Ii,!+l == �t+l L cS{ di,t+i+l 
j=1 

= 

and hi,t+l == Et+l L 6f xt+i+l
j=1 

(3.21) 

(3.22) 

Thus, for instance, (7hiC m�ures the conditional covariance between expected discounted 

future dividend growth of asset i and tomorrow's consumption., while O'h,h measures the 
conditional covariance between two differently discounted expectations of future consUmp

tion. 

Substituting(3.21) and (3.22) into (3. 7), and collecting terms, we find that the equilibrium 

excess return on any asset i is given by 

EtTi,!+! -Tt,t+l = 1CfdiC + (; - p)Ud;h 

+ "!'71;' + b - p)"/;h 

p["!'7h;, + b - p)"h;h]' (3.23) 

Equation(3.23) computes the equilibrium excess return on asset i solely as a function of the 

moments of this asset's dividend growth process and of the consumption growth process. 

The interpretation of (3.23) runs, of course, very much along the lines of the interpretation 

of (3.7). We showed in (3.7) that there are three behavioral determinants of excess returns, 

aversion to risl4 prudence, and aversion to intertemporal substitution. The excess return 

equation (3.23) simply shows that each of these hehavioral determinants applies to the 

each of the events, descrihed in (3.20), associated with good news about the return on asset 

i, news that tomorrow's dividends will he high, that future dividends will he high, or that 

future consumption growth will he low. 

To complete the computation of equilibrium prices, all that would remain to do is to 

subtract from (3.23) the equilibrium excess return on wealth computed in (3.13), this 

would yield !;he constant difference, 'lfiWl between the rate of return on asset i and the rate 

of renirn on wealth. Using the expression in (3.2) for the rate of return on wealth, and 

substituting the just computed ";w into (3.17), would yield the (approximate) equilibrium 
price of asset i. 
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4. EQUILIBRIUM RETIJRNS, HETEROSKEDASTIC CONSUMPTION 

In this section, we extend the results of the previous section by showing how the main 
result derived in the homoskedastic case-the generalized CCAPM of (3.7}--generalizes 

when the log of consumption growth follows an heteroskedastic process. 

Since solving equation (2.15) when consumption follows an arbitrary heteroskedastic 

process is a fonnidable task (it requires computing conditional moments of conditional 

moments of conditional moments etc.), and rather than attempting the impossible,ls we 

parameterize the heteroskedasticity by assuming that log consumption growth follows an 

AR(l) process with GARCH(l,l) disturbances, 

Xt+l = a + bx� + Ut 

'Ut+l """ I, JV(O, ace,l) 
(Tee,t = 0'0 + Cl'lU; + Q20"cc,t-l 

(4.1) 

(4.2) 

(4.3) 

We will use three properties of GARCH processes that are proved in Restoy (1991)16 

If two random variables have a joint normal conditional distribution whose second order 
moments follow GARCH processes analogous to (4.3), then, 

Property 1 : Today's conditional �rion of products of powers of tomorrow's 
conditional second order moments is a polynomial in today's conditional second 

order moments. 

Property 2: Today's conditional covariance between products of powers of tomor
row's conditional second order moments is a polynomial in today's conditional 

second order moments. 

Property 3 : Today's conditional covariance between one of these random vari
ables tomorrow and product of powers of tomorrow's conditional second order 
moments is zero. 

4_ L The cortsumption-wealth ratio_ Properties 1 and 2 immediately imply that the 
solution to (2.15) (i.e., the equiJibrium consumption wealth ratio) can be written as 

15 At least impossible to us. 

8b � .  
a, = n - (1- P)l- 8bI' + L:(jU�." 

)=1 

16The straightforward. proofs can be found there in Lemmas 1,2, and 3. 
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where the constant n and the (j coefficients-which are, as we shall see below, uninstructive 

and irrelevant for excess return� be computed as in Restoy (1991). 

To understand this equation, it is best to compare it with (2.15). The term in It on 

the right-hand side of (4.4) represents the expected present discounted value of future 

conswnption. which is just a linear function of current consumption growth because of the 

AR( 1) process followed by consumption growth. The polynomial in the current conditional 

variance of consumption is present by virtue of Properties 1 and 2, which guarantee that 

the last term in (2.15) can be expressed in the form, given in (4.4), of a weighted sum of 

powers of the the current conditional variance of consumption. 

4.2. Excess returns. Property 3 implies 

As a consequence, from (4.4) and (4.2), 

Db 
CTia,t = 1 _ 8b CTic,t· (4.5) 

This is an important result because it embodies the fundamental insight that, for our 

AR(l)-GARCH(l,l) process, returns are only able to predict future conditional means 

of conswnption growth but ca.ny no infonnation about the future conditional �ariances. 

Therefore, the (j parameters are irrelevant when it comes to computing excess returns, and 

the parameters of GARCH process do not matter for excess returns! Indee� substituting 

(4.5) into equation (2.10), one obtains 

(4.6) 

Because of Properties 1 to 3, this expression is almost identical formally to the one we 

would have obtained, in (3.7), for an AR(l) process with homoskedastic errors. Because 

of the autoregressive nature of consumption growth, the only conditional moment that 

matters for excess returns is the current conditional covariance between asset returns and 

consumption. But the one crucial distinction is that excess returns now vary over time, 

reflecting the time variation of the conditional variance of log oonsumption growth. 

While one might be tempted to conclude from (4.6) that this model is observationally 

equivalent to a standard CCAPM model with coefficient of relative risk aversion (or inverse 
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of the elasticity of imertemporal substitution) 

"/' = "/ + h - p)6b/(1 - 6b), 

this would be mistaken. If "f is small relative to p and consumption growth is highly 
persistent. the implied " might well be negative. and the excess return on an asset might 

be negative when the conditional covariance between that asset's return and consumption 

is positive. 

A particular case is when the consumption growth rate is not persistent (b = 0). but 

exhibits conditional heteroskedasticity of the GARCH fonn. From (4.6), that assumption 

implies that the CCAPM's excess returns expression holds. Similarly, equations (2.9), (4. eli 

and Property 3 imply that the SCAPM also holds. This result shows how i.i.d. consumption 

growth (as in Kocherlakota (1990)) is a sufficient but not necessary distributional assump

tion to get observational equivalence between SCAPM, CCAPM and the excess rerurn 

expression associated to the model with GIP preferences. Norice however that, even in 

this case. it is not true that elasticity of intertemporal substitution is irrelevant to determine 

asset prices as long as it affects the equilibrium rate of return on wealth. 

5. TEMPORAL RISK A VERSION AND THE TERM STRUCI1JRE OF REAL L'ITERESf RATES 

The previous sections have highlighted in several instances the fact that risk neutrality 
towards timeless gambles does not imply, as is widely believed, that excess premia should be 

zero for all assets regardlcss of their maturity. As we emphasized above. this result is special 

to the time- and state-additive expected utility ease-for, in that ease, neutrality towards 

timeless risks coincides with indiHerence to the date at which one consumes. and thus to 

the irrelevance of the time dimension of risk. In more general setups, this coincidental 

result does not carry over. and there is no presumption that risk premia should be zero at 

all maturities when consumers are neutral towards timeless risks. 

To highlight the phenomenon of temporal risk aversio� we now return to the ho

moskedastic easel7 and characterize the equilibrium term structure of real bond returns 

Wlder the assumption that the log consumption growth process follows an homoskedastic, 

AR( 1) process, 

Xt+l = a + bXt + t:c,t+1! 

t:c,t+1 '" It )V(O, cree) . 

17 Computarioas are more tedious, but the results not more instructive, in the heterosk.edastic case. 
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We consider pure discount bonds manni..ng j ;:: 1 periods from now� i.e.� riskfree claims 
that promise to pay one wlit of the consumption good in every state of nature j periods 
from now. Let Rt(j ) denote the gross one�period return at time t on a bond of maturity 

j 18 It is straightforward to show that R,(j) must satisfy the follov.-ing Euler equation, 

E, {fJi• IT X;:: IT R��''+k} [R,(j)], = 1 .  k=l k=l 
Similarly, the return on a j-period rolling over short strategy must satisfy 

E, {fJi• g X,-;: g R��t'+k g R'+k(I)} = 1. 

(5.3) 

(5.4) 

In the appendix we show that, Wlder the same joint lognonnality assumption we used 
above, the Euler Equation corresponding to the i-period bond can be written as. 

where 

r,(j) = - log fJ + pS(a, b, j )  + pT(b, j)x, 
1 { (p - r)(I - r) . [  r - P l '} + 2 ( 1 - 5b)' - A(b, J ) P + I - 5b <7,,, 

S(a, b,j) '" L � b [j - b ll-=-�l ' 
b 1 - [,i T(b,j) '" J�' 

. 1 i 1 - b" [ 1 - [,i-k 1 A(b,j) "' -c I; l - b' 1 + 2b I - b · 
J k=l 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Equation (5.5) allows us to draw (approximate) yield curves lor pure discount bonds. In 
this homoskedastic world, those yield curves would be flat if consumption is i.i.d. (b = 0) 
and/ or agents have an infinite elasticity 01 intertemporal substitution (p = 0). 

In the appendix we also show that the rolling over short strategy yields a return which 
can be written as the return on a j- period bond plus a tenn premium. This term premium 

has the lonn, 

T P(j) = pb { [-�pb + p + � -=-:bl A(b, j - 1)(j - 1) + [p + � -=-:bl % b'-k \ -=-�,k } (5.9) 

lSThe one-period rate of return at t on a bond maturing at t + 1, Rt(l), is simply what we called earlier 

RI,t+l' 

- 22-



The term premium is a complex function of the persistence parameter b and the preference 

parameters 'Y and p. Under the standard time-additive expected utility preferences, the term 

premiwn is zero if agents are risk neutral-because zero risk aversion is then associated 

with zero aversion to intertemporal substitution b = p = 0). In general, however, a 

zero coefficient of relative risk aversion for timeless gambles does not imply a zero term 

premium. By contrast, if agents have an infinite elasticity of intertemporal substitution 
(p = 0), the term premium is zero in equilibriwn regardless of the value of the coefficient 

T when consumers do not care when they consume, the rate of return on a long bond and 

on the corresponding rolling over short strategy must be identical. Finally, note that the 

term premium is, of course, always zero if consumption is i ,i .d. 

6. CONCLUSION 

We have shown in this paper that the equilibrium capital asset pricing model that emerges 

from Kreps-Porteus GIF preferences can be written-both in the case of homoskedastic 

and in the case of AR(lrGARCH(l,l) consumption-as a generalized CCAPM in which 

both aversion to risk and to intertemporal substitution matter for excess returns. This 

generalized CCAPM features, relative to the standard CCAPM, an extra term that captures 

the effects on excess returns of a possible correlation between an asset return and news 

about future consumptio� and that reflects the interaction between precautionary saving 

and consumption smoothing. Because of the presence of this extra term, the predictions of 

this generalized CCAPM can be quite different from and richer than those of the standard 

CCAPM. For instance, the equilibrium excess return on an asset whose return is positively 

correlated with consumption might well be negative . . . . 

A second contribution is that we have derived approximate equilibrium asset pricing 

formulas that can be used to price explicitly any asset solely as a function of the conditional 

moments of its dividend process and of consumption. In particular, these formulas make 

it possible to compute, albeit approximately, the predicted excess on equity-as distinct 

from the rate of return of a claim to aggregate consumption that is computed in most of the 

asset pricing literature. 1bis should help shed new light on the long-standing debate on 

the equity prerniurri and riskless rate puzzles. These formulas also show how to compute 

the otherwise unobservable rate of return on wealth from consumption data alone. This 

method could be applied empirically to characterize the true implications of the SCAPM 

when the rate of return on wealth is inferred from consumption data instead of being 

measured as the rate of return on the stock market. 
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Third, a comparison between Campbell's (1994) paper and OUI paper shows that, 

because consumption and market CAPMs are related through the consumption function, 

there is a lot o£latitude in the way e.�cess returns are expressed, depending on which variable 

is taken as primitive. In a sense, all consumption based CAPMs can be re-e..�re5sed as 

market based CAPMs, and vice-versa. This fundamental arbitrariness simply reflects the 
duality between quantities and prices. 

Fourth, OUI paper clarifies the often forgotten role of temporal risk aversion for equilib

rium asset prices: excess returns are in general not zero, and the yield curve for real bond 

returns is not flat, when the consumers are neutral towards timeless risks. 
Finally, this paper should be viewed as OUI contribution to a budding branch of 

literature19 that attempts, through approximations. to provide an analytic understand

ing of the workings of models that usually must be solved numerically. This approach 

make it possible to unify theoretical results and numerical insights. 

APPENDIX, COMPUTING THE RETURN ON A j-PERIOD BOND AND THE I-PERIOD TERM 
PREMIUM 

Using the lognormality assumption, we can-write 

j j 
jr.(j) = -jO log iJ + pO E. :L X.H - (O - l ) E. :L rw.<+k 

k:1 1t=1 

� [po' var. (E x,+,) + (O - l)' Var. (E rw .. H) 

+ 2p(O - l) Cov. (E x.H, E rw .. H)] (A.1) 

Similarly, under the lognormality assumption, equations (A.1) and (5.4) yields 

j-l 
:L E.r.+k{l) = jr.(j) + T Plj). (A.2) 
k=O 

"See Kimhall [1992], Campbell [1992]. 

-24-



where 

TP(j) = � Var, [%r'H(1)] + p9 Cov, [%r'+k (I) ,t, X'H] 

- (9 - 1) Cov, [%r,+,(1 ) , t, Tw,,+,] (A.3) 

is the i-period term premium. 
For the homoskedastic AR(1) process given in (5.1), (3.2) and (3.3) specialize to 

where 
9( I - p)' 1 u = - log tJ -

2 (1 - 8b)''''''' 

(A.4) 

(A.5) 

Equation (A.4) implies that 

Therefore, 

Now, 

where 

(A.6) 

j j 
E, L Tw,'H = uj + p E, L X'H, (A.7) 

k=1 k=l 

Var, (t, r w,,+.) = (p + : � :b) , Var, (t, X'H) , (A.S) 

Cov, (t, X'H, t, rw.t+k) = (p + 11 � :b) Var, (t, X'+k) . (A.9) 

j 
= E, L [a(l + b + . . .  + b'�l) + b'x,l 

k=1 
= j[5(a, b, j )  + T(b,j):z:,], 

5.(a, b, j)  '" J 1 � b [j - bl
l-=-�l and b l - 1>i  T(b,j) '" -' --b ' 

J 1 -

(A. 10) 

When consumption growth is i.i.d. (b = 0), 5(a, 0, j) = a and T(O, j ) = 0, while for 
one-period bonds (j = 1), 5(a, b, l )  = a andT(b, l) = b. 
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Moreover, 

But 

and, for i > k, 

Therefore, 

Cov,(x,+" X'H) = Cov, (x,+" b'-'x,+, 'EI b" ','+I_') 
= b'-' Var,(x,+.) 

1_. 1  _ b2k 
= b 

1 _ b2 cree· 

Va:r, (t x,+,) 
k=l 

j 1 - b2k j-l j I-k 1 _ b2k 
= � 1 _ b' 17" + 2 � � b 

1 _ b' 17" 
k=l k=l l=k+l 

where 

j 1 - blk j-l 1 - b2k j I-k 
= � --b-' 17" + 2 � --b-' � b 17" 

k=l 1 - k=l 1 - l=k+I 
= jA(b,j )17,,, 

1 i 1 - b2k [ 1 - bi-' 1 A(b,j ) = -' � --b' 1 + 2b 
b ' 

] '=1 1 - 1 -

(A. ll )  

(A. 12) 

(A. 13) 

(A.H) 

Whenconsumption growth is i.i.d. (b = O), A(O,j )  = l,while forone-period bonds (j = 1), 
A(b, l) = 1 .  

Substituting (A.7), (A.8), (A.9), (A.I0) and (A. H) into the Euler equation for j-period 

bonds (A. 1 ), using (A.5) and reillranging, one obtains 

r,(j) = - iog /3 + pS(a, b, j ) + pT(b, j )x, 
1 { (P - i)(l - i) . [ i - P l '} 

+ 2 ( 1 - ob)'
 - A(b,] ) p + 1 - ob 17,,, 

which is the expression for the return on a j-period bond given in (5.5). 
Now, from equation (5.5) the return on a l·period bond is 

r,(I) = - log/3 + pa + pbx, + M, 
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where 

M = � { (P - ")( I - ") _ ( " - P )
'} 

2 (1 - 6b)' P + I - 6b ".�. (A. 17; 

Then, from equations (A.3), (A.9), and (A.16) the i-period term premium can be written as 

TP(j) = pb {-�pb +  pO - (0 - 1) (p + 1
1
.::-:b) }  Var, (�X'+k) 

+ pb {pO - (0 -
1) (p + 1

1
.::-:b) }  COY, (X,+j, �X'+k) . 

Then, using equations (A.13) and (.-\. 14) and rearranging, 

TP(j) = pb [- �pb + p +  ., - P ] A(b j - l)(j - l) 2 1 - 6b ' 
[ ., - P ]  ;-1 .-k 1 _ b2k + pb p + 1 _ 6b :L 17' 1 _ b' ' k=l 

which coincides with expression (5. 9) in the text. 
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