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Abstract

The paper deals with the problem of identifying stochastic unobserved two-
component models, as in seasonal adjustment or trend-cycle decompositions.
Solutions based on the properties of the unobserved component estimation
error are considered, and analytical expressions for the variances and
covariances of the different types of estimation errors (errors in the final,
preliminary, and concurrent estimator and in the forecast) are obtained for
any admissible decompgsition. These expressions are relatively simple and
straightforwardly derived from the ARIMA model for the observed series.
It is shown that, in all cases, the estimation error variance is minimized at a
canonical decomposition (i.e., at a decomposition with one of the components
noninvertible), and a procedure to determine that decomposition is
presented. On occasion, however, the most precise final estimator is obtained
at a canonical decomposition different from the one that yields the most
precise preliminary estimator.

Three examples illustrate the results and the computational algorithms. The
first and second examples are based on the so-called Structural Time Series
Model and ARIMA Model Based approaches, respectively. The third example
is a class of models often encountered in actual time series:

Key words: Seasonal Adjustment: Unobserved Component Models;
Signal Extraction; ARIMA Models; Identification;
Estimation Error
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0 Introduction and Summary

We consider the problem of decomposing an observed series into the sum of two un-
correlated components, each one the output of a linear stochastic process, which can
be parametrized as an ARIMA model. Thus the basic model (presented in Section 1)
is that of an observed ARIMA model with unobserved ARIMA components. Examples
are the seasonally adjusted series plus seasonal component decomposmon of economic
series, the trend—plus—cycle decomposition often used in business cycle analysis, and, in
general, signal-plus-noise type of decompositions. The analysis centers on Minimum
Mean Squared Error (MMSE) estimators of the unobserved ¢omponents.

. It is well known that the general unobserved components model presents an impor-
tant identification problem, which stems from the fact that, for a given series, there is
in general an amount of white-noise variation that can be arbitrarily allocated between
the two components (see, for example, Bell and Hillmer, 1984; or Watson, 1987). This
identification problem is discussed in Section 2. Broadly speaking, two main approaches
have been developed. In one of them, the overall ARIMA model for the observed series
is specified following the standard Box and Jenkins (1970) procedure, and the models
for the components are derived from the overall model. This approach has been termed
the “ARIMA~Model-Based” (AMB) approach; it has been mostly developed in the con-
text of seasonal adjustment, and basic references are Burman (1980) and Hillmer and
Tiao (1982). The second approach directly specifies the models for the components; it
has been termed “Structural Time Series Model” (S1sM) approach and basic references
are Engle (1978) and Harvey (1989). This approach has been heavily used in applied
econometrics work.

The applied relevance of AMB methods for seasonal adjustment (and trend esti-
mation), even in very large—scale applications, has increased considerably as of lately.
In particular, the European statistical Agency (EUROSTAT) is at present, as a result
of a study comparing alternative methods (see Fisher, 1995), using, and recommend-
ing the use of, a fully AMB method (namely, program SEATS; see EUROSTAT, 1994).
Furthermore, the new US Bureau of the Census program, X12, is an hybrid, which
now incorporates many AMB features (see Bureau of the Census, 1995, or Findley and
Monsell, 1995).

In this paper, the analysis will apply in general to model-based methods, indepen-
dently of whether they employ an STSM or an AMB approach. The assumptions used
to identify a unique decomposition are, in the STSM approach, to restrict the order of
the moving average polynomial in the component models, and, in the AMB approach, to
assign all possible noise to one of the components, so as to make the other one nonin-
vertible. In this last case, the decomposition is termed “canonical”, and the associated
noise~free component, a canonical component.

Be that as it may, the fact remains that there is no universally accepted criterion to
reach identification in unobserved component models, and the properties of the different



admissible decompositions have not been much explored. In this paper, we analyse
some of these properties, mostly in connection with the components estimation error.
Burridge and Wallis (1985) within the STSM approach, and Hillmer (1985) within the
ABM approach, have provided algorithms for computing the variance of the components
estimation error. In this paper, an alternative approach, close to the one in Watson
(1987), is followed, which permits us to obtain simple analytical expressions for the
variances of the components estimation error for different admissible decompositions.

When choosing between two admissible decompositions that only differ in the allo-
cation of white noise to the components, one relevant consideration could be the precision
of the associated estimators. There are, however, several types of estimators, depending
on the available information. Por periods close to the end of the series, preliminary
estimators have to be used, which will be revised as new observations become available,
untit the final or historical estimator is obtained. Since it seems reasonable that an
agency producing seasonally adjusted data, for example, would like to provide historical
series as precise as possible, we begin by considering (Sections 3 and 4) the historical
estimator.

Several properties of the historical estimator and its associated error are derived.
In particular, it is shown that the crosscovariance-generating function between the es-
timators of the two components is identical to the autocovariance-generating function
of each component estimation error. Thus the admissible decomposition that minimizes
the components estimation error minimizes also the covariance between the two compo-
nent estimators. Given that the components are assumed orthogonal, this feature seems
an additional desirable property of the decomposition that provides the most precise
estimator.

For a given overall ARIMA model, the different admissible decompositions can
be expressed as a function of a parameter o in the unit interval. The two extreme
values, @ = 0 and a = 1, correspond to the two possible canonical decompositions,
each one associated with noninvertibility of one of the components. Section 4 expresses
the variance of the final estimation error as a second-order polynomial in a, where the
coefBcients can be determined from the overall ARIMA model. The decomposition that
yields the most precise component estimators is derived and it is shown that it will
always be a canonical one. Which of the two canonical decompositions it happens to be
depends on the stochastic properties of the series, and a simple algorithm to determine
which component should be made canonical is provided. Heuristically, the rule can be
interpreted as making noninvertible the most stable of the two components (i.e., adding
all noise to the most stochastic component).

In Sections 5 and 6 the results are extended to any preliminary estimator and to
forecasts of the components. The estimation error is, in this case, equal to the sum
of the error in the historical estimator plus the so—called revision error. Since, for an
agency involved in short-term policy, minimizing the error in the measurement of the
signal for the most recent period seems an important feature, special attention is paid
to the error in the concurrent estimator of the components. It is seen how, for all’
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preliminary estimators, the variance of the estimation error is a polynomial of degree 2
in a, with coefficients that are straightforward to derive from the overall ARIMA model;
furthermore, this variance is always minimized at a canonical decomposition.

Which one of the two canonical decompositions it is can be determined from the
following rule, which applies to historical as well as to preliminary estimation: Specify
each component in its canonical form and consider the MMSE estimation filter for the
component at time ¢. Let vy denote the coefficient of z; in this filter. If the component
with smallest vy weight is made canonical, then the estimation error variance (for both
components) is minimized; i.e. all noise is then assigned to the componént with the
largest weight. Thus, if interest centers on having the most precise historical estimator, ¢
denotes the central weight of the WK filter. If, alternatively, the most precise concurrent
estimator is sought, vo denotes the first weight of the one-sided filter. More generally,
if interest centers on minimizing the error of the estimator of the component for time
t, computed at time (¢ + k), then 2y is the weight of z; in the truncated filter (i.e., the
filter that extends up to z:,;).

It will often be the case that the same canonical decomposition minimizes the:
variance of the different types of estimators and, broadly, that decomposition will be
the one with the most stable component made noninvertible. There are, however, cases,
when the components have similar degrees of stability, where the solutions “switch” and,
for example, one of the canonical decompositions yields the most precise final estimator,
while the other one yields the most precise concurrent estimator. Still, the switching of
solutions is seen to happen when the estimation error variances for the two canonical
decompositions are relatively close, and hence the choice matters little.

Three examples are discussed in Section 6. The first one is a “trend-plus-cycle”
model similar to the ones used by economists in business-cycle analysis. The second
example is a quarterly ARIMA model; these two examples illustrate the derivation of
the estimation error variances from the parameters of the “observed” model within the
STsm and the AMB approaches. The third example consists of a class of models that
are often found to approximate reasonably well the stochastic properties of many series:
the so called Airline Model of Box and Jerkins (1970, chapter 9). This example extends
the results in Hillmer (1985), and presents some stylized facts often found in-actual time
series.

1 The Model

We consider the problem of decomposing an observed series z: into two Unobserved
Components, s; and n;, as in
Ty = 8+ e (1.2)

The two components are the output of the linear stochastic processes

¢5(B) 8¢ = 04(B) ax, (1.2.a)
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¢n(B) ny = 0n(B) ant, (1.2b)

where ¢,(B) denotes a finite polynomial in the lag operator B, having all roots on or
outside the unit circle. Letting &, (B) represent the stationary transformation of the
component, we shall also use the representation

¢s(B) = ps(B) 65(B);  ¢n(B) = pn(B) én (B), (1.3)

where @,(B) contains the roots outside the unit circle and 6,(B) contains the unit roots.
Finally, 6, (B) denotes a finite polynomial in B with the roots on or outside the unit
circle. The model consists of equation (1.1)—(1.2) and some additional assumptions.

Assumption 1: The variables a,; and a,, are independent normally distributed white—
noise innovations in the components. [ |

Assumption 1 implies, of course, that the two components are uncorrelated. Impor-
tant examples of the decomposition (1.1) are the “trend + detrended series” decompo-
sition often used in business cycle analysis, where the trend may be a random walk and
the detrended series a low—order stationary process, and the “seasonal component + sea-
sonally adjusted series” decomposition, where the seasonal component is often modeled
as

U(B) st = 65(B) a, (1.4)

with U(B) the nonstationary “seasonal” polynomial U(B) = 1+ B+...+ B™! (7
denotes the number of observations per year), and the seasonally adjusted series is given
by a process of the type:

V¢ ny = 0,(B) ans, (1.5)

with d typically 1 or 2. Since, as the examples illustrate, each component is basically
characterized by its autoregressive (AR) roots, AR roots associated with different fre-
quencies should be allocated to different components. Thus we specify the following
assumption, which also avoids redundant roots in the polynomials of (1.2.a) and (1.2.b).

Assumption 2: The polynomials ¢s(B) and ¢n(B) sharé no root in common. The
same holds true for the polynomials ¢4(B) and 6,(B), and for the polynomials ¢, (B)
and 6,(B). |

Equations (1.1) and (1.2), and Assumptions 1 and 2 imply that the observed series
z; follows the general ARIMA process

¢(B) z; = 6(B) a,. (1.6)
The AR polynomial ¢(B) is given by
¢(B) = ¢5(B) ¢n(B), (1.7)

and hence it can also be factorized as ¢(B) §(B), with @(B) = ©s(B) ¢n(B), and
6(B) = 64(B) 6n(B), so that §(B) denotes the stationarity—inducing transformation for
z;. The Moving Average (MA) part, 6(B) a, is determined by the identity:

0(B) ar = ¢n(B) 65(B) ast + ¢s(B) 8a(B) aps, (1.8)
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and the constraint that the roots of #(B) lie on or outside the unit circle. Although not
strictly needed, for convenience, we shall introduce the following assumption.

Assumption 3: The polynomial 8(B) is invertible. [ |

In the next section we shall see that Assumption 3 implies no loss of generality.
Also without loss of generality, and unless otherwise specified, throughout the paper it
will be assumed that V, = 1, where V; is the variance of g, in (1.6). It should be kept
in mind, thus, that the innovation variances V, and V, will be implicitly expressed as a
fraction of V,. Let F' = B~! denote the forward operator; it will prove useful to define
the inverse (or dual) model of (1.6), given by

8(B) z = ¢(B) as. (1.9)

Under Assumption 3, model (1.9) is stationary, with Autocovariance Generating Func-
tion (ACGF) given by

W(B,F) =3 hi(B + F¥) = n(B)n(F), (1.10)
j=0

where (B) contains the coefficients of the AR expansion of (1.6), that is
(=]
n(B) =§(B)/6(B)=3_ n; B/, (mo=1). (1.11)
=0
Notice that the variance of the inverse process is given by

ho=3" 72
O—Zﬂj- (112)

j=0

2 Identification of the Model

Having observations on z;, model (1.6) can be identified from the data. For the rest of
the discussion, we shall assume that the ARIMA model for z, is known. Given this overall
model, there is obviously an infinite number of ways of decomposing z; as in (1.1)—(1.2)
under Assumptions 1-3.

If the only identification restrictions that are considered are restrictions in the
orders of the polynomials of (1.2), then the necessary and sufficient condition for model
identification is that, for at least one of the components, the order of the AR polynomial
be larger than the order of the MA polynomial; see Hotta (1989). Thus, letting py, Pn, gs,
and g, denote the orders of the polynomials ¢,(B), ¢,(B), 8,(B), and 8,,(B), respectively,
under

Assumption 4a: p, > g5 of Pn > ¢n (or both), [ |
the model consisting of equations (1.1)—(1.2) and Assumptions 1, 2, and 3, is identified.
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Be that as it may, one may question whether zero-coefficient restrictions are the
most adequate ones. To illustrate the point, we consider a simple UC model similar to
the ones used in business cycle analysis (see, for example, Stock and Watson, 1988). The
observed (annual) series is the sum of a trend component, s:, and a detrended series, n,,
where the trend is the random-walk process

V St = Qst, (21'8')
and the detrended series is the stationary ARMA(1, 1) model
(14 .7B) ny = (1 + .2B) ay,. (2.1.b)

(Since (2.1.a) satisfies Assumption 48, for a particular observed series z; = s; + n,
the model would be identified.) Direct inspection of (2.1.b) shows that the detrended
series consists of a stationary cyclical behavior (with period 2) and some random noise.
Assumptions 1-3 are assumed to hold, and the equations in (2.1) imply that the observed
series z, can be seen as the output of the ARIMA (1, 1, 2) process:

(1+.7B) V z, = 6(B) a.. (2.2)

Setting, for our example, V; = 5V,, it is easily found that 6(B) = (1 + .364B — .02552).
For a time series generated by (2.1), Figures la and 1b display the two components,
and Figures 2a and 2b exhibit the spectra of z; and of the two components, which we
shall represent as g.(w), g,(w), and g,(w), with w being the frequency in radians. (To
simplify terminology, “spectrum” will also denote the pseudospectrum of nonstationary
series; see Harvey, 1989.) Figure 2b shows that g,(w) has a minimum for w = , which
is found to be equal to g,(w) = V;/4. It follows that if a white-noise component w,, with
variance V,, in the interval [0, V;/4], is removed from s;: and added to m,, the resulting
components also provide an acceptable decomposition of z:. The only difference would
be that the new s; component would be smoother, while n, would now be noisier, as
evidenced in Figures 1c and 1d for the case V;, = V;/5.

In general, if white noise with variance 0 < V,, < V,/4 is removed from s, and
assigned to m, it is straightforward to find that the new s; and n; components follow
processes of the type:

Vs = (1+6,B) as (2.3.2)
(14 .7B) ny = (1 + 6,B) e, (2-3.b)

For a given model (2.2) for the observed series, different decompositions of the type
(2.3) would provide admissible decompositions that would differ in the way the noise
contained in the series is allocated to the two components.

Consider an analyst interested in whatever is in the series that cannot be attributed
to the trend. He wishes, thus, to remove the trend and nothing but the trend. He will,
consequently, avoid adding noise to the trend component, and would choose the decom-
position for which V, is equal to its maximum value V,/4. (Identification of unobserved
components by using the “minimum extraction” principle was first proposed by Box,
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Hillmer, and Tiso, 1978; and Pierce, 1978.) The spectra of the two components in this
case are given in Figures 2c and 2d, where they are compared to the spectra of the com-
ponents in Figure 1. Since the requirement that it should not be possible to decompose
s; into a smoother component plus white noise implies that g,(n) = 0, and since the
time domain equivalent of this spectral zero is the presence of the factor (1 + B) in the
MA part of the component model, s; will follow the noninvertible model

VS:=(1+B)0.“,

and the model for n; will be as in (2.3.b).

Alternatively, a similar type of reasoning may lead to the transfer of noise from
n, to s;. Assume, for example, that model (2.2) holds for a time series observed with
a twice—a—year frequency. Then model (2.3.b) represents a seasonal component and, if
interest centers on the seasonally adjusted series, one may wish to remove from the series
as little as possible, and hence the chosen decomposition would consist of a noninvertible
seasonal component n;, with g,(0) = 0, and an invertible seasonally adjusted series s;.
As a consequence, the seasonal component would follow the model

(1+.7B)n¢ = (1~ B) an,

and the model for s; would be as in (2.3.a). Therefore, the minimum extraction require-
ment yields two canomical solutions, both of which can be easily justified; each one is
characterized by noninvertibility of one of the two components.

Back to the general case of (1.2), assume, in general, that s; is an invertible and
identified component (i.e., ps > ¢;). Then, a white-noise component can be removed
from s; and assigned to mne. It is easily seen that the new model for s, has p, = g,; thus
we replace Assumption 4a with the more general one

Assumption 4b: p, > g, or pn > gn (or both). [ |

For a given ARIMA model for the observed variable, the class of admissible decomposi-
tions is given by the pair of components s; and n, satisfying (1.1), (1.2), (1.7), (1.8), and
Assumptions 1, 2, 3, and 4b. We require, of course, nonnegative spectra g,(w) and g,(w).
In the general case of an infinite number of admissible decompositions, identification of
a unique model can then be reached with the following assumption:

Assumption 5: For w € [0, 7], either ming,(w) = 0 or mingn(w) =0 (or both). N

Identification is, in this case, obtained by forcing a component to be noninvertible.
Following Box, Hillmer, and Tiao (1978), a noninvertible component will be denoted a
“canonical” component, and the associated decomposition, a canonical decomposition.
Since the spectra of the components cannot be negative, in the two-component case
there will be two canonical decompositions. One of them puts all additive white noise
in the component 7, the other one, in the component s;. Any admissible decomposition
can be seen as something in between, whereby some noise is allocated to n, and some
to s;. Notice that, since no additive noise can be extracted from a noninvertible series,
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if the observed series is noninvertible, the decomposition (if there is one) is necessarily
unique, with all components canonical, sharing the same spectral zero. In this case, no
identification problem arises, and hence, for our purposes, Assumption 3 implies no loss
of generality.

As shown in Hillmer and Tiao (1982), canonical components display some impor-
tant features. In particular, any other admissible component is equal to the canonical one
plus added noise, and hence the canonical requirement makes the component as smooth
as possible. On the negative side, Maravall (1986) shows how canonical components
can produce large revisions in the preliminary estimators of the component. Besides,
the existence of two canonical solutions reflects some basic ambiguity concerning the
desirable properties of a component. It seems reasonable, for example, that, in order to
avoid noise-induced overreaction, the inoneta.ry authority may be interested in a smooth
(noise—free) seasonally adjusted series. On the other hand, it sounds also reasonable
that the analyst wishes to keep in the series everything but seasonality, in which case
the seasonal component would be noise-free. Therefore, both canonical solutions could,
in principle, be rationalized.

Some additional suggestions have been made to overcome uncertainty over which
admissible decomposition should be chosen. For example, given that different admissi-
ble decompositions imply different properties of the estimators, to be on the safe side,
Watson (1987) and Findley (1985) propose to select a “minimax” solution (i.e., the de-
composition that maximizes the MSE of the MMSE estimators). Still, as a general rule,
canonical components (i.e., Assumptions 4b and 5) are used in the AMB approach, while
zero-coefficient restrictions (i.e., Assumption 4a) are used in the STSM approach and in
econometric applications of UC models. Besides its simplicity, the choice may possibly
reflect the tradition in econometrics of identifying models (in particular, simultaneous
equation models) by using zero—coeficient restrictions (see, for example, Theil, 1971).

3 MMSE Estimators and Their Properties

3.1 Optimal Estimators of the Components

We have mentioned that the properties of the component estimator will depend on the
admissible decomposition selected. Our intention is to explore this dependence. In order
to do that, we consider first the case of a complete realization of the process, i.e., the
case of a series 7, with ¢ going from —oo to oo. Let the series be stationary, and write
(1.2) and (1.6) more compactly as

7 = Y(B) ay; 8 = Yy(B) ag; i = Yn(B) ant, (3.1)
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where 9(B) = 6(B)/¢(B), ¥:(B) = 9:(B)/¢5(B), and ¢a(B) = 6,(B)/¢a(B). The

minimum Mean Squared Error (MSE) estimator of s, is given by

U(B) Us(F) |
V(B U(F) ™

where F is the forward operator F = B~!; see Whittle (1963). The symmetric and cen-
tered filter v(B, F) is the so—called Wiener-Kolmogorov (WK) filter. Letting A;(B, F)
denote the ACGF of component 7,

$s=v(B,F)z, =V, (3.2)

AJ(B’F)=¢J(B) ‘wj(F) V‘1 j=s,n,
and Az(B, F) = ¢¥(B) ¥(F), expression (3.2) can be rewritten
% = [As(B, F)/Az(B, F)) 2. (3.3)

In terms of the AR and MA polynomials, after simplification, the WK filter can be
expressed as:

6(B) 65(F) ¢n(B) ¢n (F)
6(B) 6(F)
Expression (3.4) shows that, under Assumption 3 (invertible observed series), the filter
will be convergent, independently of the roots of the AR polynomials. The filter (3.4)
in fact extends to nonstationary series, with unit roots in ¢s(B) and/or ¢,(B); see Bell
(1984), and Maravall (1988). Direct inspection shows that the WK filter (3.4) is simply

the ACGF of the model

YB,F) =V, (3.4)

8(B) 2: = 65(B) ¢n(B) b, (35)

with b, white noise with variance V,. Since 8(B) is invertible, the model is stationary and
its ACGF will converge. The effect on the filter of different admissible decompositions
will show up in the MA part of (3.5), through the polynomial 6,(B) and the variance V.

Unless the model for the series is a pure AR modé¢l, the filter (3.4) will extend
from —oo to oco. Its convergenoé however guarantees that, in practice, it could be ap-
proximated by a finite filter, and it is generally the case that, for the usual series length,
the estimator of the component for the central periods of the series can be safely seen
as generated by the WK filter (3.4). This estimator, obtained with the complete filter,
is often denoted “historical” or “final” estimator; it shall be the one of interest until
Section 5. i

3.2 Covariance Between Estimators

It is a well-known result that minimum MSE estimators of orthogonal components yield
estimators with nonzero crosscovariances. This discrepancy has been the cause of concern
(see, for example, Nerlove, 1964; Granger, 1978; and Garcia Ferrer and Del Hoyo, 1992),
and hence one could argue that another possible identification criterion could be to select,
among the admissible decompositions, the one that minimizes the (lag-0) covariance
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between the estimators. This covariance is easily found from the following result (proofs
of the results not derived in the text are in the Appendix). :

Lemma 1: Let C(B, F) denote the CrossCovariance Generating Function (CcGF) for
the two estimators §; and #,. Then C(B, F') is equal to the ACGF of the model

0(B) z: = 04(B) 6x(B) by, (3.6)

where b, is white noise with variance (V, V;,). n

Lemma 1 implies that C(B, F) is symmetric and convergent. Since model (3.6)
is stationary, all covariances will be finite. The variance of the model yields the lag-0
covariance between §; and 7; this covariance, thus, will always be positive (and hence
the variance of the estimator will always underestimate the variance of the component).
However, the fact that the covariances between §; and 7, are finite implies the following
result.

Lemma 2: When the series z; is nonstationary, the historical estimators §; and 7, are
uncorrelated. B

For nonstationary series (the case of applied interest) minimum MSE estimation of the
components preserves, thus, the orthogonality assumption, and, for example, the state-
ment in Garcia Ferrer and Del Hoyo (1992) that “whereas the theoretical components are
uncorrelated, the estimators will be correlated in general” is only correct for stationary
series. Further, it is easily found from (A.1) and (A.2), and the equivalent expressions
for n;, that, although the estimators §; and #, are uncorrelated, certain linear combina-
tions of them — namely, the stationary transformations &,(B) §; and 6,(B) #: — are
correlated.

It is worth pointing out an interesting feature of the estimators of nonstation-
ary trend and seasonal components. Although both are nonstationary series which,
moreover, cannot be cointegrated (since the unit AR roots are different), they display
stationary crosscovariances. Thus, the two estimators diverge in time, each one with a
nonstationary variance, but their crosscovariances remain constant.

Back to the covariance between the component estimators, model (3.6) shows that
different admissible decomposition would affect its MA part, through 6,(B), 6,.(B), V,
and V,. But before we look at which admissible decomposition minimizes the covariance
between the estimators, let us turn our attention to another possibly desirable feature
of the estimators.

3.3 The Error in the Component Estimator

The error in the UC estimator depends on the particular admissible decomposition se-
lected. Since the data do not discriminate among admissible decompositions, the selec-
tion of a particular one reflects a choice of the analyst. In the absence of a compelling
reason to select a particular noise allocation, why not choose the one that provides the
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most precise estimators? Since the error in §; is equal to that in 7;, minimizing both
estimation errors seems an attractive feature of the selected model.

To see the dependence of the estimation error on the admissible decomposition
chosen, we use the following Lemma, which is an application of Theorem 3 in Pierce

(1979), for the case §.(B) =1 and Vo = 1.

Lemma 3: Let e, denote the estimation error e; = s; — §, = 4, — n;. Then e, can be
seen as the output of the ARMA model

6(B) et = 6,(B) 0,(B) dy, (3.7
where d, is a white noise with variance (V; V,). [ ]

From Lemmas 1 and 3, the following results are trivially obtained.
Lemma 4: The ACGF of e, is equal to the CCGF between 3, and 7is. [ ]

Corollary 1: The admissible decomposition with minimum estimation error of the
components minimizes also the covariance between the two component estimators. B

We turn our attention to the identiflcation of the admissible decomposition that exhibits
those desirable properties.

4 Historical Estimation Error and Admissible De-
compositions

As mentioned in Section 2, each admissible decomposition is characterized by a particular
allocation of the noise to the two components. Let s; and n, denote an admissible
decomposition of z¢; then g.(w) = g,(w) + gn(w). Let, for w € [0, ], V¥ = min g,(w),
and V? = min gn(w). The total amount of “additive” noise in z, that can be distributed
between the components is equal to V, = V# + V;?. Following an approach similar to
Watson (1987), we shall express each admissible decomposition in terms of a parameter a
that reflects the particular noise allocation. Denote by s? and n? the decomposition with
s; canonical and n, with maximum noise, and let g%(w), g8(w), A%(B, F), and A%(B, F)
be the associated spectra and ACGFs of the components. These functions, as well as the
models for the underlying components, can be derived from the ARIMA model for the
observed series. Since any admissible component s¢ is equal to s? plus an amount of
noise with variance in the interval [0, V], any admissible decomposition, s& and ng, can
be expressed as

gWw) =gWw +aV, (4.1a)

2w) = R —a V. (4.1.b)
with & € [0,1]. The two canonical decompositions (one with s; canonical, the other with
canonical n;) can be seen as the two extreme cases & = 0 and & = 1. The time domain
equivalent of (4.1) is given by the relationships

A%(B,F)=AYB,F)+aV, (4.2.2)
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A3(B,F)= A(B, F) - aV, (4.2b)

and, for any o, 4,(B,F) = A%B, F)+ A%(B, F). Our aim is to derive an expression
that relates the variance of the component estimation error, V(ef), to the parameter o.
That variance, we recall, is also the covariance between the two component estimators.

For 0 < a <1 denote the estimators of the components for a particular o by

5 =vy(B,F) (4.3.2)
fig = vp(B, F) zy, (4.3.b)
where the WK filter is (k = s,n): . -
‘ 0 . .
vg(B,F)= Z V,‘c"j (B? + F7).
j=0

Thus 39 and 7Y correspond to the decomposition with canonical s, and §; and 7} to the
one with canonical 7,.

Lemma 5: Let ef = s — §¢ = 7§ — n¢. Then,
V(e?) = V(ed) + (1= 2v50) Vu . — ho V @7, (4.4)

where € is the error in 9, 1/20 is the central weight of the filter v2(B, F), and h, is given
by (1.12). [ |

Lemma 5 expresses the variance of the component estimation error as a second-
order polynomial in o, with coefficients that can be obtained from the “observed” ARIMA
model. Considering that V/(e}) is the variance of model (3.7) and v2, is the variance of
model (3.5), both for the case of a canonical s;, and hg is the variance of the inverse
model (1.9), the three coefficients of (4.4) can be easily computed as the variance of
ARMA models with the AR polynomial always equal to.d(B).

From Lemma 5 it is straightforward to find which admissible decomposition mini-
mizes the variance of the component estimation error:

Lemma 6: For o € [0,1], V(€F) is minimized
(a) ata=0 when2vly+Viho<1,
(b) ata=1 when2Qp+V,ho>1 ]

As a function of a, V(ef) given by (4.4) is a parabola, positive over the interval
[0,1], with a finite maximum for, say, @m. If.am is contained in the interval [0,1], then
either a = 0 or a = 1 may minimize V(e¢); when am, > 1, the minimum will be for
o =0, and when a, < 0, it will be for a = 1. Since am = (1 — 2v24)/2h, V4, it can be
easily checked that the three cases are possible.

Lemma 6 implies that the component estimators with minimum MSE and minimum
crosscovariance are always found at one of the two canonical decompositions. Up to
now, the two components s: and n; have been treated symmetrically. We now break
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this symmetry and denote by s; the component with the largest central weight in the
associated WK filter that provides the canonical component estimator; these weights are
v% and u,‘,,o. Thus, without loss of generality, we assume the following:

Assumption 6a: 0 > v, |

Now it becomes possible to identify which of the two canonical decompositions has
minimum estimation error.

Lerrma 7: Among all admissible decompositions, under Assumption 6a, the historical
estimator MSE is minimized for the decomposition with canonical n;,. [ |

Lemma 7 provides a simple procedure to determine which canonical decomposition
provides minimum component estimation error (and minimum covariance between the
two component estimators). For each of the two components compute the central weight
of the WK filter that yields the estimator of the component in its canonical form. Then,
set as canonical component the one with the smallest weight (i.e., add all noise to the
one with the largest weight). Notice that, from the two canonical specifications, the
central weights of the WK filters can be simply computed as the variance of the ARMA
model (3.5). Three remarks seem worth adding:

(a) Since vf , measures the contribution of observation z, to the component estimator,
the precision of the estimator is maximized by assigning all additive noise to the
component for which that contribution is largest.

(b) In the important application to seasonal adjustment, if s, denotes the seasonal
component and n, the adjusted series, it is often the case that vQ < 2y and
hence the most precise estimates of s; and n, are obtained with a canonical seasonal
component. In these cases, the “minimum extraction” principle used in the AMB
approach to seasonal adjustment provides also the most precise estimators, with
minimum crosscovariance.

(c) While one of the two canonical decompositions always provides the most precise
estimators, the other may or may not yield estimators with maximum Mse. When
am < 0 0r am > 1, then it maximizes V(e¢), and coincides thus with the minimax
solution of Watson (1987). For this solution, of course, the covariance between the
estimators is also maximized.

It is worth noticing that the two opposite criteria (choosing the admissible decom-
position with maximum or with minimum estimation error variance) stem from a
“philosophical” difference. While Watson believes that there is a “true” underly-
ing (unknown) seasonal component model among the set of admissible ones, we
believe that reality does not provide for a particular allocation of noise among
the two components and that this allocation is, in essence, arbitrary. In so far
as unobserved components, such as trend or seasonality, are tools designed by the
analyst to address problems, it makes sense to choose the most precise tool among
the admissible ones.

-19-



(d) Expression (4.4) corresponds to expression (3.9) in Watson (1987). The difference
is due to the fact that Watson considers a fixed filter, while the filter, in our case,
is the optimal one for every value of a. The fact that the filter depends on «
invalidates the derivation in Watson, and expression (4.4) is obtained instead.

5 Preliminary Estimation Error, Revisions, and Ad-
missible Decompositions

Up to now we have considered estimation of the components for an infinite realization of
the series. Since the WK filter converges in both directions, as mentioned in Section 3, it
can be safely truncated and, for most series lengths, the estimator for the central periods
can be seen as the one obtained with the complete filter (the historical or final estimator).
While it seems reasonable that, a data—producing agency wishing to produce historical
series as precise as possible, minimizes the error in the final estimator, it also seems
reasonable that someone involved in short—-term monitoring or policy—making would
seek to minimize the error in the estimator for the most recent periods, in order to avoid
error—induced policy actions (this concern is certainly present in, for example, monetary
policy). Given that for the most recent observation the WK filter cannot be applied, a
preliminary estimator has to be used instead. We proceed to consider the error in this
preliminary estimator.

Assume that only a finite realization of the series is available. Denote this real-
ization by X7 = [z1,Z2,...,Z7], and by zyr the forecast of x, when observations are
available up to and including period T. Then, as shown by Cleveland and Tiao (1976),
the optimal “preliminary” estimator of s; is given by ’

8y = Er st = vs(B, F) 2§, (5.1)

where v(B, F) is the WK filter given by (3.4), and z§. is the series extended with fore-
casts Tryj/7 and backcasts Ti_j/r, j = 1,2,.... As new observations become available,
the forecasts are updated or replaced by the new data and, as a consequence, the esti-
mator of s; will be revised until it becomes the historical estimator, once the filter has
converged. Since the above forecasts and backcasts are linear functions of the elements
of X1, expression (5.1) can be rewritten

Stjt+x = vs(B, F, k) 74, (5.2)

where T' = t+k, v4(B, F, k) denotes the truncated, asymmetric filter, and z, the elements
of X1. We shall assume that the series is long enough for the weights of (5.2) to have
converged in the direction of the past. In the vast majority of practical applications this
is not a restrictive assumption, and it allows us to associate the finite—~sample effect on
the preliminary estimator with the unavailability of future observations. We can then
write the error in the preliminary estimator, dyr = s, — §/7 as
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dyr = e + Ty,

where e; = s; — §; is the error in the final estimator §; (analysed in Section 3.3), and
Tyr = 5 — Syt is the “revision error” in the preliminary estimator. Under Assumptions
1-3, the two errors, e, and 7,7, are independent (see Pierce, 1980), and this will be true
for any admissible decomposition. Rewrite expression (A.1) as

8= Es(BvF) a = ...+ Es,—l -3 + Es,ﬂ as + §s.l Q1 +...+ Es.T—t ar +
+sT—tr Or1 + ... = Es(B)_ ar + Es(F)+ ar+1- (5-3)

The weights £, ; are easily determined from the identity.
¢s(B) O(F) &(B, F) = V; 84(B) 65(F) ¢n(F). (5.4)

Under suitable conditions concerning the starting values (see Bell, 1984), the estimator
Syr can be obtained by taking conditional expectations at time T in (5.3), yielding

étlT = 6,(3)_ ar, (55)

since Prar;; = 0 for j > 1. Substracting (5.5) from (5.3), therevision in the concurrent
estimator can be expressed as

o0
ryr =&(F) Y arm = D) &jasi, (5.6)
j=T—t41
which involves only the coefficients of F#, j > 1, in (5.4) and hence is a convergent
filter that can be truncated after a finite number of terms. Expression (5.6), properly
truncated, can then be used to compute the ACGF of 7yr; in particular

M
Virgr) = Y. &4, (5.7)
J=T—t41

where M is the truncation point.

Up to now, the discussion in this section applies equally to preliminary estimators,
for which T' > ¢, and to forecasts of the component, for which T < t. We proceed to
consider first preliminary estimation and, for notational convenience, set T' =t + k(k =
0,1,2,...). For the admissible decomposition associated with ¢, z: = s& + ng, the
components preliminary estimation error and revision error can be expressed as:

1 @ aa _a a
ek = St — Shesx = €8 + Toesx (5.8)

o
THek = D €2y, (5.9)
jektl

respectively. In the previous section we looked at the dependence of eff on a. Now we
look at the dependence of the revision error, 7§,,,, and of the total error, dgje k) OD .
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From (1.11), (3.4), and (5.4) it is seen that
n(B) & (B, F) = vg(B, F), (5.10.a)

or, since 7 (B) = 1/4(B),
§(B, F) = v (B, F) 4(B). (5.10.b)
Equating coefficients of B? in (5.10.a), it is obtained that

(=]
vio =3 £ 5 (5.11)

=0
where v% is the coefficient of z, in the estimator (4.3.a). Denote by »2o(k) and by ho(k)
thesum of the first (k+1) terms in ther.h.s. of (5.11) and of (1.12), respectively. Thus,

veolk) = Egot+mEait . +m oy, (5-12)
ho(k) = 1+nd+...+7F (5.13)

and the following lemma is proved in the Appendix.
Lemma 8: The variance of the revision error in the preliminary estimator §§’|‘t+k, is

given by

V(rfe) = V(rhs) +2 120 = 20(k)] Var+ [ho — ho(R)] Vi o, (514)
where the superscript 0 denotes the decomposition with s, canonical. ]

As a result, the variance of the revision in a preliminary estimator is given by a
polynomial in a of degree 2, where the coefficients can be derived from the overall ARIMA
model. From Lemma 8, the following results are obtained.

Lemma 9: For a € [0,1], V(ry,,,) is maximized:
() at a=0 when 200+ (hg— ho(k)) Vi < 2100(k);
(b) at a=1 when 200+ (ho — ho(k)) Vi = 2 00(k). |

Corollary 2: The variance of the revision error in the preliminary estimator (of s, and
of n,) is maximized at one of the two canonical decompositions. [ ]

Corollary 2 generalizes the result in Maravall (1986), and shows an unpleasant
feature of the canonical decompositions: they may imply relatively large revisions in
the concurrent estimator of the signal. However, since V(&) is a convex parabole, it
follows that, as was the case for the error in the historical estimator, while one of the
two canonical decompositions maximizes the variance of the revision error, it may well
be that the other canonical decomposition minimizes that variance. This will happen
when am, the value of a that minimizes (5.14), falls outside the interval [0,1].

Be that as it may, the main concern is not the revision error per se, but the total
error in the preliminary estimator of the signal The dependence of the variance of
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this error on the particular admissible decomposition selected is shown in the following
lemma, obtained by using expressions (4.4) and (5.14) in V/(d§,,,) = V(€f) + V(rgjess)-

Lemma 10: The variance of the error in the preliminary estimator $g;+& is given by
the second-degree polynomial in a

V(dferr) = V(diers) + (1 = 2050(k)) Va @ — ho(k) Vi o7, (5.15)
where ¢, is the error that corresponds to the canonical signal n

Lemma 10 allows us to determine which admissible decomposition minimizes the
error in the preliminary estimator.

Lemma 11: For a € [0,1], V(d],,,) is minimized

(a) at @a=0 when 2wo(k)+ho(k) V<1
(b) at a=1 when 2w04(k)+ ho(k) Vi, > 1. ]

Corollary 3: The variance of the error in the preliminary estimator of the signal is
always minimized at one of the two canonical decompositions. [ |

As a consequence, when the effects of the historical estimation error and of the revi-
sion error are aggregated, it still remains true that a canonical specification yields the
most precise preliminary estimators of the components. Which one of the two canoni-
cal decompositions displays that property can be determined through Lemma 11 or, as
was done in Section 4, by breaking the symmetric treatment of the two components.
Proceeding in this way, it is possible to express the general result in a very simple way:

For a particular admissible decomposition, rewrite expression (5.2) as
$erk =ve (B F.K) ze, . (5.16)

so that the decomposition with s; canonical yields the estimators &), and 7J),,, while
that with 7, canonical yields 5}“ +« and 7, ., It will be convenient to consider the filter
that yields the preliminary estimator of u. given by (A.5), that is,

ﬁt|t+k =l (Br F‘ k) Iy, (517)

where u; ~ niid (0, V). The parameters v2(k) and ho(k), defined by (5.12) and (5.13),
turn out to have a simple interpretation in terms of the filters that provide the preliminary
estimators of the components, as shown by the following lemma.

Lemma 12:
(a) 120(k) is the weight of B° in the filter v2(B, F,k).
(b)  ho(k) is the weight of BO in the filter vy(B, F, k). |

As before, without loss of generality, denote by s, the component with the largest
weight for z: in the filter that provides the preliminary estimator of the component in
its canonical form, i.e.:
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Assumption 6b: 0(k) > v 4(k). |

Lemma 13: Among all admissible decompositions, under Assuriiption 6b, the most
precise preliminary estimators are obtained for the decomposition with canonical ;. B

From Lemma 13, the decomposition with the most precise estimators of the com-
ponents is straightforward to obtain.

Corollary 4: Let (1.1) and (1.2) represent the admissible decompositions of a given
ARIMA model under Assumptions 1-3. To select the decomposition with smallest MSE
in a preliminary estimator of s; and n,,

a) compute the weight of z, in the two filters that provide the preliminary estimators
of the components specified in their canonical form;

b) choose the canonical decomposition with canonical component the one with the
smallest weight. [ |

Since when k — oo, from (5.12) and (5.13), v24(k) — v9, and ho(k) — ho,
expression (5.15) becomes then (4.4), in agreement with the fact that, for & — oo,
the preliminary estimator becomes the historical one. A particular case of considerable
importance is when k£ = 0. The associated estimator, S, is denoted the “concurrent”
estimator. Obviously, to use the most precise concurrent estimator (i.e., the estimator of
the signal for the most recent period) could be a reasonable choice for an agency involved
in short-term economic policy and monitoring.

By setting k =0 in (5.12) and (5.13), it is seen that ho(0) = 1, and v¢4(0) = £2,.
Expression (5.15) becomes

V(dglrc) = V(d?p) +(1- 252,0) Ve — V3 0'2’

Assumption 6b becomes; &2 026 ,1,,0, and the decomposition with most precise estimators
is the one that sets n, canonical, and adds all noise to s;. As was the case with historical
estimation, while one of the two canonical decompositions always minimizes the variance
of the error in the preliminary estimator, the other canonical decomposition may or may
not maximize that variance. It will maximize the variance when a,, the value of o
that maximizes the function (5.15), falls outside the interval [0,1]. From (5.15) it is
easily seen that a will fall outside the unit interval when v24(k) is outside the interval
{.6 — ho(k) V4, .5]; in this case the two canonical decompositions provide the most and
the least precise estimators.

Although historical and preliminary estimators have minimum MSE when one of
the two canonical specifications is employed, the canonical specification may well not be
the same for different estimators. Thus, for example, there are models, as we shall see
in the next section, for which the historical seasonally adjusted series is best estimated
with a canonical seasonal component, while the concurrent seasonally adjusted series is
best estimated with a canonical trend. The switching of solutions is due to the fact that
Assumption 6b may imply that, for different values of k, different components may have
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the largest v3(k) weight. Focussing attention on historical and concurrent estimation,
from Lemmas 6 and 11, the following corollary is immediately obtained.

Corollary 5: Under Assumption 6a, when £ < (1 — V;)/2, the historical estimation
error is minimized with a canonical n, and the concurrent estimation error is minimized
with a canonical s, Otherwise, n, canonical minimizes both types of errors.

Under Assumption 6b (with k = 0), replacing £% with %, and V, with ko V, in the
above inequality, the same result holds. |

The possible switching of solutions is an inconvenient feature since, in practice,
it could mean that agencies producing historical series and agencies involved in short—
term policy would use different seasonally adjusted series. Perhaps the most sensible
procedure would be, in the case of switching solutions, to publish the most precise
historical estimator, and use the most precise concurrent estimator for internal short—
term policy making. In any event, as will be seen in the next section, the switching
of solutions tends to occur when the difference between the two solutions is small, and
hence the inconvenience is minor.

6 Forecasts

Since any admissible component can be expressed as the sum of the canonical compo-
nent plus an orthogonal white-noise component (with variance a V;,), the forecast of
the component will be that of the canonical one plus the forecast of orthogonal white
noise. Since the latter will always be zero, it follows that, although different admissible
decompositions will provide different historical and preliminary estimators, they will all
provide the same forecasts. The standard errors of these forecasts, however, will differ:
obviously, they will become larger as a V,, increases. Trivially, thus, the decomposition
_that minimizes the standard error of the component forecast is that with the component
itself canonical. Contrary to the case of estimation errors in current or past signals,
the forecasting errors of sy and n{ are not the same. The minimum variance forecast
error of s is reached at the canonical decomposition with a = 0, while that of ng at
the canonical decomposition with @ = 1. There is not an admissible decomposition that
simultaneously minimizes the forecasting error variance of s; and n,. Still, if forecasts
are the estimators of interest, the selection of an admissible decomposition is not a very
relevant issue, since all decompositions yield identical forecasts.

7 Examples

7.1 Trend—plus—Cycle Model

We begin with the same example used to illustrate identification in Section 2. The mode
is that of equation (2.2) with 8(B) = (1 + .364B — .025B2), and accepts a “trend-plus-
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cycle” decomposition, where the admissible decompositions are given by components of
the type (2.3). The identity (1.8) becomes:

(1 + 364B — .025B%) a; = (1 +.7B)(1+ 6,B) as + (1 — B) 1+ 6,B) an, (7.1

Since (7.1) is an identity among three MA(2) processes, the associated system of co-
variance equations consists of 3 equations (one for the variance, and one for each of the
lag-1 and lag-2 covariances). The unknowns are the 4 parameters 6, 6,, V;, and V,
and hence (2.3) is not identified.

As seen before, an easy way to identify the component models is by adding the
zero-coefficient restriction 6, = 0, which yields of course the decomposition (2.1), with
V, = 5V, = .621 (model (2.2) is standardized by setting V, = 1). From this initial
decomposition, it is found that g,(w) = V,/2(1—cosw), so that for w € [0, 7}, min g,(w) =
gs(m) = V,/4 = 155. Similarly, gn(w) = V5(1.04 +.4cosw)/(1.49+ 1.4cosw), and hence
min gn(w) = gn(0) = .062. Since the amount of additive noise that can be exchanged
between the components is the sum of these two minima, V,, = .217.

Starting from the decomposition (2.1), if we substract from g,(w). its minimum

.155, the resulting spectra can be factorized to obtain the model for the canonical signal

(for a simple algorithm to factorize a spectrum see Maravall and Mathis, 1994.) This
model is found to be

Vs!=(1+B)al,  V2=.155. (7.2.8)

Since the noise removed from s, is added to n,, factorizing the spectrum (gn(w) + .155)
yields the model for the component n?, associated with the canonical s?; namely.

(1+.7B)ny = (1 + 443B)al, V2 =.30L (7.2.b)

From models (2.2) and (7.2), expressions (3.7), (3.5), and (1.9) can be used to
compute the variance of the estimation error. The variance V(e?), the central weight
of the WK filter for 30, 124, and the coefficient ho of Lemma 5 are the variances of the
processes

6(B)z, = (1+B)(1— .443B)b, Vo=V V? = 047,
8(B)z = (1+B)(1+.7B)b;, Vy = V2 =155,
6(B)z = (1+.7B)(1— B)b,, V=Ve=1,

respectively, where 6(B) = (1 +.364B — .025B?) in all cases. This yields V(e}) = .101,
10, = .441, hy = 1.653, and, using (4.4), for any admissible decomposition

V(ed) = .101 + .026c — .078a2. (7-3)

The historical estimation error variance is seen to be minimized for a = 1, that
is, for the decomposition with canonical n,, in which case V(e}) = .049. The maximum
value of V'(e2) is reached for a,, = .164, an interior point of the interval [0; 1]; therefore,
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the other canonical, decomposition (7.2), is not, in this case, a minimax solution. That
the decomposition with minimum estimation error is the one with canonical n; can also
be found through Lemma 7: The decomposition with canonical n, is found by removing
mingn(w) = 062 from gn(w), and adding it to g,(w) in the initial decomposition (2.1).
Factorizing the resulting spectra yields the models

Vsl =(1-.084)a}, V! =739,
(1+.7B)n! =(1- B)ad}, V.l =018

Proceeding as before, u,ll_o is the variance of the model
6(B)z=(1-B)*k, V=V, =018,

equal to .200. Thus, since 2%y = .441 > 4} ; = .200, Assumption 6a holds and Lemma 7
can be directly applied. For this example, thus, the MSE of the historical estimators of
the two components are minimized when the cycle is made canonical. (Notice that, if x;
is a series observed every 6 months, the component 7, represents a seasonal component.
The most precise estimator of the seasonally adjusted series would then be obtained by
removing a canonical seasonal component.)

Concerning preliminary estimation, we focuss on the concurrent estimator and its
one—period revision. In order to obtain the error variances for any admissible decompo-
sition, from (5.15), we need the parameters V(d§,.,), ¢20(k), and ho(k), for k = 0, 1.
The first parameter V(d?lt +x) i equal to the sum of V/(e)), already computed, plus
V(r?" +x), Which can be computed through (5.7). For this we need the coefficients in F7,
j=0,1,..., M of the filter £)(B, F), given by (5.4). For this example,

o (1+B)(A+F)(1+.7F)
§&(B,F) =V} (1= B) (1 + -364F — 025F?)

= V2 n(B, F). (7.4)

In order to express the filter n(B, F) as the sum of a filter in B and a filter in F, we

first write the numerator and denominator of 7(B,F) as (1 + B) (.7 + 1.7B + B?) F?

and (1 — B) (—.025 +.364B+ B?) F?, respectively, and then obtain the partial fractions
decomposition: Bt g

Co ¢+ C3

"B F)= {5+ Tom+ 3648+ BF

The coefficients co, c1, ¢o, and c3 are determined by removing denominators in

(7.5), and equating coefficients of B%, B, B?, and B?® in the left- and right-hand—

side of the resulting identity. This yields a linear system of equations with solution

co = 5078, c; = .827, ¢ = 1.378, and ¢3 = —1. The filter (B, F) can then be

expressed as 7(B, F) = n7(B) + 77 (F), where n7(B) = 5.078 (1 ~ B)™", and n*(F) =
(=1 + 1.378F + .827F?) (1 + .364F — .025F2)"!. Multiplying by V0, it is found that

(7.5)

£, = .788, i <0, £ = 633,
&, = 270, £ =02, £ = —003,
£, = 002, £5=-001, £ ~0, j>5.
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Table 1: TREND-PLUS-CYCLE EXAMPLE: Estimation Error Variance

Concurrent | One-period Final
Estimator Revision | Estimator

canonical
seasonal component 175 103 101
(a=0)
canonical seasonally
adjusted series 070 .055 .049
(a=1)

Expression (5.7) yields V(rJ},) = .074, and hence V(d,) = V(e{) + V(rf,) = .175.
For the one-period revision of the concurrent estimator, since V(df) = V(d}),,) +(£9,)%,
it follows that V/(dj,,,) = .103. The coefficients ho(k) are found through (5.13), with
#n(B) = (1 +.713B)V/6(B). In particular 7y = 1, m = —.664, and hence ho(0) =
1, h(1) = 1.441. Finally, from (5.12), v2,(0) = .633, and v2o(1) = .453. Replacing
the coefficients of @ in (5.15) with their computed values, the estimation error of the
concurrent estimator and of its one-period revision, for any admissible decomposition,
are equal to

V(dg) = .175— 057a — 047d?, (7.6)
V(@) = 103 +.020a — .068a> 7.7

Expression (5.14) provides also the variance of the revision error; for the concurrent
estimator it is found equal to

V(rg,) = 074 — 083a + .031a>. (7.8)

The four variances (7.3), (7.6), (7.7), and (7.8) are represented in Figure 3. For
this example, consideration of different estimators does not produce any switching of
solutions, and the specification with canonical n,(c = 1) always minimizes the estimation
error variance. (It is straightforward to find that €3, = .150 < £0, = .633, and hence the
conditions of Assumptions 6a and 6b are both met.) The variances of the concurrent,
one-period revision, and final estimation errors are given in Table 1. The use of a
canonical n, component instead of a canonical s, cuts in less than half the variance of
the error, a nonnegligible gain in precision.

7.2 Quarterly ARIMA Model

We consider the model
1-BYz,=(1-.5B)a, (7.9)
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which is the same example used for illustration by Kohn and Ansley (1986) and Gémez
and Maravall (1994). The AR part of (7.9) can be rewritten (1 — B%) = VU, where
U = 1+ B+ B2+ B3, and hence the model can be decomposed into a seasonal component,
sy and a seasonally adjusted series, n;, having models of the type

Us: 0s(B) ay
Vnt 0"(3) Cnt,

where, under Assumption 4b, 6,(B) and 8,(B) are, in general, of order 3 and 1, respec-
tively. The identity (1.8) is now given by

(1— 5B)a; = (1— B) 0,(B) ast + U 6n(B) ans (7.10)

and there will be, in general, 5 covariance equations associated with this identity. Since
there are 6 unknowns (81, 852, 853, 0, Vs and V;,), the model is not identified. Proceeding
as before, we start with an initial decomposition identified with the use of zero—coefficient
restrictions. Restricting to 2 the order of §,(B) and to 0 that of §,(B), the system of
covariance equations has now 4 equations and 4 unknowns (8,1, 852, Vs, V). The system,
however, is highly nonlinear and a more efficient way to proceed is the following.

Setting 04(B) = (1 + 0,18 + 042B?) and ,(B) = 1, the Fourier transform of the
identity between the ACGF of the left— and right-hand-side of (7.10) yields

125 —cosw .= (go+ g1 cosw + g2 cos2w) (2 — 2cosw) + (4 + 6cos w +
+ 4c0s2w + 2 cos 3w) Vi, (7.11)

where go = (1 + 6% +60%) Vi, 91 = 0:1(1 + 643) V,, and g, = 0, V;. Using the identity
2 cos (jw) cosw = cos (j—1)w+cos (j+1) w, operating in (7.11), and equating coefficients
in cos (jw), j = 0,1,2,3, a linear system of equations is obtained, with solution go = .656,
g1 = 125, g, = .031, and V,, = .016. Therefore, the initial decomposition is given by

) = 656 + .125cosw + .031 cos2w
95\%) = 4 ¥ 6 cosw + 4 cos2w + 2cosdw’

(712.a)

gn(w) = .016/(2 - 2 cosw). (7.12.b)

From these spectra it is found that, for w € [0,1], min gs(w) = g,(0) = .051, and
min gn(w) = gn(v) = .004. Therefore, V;, = g4(0) + gn(7) = .055.

To obtain the canonical decomposition for & = 0 (i.e., the decomposition with
canonical seasonal), one simply needs to substract g,(0) from (7.1:2.a). Factorizing the
spectrum obtained, the model for the canonical s; component is found to be given by

Us?=(1-.501B — 3428 — 156B%a),  V?= 325 (7.13.a)
Adding, in turn, g,(0) to (5.6.b) and factorizing the resulting spectrum yields the model

for n:
Vnl=(1-.578B)al, V. =.088. (7.13.b)
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We can now compute V(e), Vgo, and hg of Lemma 5 as the variances of the models

(1-.5B)z,= (1 —501B — .342B% — 156 B%) (1 — .578B) b,,Vs = V2 V,? = 029,
(L - 5B)z,=(1-501B — .342B? — 156B%) (1 — B)b;, V= V° = .325,
(1-.5B)z = (1~- BY)b, Vi=V,=1,

which yields V(e¥) = .042, v% = .701, and ko = 2.5. Since 2v% + Vo ho = 1.54 > 1,
according to Lemma 6 the decomposition with minimum estimation error variance is
that with a canonical 7, component (o = 1). This is easily confirmed by the expression
for V(eg), from (4.4) equal to

V(e$) = .042 — 022a — 00802, (7.14)

in the interval & € [0,1}. The minimum is reached for V(e}) = .013. Notice that, in
this case, the maximum of V(e?) is reached at am < 0, and hence (s?, n?) represents
the decomposition with the largest error variance in the component estimator; i.e., the
minimax solution.

The model for the canonical n, component is found by removing from (7.12.b) the
constant ming,(w) = g,(m) = 004 and factorizing the resulting spectrum; the model
is found to be Vn}! = (1+ B)al,, V' =.004. According to (3.5), u,{o is equal to the
variance of the model (1 — .5B)2z; = (1+ B)Ub,, V, = .004, so that v}, = .162. Since

v}, Assumption 6a is satisfied and Lemma 7 confirms that the decomposition
with %, canonical provides the most precise component estimators. Notice that, while in
the first example, these estimators are obtained with a canonical seasonal (or cyclical)
component, in the second example they are obtained with a canonical trend. (It can be
seen that the result still holds if # = .5 in (7.9) is replaced by any invertible value of 6.)

In order to obtain the variances of the preliminary estimation error,
V (d§e+s) and of the revision error, V(r{,,,), we also need the parameters V(rdere):
V(d§44) ¥90(k), and ho(k) of Lemmas 8 and 10. As in the previous example, we
consider the concurrent estimator and its one-period revision. The variance V/(dQ,,)
for k = 0,1 are obtained from the sum V/(ef) + V(). ), where the first term has al-
ready been computed, and the second term is found using (5.7), once the coefficients
in Fi(j > 0) of £€2(B,F) have been obtained. These &-coefficients can be obtained as
follows. As in the first example, write £9(B,F') = VOn(B, F'), with

w-[22] [25457),

where #%(B) and 8(B) denote the MA polynomials in (7.13.a) and (7.9), respectively.
Then 7(B, F) can be rewritten as

(B, F) = % [0'(3) f}(gl)g()l - B)] : 2 (7.15)

where §(B) denotes 8(B-!) as a function of B (i.e. if§(B)=1—.5B,8(B) = —.5+ B).
Using a partial fraction expansion, the expression in bracketsin (7.15) can be decomposed
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as in

«(B) |, d(B)
U 6(B)’
where ¢(B) and d(B) are of degree 2 and 4, respectively. Therefore,
_psC(B)  dF) s

Shifting forward by 3 periods the coefficients of ¢i(B), adding them to the coefficients
of di(F), and multiplying by V. (given by (7.13.a)), the coefficients of £%(B, F) are
obtained. For our purposes, only the weights in FJ, j > 0, are of interest, namely
€9 = 824, €9, = —.135, €2, = —.099, &% = —.065, £% = 018, &5 = .009, &% = .005,
€% = 002, §% = .001, £ ~ 0 (i > 8). Using expression (5.7), V(rg,) = .033, and
hence V(d}),) = V(ef) + V(r{,,) = 075. Further, V(dQ.,,) = V(dj,) ~ (€7,)* = .060.
Finally, the weights my and m; are obtained from n(B) = (1 — B*)(1 — .5B)"!, which
yields mo = 1 and m = .5. From (5.12) and (5.13), the parameters 24(k) and ho(k) can
now be computed, and Lemmas 8 and 10 yield

V(rs,) 033 — 014c + 0050
v(dy,) .075 ~ 036a — .003a?
V(d§es,) = -060—.028c —.004a.

Il

Figure 4 plots these variances in the admissible range o € [0,1], together with
(7.14). It is seen how the canonical decomposition with n; canonical (o = 1) minimizes all
estimation errors, while the decomposition with canonical seasonal component maximizes
them. (Again, this result is valid for any invertible value of 8 in (7.9).) Table 2 presents
the variances of the errors in the concurrent, 1-period revision, and final estimators of
the components. As in the previous example, there is a large gain in the precision of
the component estimators when moving from the canonical decomposition with o = 0
to the one with a = 1. Since the two canonical decompositions represent the maximum
and minimum values of the estimation error variance, they are bounds for the estimation
error variance associated with any other admissible decomposition. Finally, compared
to the first example, the revision between the concurrent and final estimator now lasts
longer: the first—period revision accounts for roughly 40% of the total revision.

7.3 The “Airline Model”

We consider a class of models, appropriate for monthly or quarterly series, that display
trend and seasonality. The model is given by the multiplicative ARIMA expression

VV,z,=(1+6,B)(1+6,B)a, (7.16)

where 7 is the number of observations per year and, as before, V, = 1. Following the
work of Box and Jenkins (1970), model (7.16) is often referred to as the “Airline Model”.
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Table 2: QUARTERLY ARIMA EXAMPLE: Estimation Error Variance

Concurrent | One-period Final
Estimator Revision | Estimator

canonical
seasonal component 075 .060 042
(a=0)
canonical seasonally
adjusted series .037 .028 .013
(a=1)

On the one hand, it is often encountered in practice; on the other hand, it provides a
convenient reference example, since the parameters #; and 6, are directly related to
the stability of the trend and of the seasonal component. In particular, a value of the
parameter 6; (or 8,) close to —1 indicates the presence of a stable trend (or seasonal)
component. For —1 < 6; < 1 and -1 < 0, < 6*, where 6* is a small positive value (see
Figure 6), the model accepts a decomposition of the type (A.5); see Hillmer and Tiao
(1982). If the two components decomposition is considered, as in (1.1), with s, denoting
the seasonal component and n, the seasonally adjusted series, then, for an admissible
decomposition, the components follow models of the type

Usf =03(B)ag;  Vni =63(B)ag,

where 62(B) and 6%(B) are, in general, polynomials in B of order 7—1 and 2, respectively.

We have seen earlier that the component estimators with minimum MSE are always
obtained with one of the two canonical specifications. Tables 3 and 4 present the final and
concurrent estimation error variance associated with the two canonical decompositions,
for 7 = 12, and for different values of 6, and 6, within the admissible region. For
both types of errors, the variance is large for models whose spectra are dominated by a
very stochastic trend (values of ) close to 1). On the other hand, the estimation error
variance is small when the model contains relatively stable components.

An interesting result from Tables 3 and 4 is that, when the error variance is large,
the difference between the two canonical decompositions is relatively small; in that case,
which canonical decomposition (and more generally, which admissible decomposition)
is chosen has little effect on the precision of the estimator. On the contrary, when the
error vanance is small, the difference between the two decompositions becomes more
pronounced.

Comparing Tables 3 and 4, it is further seen that the variance of the final estimation
error accounts for (roughly) between 1/3 and 1/2 of the variance of the concurrent
estimation error; the revision error is, thus, typically larger than the final estimation
error.
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Table 3: AIRLINE MODEL: Variance of Error in Final Estimator

Theta(1) | Model 5] Theta(12) = 0 | Theta(12) = -. 12) = -5 | Theta(12) = -.75
Canoni
.75 8¢t 410 .504 436 259
Canonical
ne .407 .504 439 267
Canonical
.50 8¢ .308 377 327 195
Canonical -
ne .300 .376 337 .220
Canonical
.25 5¢ 226 274 239 144
Canonical
ne .210 271 .255 190
Canonical
0 8¢ 164 197 173 .106
Canonical
ne .138 .186 .191 .168
Canonical
-.25 8¢ 121 143 129 .081
Canonical
ne .082 119 - 139 146
Canonical
-.50 8¢ .096 113 .106 070
Canonical
ne .042 .070 095 118
Canonical
-.75 8¢ 077 118 116 .07
Canonical
ne .019 036 .054 074

8¢: seasonal component
n¢: nonseasonal component

Table 4 AIRLINE MODEL: Variance of Error in Concurrent Estimator

Theta{1) | Model Spec. | Theta(12) = 0 | Theta(12) = -.25 | Theta{12) = -.5 | Theta(12) = -.75
Canonical ;
75 8t 1.257 1.151 .905 521
Canonical
ne 1.261 1.157 913 532
50 8t 956 873 685 .393
Canonical
e .964 .888 .710 433
“Canonical
.25 8¢ 699 .641 508 292
Canonical
ne .710 .665 .551 .369
Canonical
0 8¢ 491 .458 .367 215
Canonical
ne .498 483 426 327
Canonical r
.25 8¢ 333 323 269 164
Canonical
ne 326 .336 324 292
Canonical
-.50 st 228 239 214 139
Canonical
ne 193 217 234 244
Canonical
=75 8¢ 149 .2058 2207 143
Canonical
ny .097 120 141 161

8¢: seasonal component
ng¢: nonseasonal component

-33-



Table 5: AIRLINE MODEL: Estimation Error Variance

Concurrent | 12—-period | Final
Estimator | Revision | Estimator
canonical
seasonal component | 263 . .153 125
(a=0)
canonical seasonally
adjusted series © 293 124 .116
(@=1)
Using, as an example, §; = —.34 and 62 = —.42, the parameters of expressions

(4.4), (5.14), and (5.15) for the decomposition with a canonical seasonal component, can
be derived from the overall ARIMA model in & manner similar to that illustrated in-the
two previous examples. For an admissible decomposition, the variances of the errors can
be expressed as

) = .138—.018x + .057a®
V(dy) = 263+ .08la — .051a”
) 153 + .065a — .094a?
) = .125+ .099a — .108a?,

and they are represented in Figure 5. This example illustrates a case of “switching
solutions”: while the final estimation error is minimized with the decomposition with
canonical seasonally adjusted series, the concurrent estimation error is minimized with
the decomposition with a canonical seasonal component. Still, as seen in Table 5, the dif-
ference between the errors associated with the two canonical decompositions is relatively
small, in particular for the final estimation error case.

For the monthly and quarterly Airline Model, Figure 6 displays the lines that sepa-
rate the regions of the admissible parameter space where a canonical seasonal minimizes
the final and concurrent estimation error, from that where the minimum is achieved with
a canonical seasonally adjusted series. The region where a canonical seasonal component
provides the most precise estimators is larger for the concurrent estimation error, and the
area between the two lines represents the region of switching solutions. What is clearly
seen in Figure 6 is that stable trends imply the use of a canonical seasonally adjusted
series (i.e., of a canonical trend), while stable seasonals imply the use of a canonical
seasonal component. This was to be expected from Assumption 6b and Lemma 10, since
more stable components will have smaller central weights in the corresponding WK filter.
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Appendix

Proof of Lemma 1: Combining (3.4), (1.6), and (1.7), it is possible to express the estimator
3, in terms of the innovations a; of the model for the observed series. After simplification, it is
found that

bs(B) 8 = 05(B) as(F) ay, (A)

where o;(F) is the (convergent) forward filter

05(F) ¢n(F)
as(F) =V, ————. A.2
(F) = v, 2 (a2)
An equivalent expression is found for 7; by simply interchanging the subindices s and n.
Combining the two expressions and cancelling common factors, it is obtained that

85(B) 6n(B) 85(F) (F)
6(B) 6(F) '

C(B,F)=(V, V) (A3)

which is the ACGF of model (3.6). [ |
Proof of Lemma 5: From Lemma 4, ACGF (ef) = CCGF (s%, ng). Since the latter can be
expressed as (AS(B,F) A%(B,F))/Az(B,F), considering (4.2),
Accr (¢f) = [A%B, F) + a V| [AXB, F) - a V] [4:(B,F)]™ = AY(B, F)
AY(B, F)/Az(B, F)+ [1 - 24%(B,F)/ A(B,F)| Vua~[/A:(B,P)VZ o®.  (A.4)

Equating constant terms in the identity (A.4) directly yields (4.4). [ ]

Proof of Lemnma 6: Expression (4.4) implies that V(e$) is a concave function of a. It
follows that, within the interval 0 < o < 1, the minimum of V(ef) will always be at one
of the two boundaries. Since V(e}) — V(ef) = V,, (1 — 2!/3'0) - V2 ho, under condition (a),
V(e%) > V(e?) and a = 0 will provide the minimum,; trivially, @ = 1 provides the minimum
otherwise.

When 209, + Vi, ho = 1, then V(€)) = V(e}), and both canonical solutions provide the
same estimation MSE, and provide thus two minima for V(e$), within the admissible range for
a. | |

Proof of Lemnma 7: The series z: can always be decomposed as in
zt =50+ n} +ue, ’ (A.5)

where s? and n} are the two canonical components, and . is white noise with variance Vi
The WK filter for , is given by

#(B) ¢(F)
4(B) 6(F)

equal thus to the ACGF of the inverse model (1.10), scaled by Vu. It follows that Vi hy is the
central coefficient of the WK filter for u;. Therefore,

(B, F) =V, =V, w(B) w(F), (A-6)

vio =00+ Vuho (A7)
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is the central weight of the WK filter associated with the decomposition that assigns all white
noise to s; (i.e., with the decomposition with ns canonical). From Assumption 6a, lvgo > u,llyo
or, adding vy + V,ho to both sides of the inequality,

2000 + Vuho 2 va o+ vag (A.8)

where use has been made of (A.7). From z: = 7} +3}, the r.h.s. of (A.8) must equal one, hence
we are in case (b) of Lemma 6. (When Assumption (6a), and hence (A.8), holds as an equality,

then the two canonical decompositions provide two identical minima of V(ef)-) [ ]
Proof of Lemma 8: From (3.2), (3.3), and (4.2.3),
V?(va) = Ag(B’F)/AZ(va)=

]

[Ag(B»F) +a Vu]/A:z(B»F) =
u?(B, F)+aVyh(B, F),

where use has been made of (B, F) = 1/A.(B, F). For the coefficient of FJ,

vgy =1l +aVyh;. (A.9)
Substracting (5.1) from (3.2),
00
Thesk =3¢ = Serk = ; ) Ve (Te4i = Tojie+k)s
i=k+

where use has been made of the fact that z¢1j,4+x = z:+; when j <k Or, using (A.9),

o0
Ttk = 3" 0+ ah; Vi) Zets — Telerk)- (A.10)
J=k+1

The (i — k)-period-ahead forecast error €(§ — k) = Tt4i — Teqijp4x Can be expressed as

1

T
e(i—k) = Z Y Otti-js (%o =1), (A11)

j=.0
and inserting (A.11) in (A.10),

. [
The+k = > [(”2,1‘ +Pr110i + ) Geait
i=k+1
taVu(mi+ rmiva+ .. ) el (A.12)
Define
G = 1’2"- + 1/)1 ”2,-‘+1 <+ 'wg ng+2 +..., (A13)
m; = m+Yrrp+amive ..., (A.14)
o0
b = Y o ' (A.15)
i=k+1
©o
mgo= ) miaw (A.16)
i=k+1
Then, we can write
V(r§esx) = V(&) + 22 V,, Cov (€, m) + a® V2 V(my). (A17)
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Setting & = 0, V(&,) is the variance of the revision in the canonical specification of the compo-
nent, that is £

V(&) = V() (A.18)

From (A.16), V(m,) = £%2,+1 m2, where, according to (A.14), m; is the coefficient of F* in
the polynomial h(B, F) 4(B). Given that ¥(B) = 1/n(B), from (1.10), m; = m;. Thus
V{(me) = ho — ho(k). (A19)

Finally, Cov (£,m¢) = 22,41 & mi = X2, TiLi. From (A.13) and (5.10.b), it is seen that
¢ is the coefficient of F* in €J(B, F), or Cov (£, me) = £k, ™ £;. Using (5.11) and (5.12),
it follows that

Cov (€, me) = v — v20(k)- (A.20)
Plugging (A.18), (A.19), and (A.20) in (A.17),

v

V(rﬁt-f-k) = V(T?‘t+k) +2 [V?,o - Vgo(k)] Vua + [h{] - hﬂ(k)} Vl12 02.
]

Proof of Lemma 9: V(r;’lt +&) is a parabole with positive constant term. Since, by con-
struction, the coefficient of o is positive, over the range a € [0,1}, V(r§) is a positive, convex,
function and will, as a consequence, display a maximum at one of the boundary values @ = 0
or @ = 1. By comparing V(r?) and V(r}), conditions (a) and (b) of the Lemma are
immediately obtained. [

Proof of Lemma 11: As a function of «, since ko(k) > 0, V(dg’!t +4) is a concave parabole,
and within the interval 0 £ a < 1, it will display a minimum at one of the two boundaries. By
comparing the values of (5.15) for @ = 0 and « =1, conditions (a) and (b) are obtained. B

Proof of Lemma 12: Inserting (3.1) in (5.2),
§t|t+k = ”!(B: F) k) w(B) Qg (A2l)

where the superscript a has been deleted for notational simplicity. Taking conditional expec-
tations at time T =¢ + k, expression (5.3) yields

3e+k = &s(B, Fik)as, (A.22)

where &,(B, F, k) is the filter £,(B, F) truncated at F'*, and use has been made of the property
Eitkar =0 when T >t+k Comparing (A.21) and (A.22), it is seen that

ve(B, F, k) = &(B,F,k)n(B). (A.23)
Equating the coefficients of B° at both sides of the identity (A.23), if wo denotes that of the
Lh.s.
' k
wo =) &ie (A-24)
i=0
For the canonical specification of s¢, (5.12) and (A.24) imply wg = v04(k). Part (b) is proved
in an identical manner, by noticing that (5.17) and (A.6) imply

Ugpr i = Q¢ + 7M1 Qey1 + ... + Tk Gy = T(F, k) @y,
and hence £,(B,F,k) = n(F,k). n

Proof of Lemma 13: Using the deconiposition (A.5), the lemma is proved in the same way
as Lemma 7, replacing the v— by the v(k)—coefficients, and hgo by hg(k). Then, condition (b)
of Lemma 11 is seen to be satisfied. [ |
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Fig. 2 : SPECTRAL DECOMPOSITION
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Fig. 3: Vananceof est. egors : TREND-CYCLE EXAMPLE
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Fig. 6 : CANONICAL SOLUTION THAT MINIMIZES THE ESTIMATION
ERROR VARIANCE
AIRLINE MONTHLY MODEL

t

— Border line for final estimation error variance

- - Border line for concurrent estimation error variance
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