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Abst1'8ct 

The paper deals with the problem of identifying stochastic unobserved two
component models, as in seasonal adjustment or trend-cycle decompositioDs. 
Solutions based on the properties of the unobserved component estimation 
error are considered, and analytical expressions for the variances and 
covariances of the different types of estimation errors (errors in the final, 
preliminary. and concurrent estimator and in the forecast) are obtained for 
any admissible decomP

.9
sition. These expressions are relatively simple and 

straightforwardly derived from the ARlMA. model for the observed series. 
It is shown that, in all cases, the estimation error variance is minimized at a 
canonical decomposition (Le., at a decomposition with one of the components 
noninvertible), and a procedure to determine that decomposition is 
presented. On occasion, however, the most precise final estimator is obtained 
at a canonical decomposition different from the one that yields the most 
precise preliminary estimator. 
Three ex�ples illustrate the results and the computational" algorithms. The 
first and seGQnd examples are based on the so-called Structural Time Series 
Model and ARIMA Model Based approaches, respectively. The third example 
is a class of models often encountered in actual time series: 

Key words: Seasonal Adjustment: Unobserved Component Models; 
Signal �traction; ARIMA Models; Identification; 
Estimation Error 
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o Introduction and Summary 

We consider the problem of decomposing an observed. series into the sum of two un
correlated components, each one the output of a linear stochastic process, which can 
be parametrized as an ARIMA model. Thus the basic model (presented in Section 1) 
is that of an observed ARIMA model with unobserved ARIMA components. Examples 
are the seasonally adjusted series plus seasonal component deco�position of economic 
series, the trend-plus-cyc1e decomposition often used in business cycle analysis, and, in 
general, signal-plus-noise type of decompositions. The analysis centers on Minimum 
Mean Squared Error (MMSE) estimators of the unobserved Components. 

It is well known that the general unobserved components model presents an impor
tant identification problem, which stems from the fact that, for a given series, there is 
in general an amount of white-noise variation that can be arbitrarily allocated between 
the two components (see, for example, Bell and Hillmer, 1984; or Watson, 1987). This 
identification problem is discussed in Section 2. Broadly speaking, two main a.pproaches 
ha.ve been developed. In one of them, the overall ARIMA model for the observed series 
is specified following the standard Box and Jenkins (1970) procedure, and the models 
for the components are derived from the overall model. This approach has been termed 
the "ARIMA-Model-Based" (AMB) approacil; it has been mostly developed in the con
text of seasonal adjustment, and basic references are Burman (1980) and Hillmer and 
Tiao (1982). The second approach directly specifies the models for the components; it 
has been termed "Structural Time Series Model" (STSM) approach and basic references 
are Engle (1978) and Harvey (1989). This approacil has been heavily used in applied 
econometrics work. 

The applied relevance of AMB methods for seasonal adjustment (and trend esti
mation), even in very large-scale applications, has increased considerably as of lately. 
In particular, the European statistical Agency (EUROSTAT) is at present, as a result 
of a study comparing alternative methods (see Fisher, 1995), using, and recommend
ing the use of, a fully AMB method. (namely, program SEATSj see EUROSTAT, 1994). 
Furthermore, the ne!" US Bureau of the Census program, X12, is an hybrid, which 
now incorporates many AMB features (see Bureau of the Census, 1995, or Findley and 
Monsell, 1995). 

In this paper, the analysis will apply in general to model-based methods, indepen
dently of whether they employ an STSM or an AMB approach. The assUIQptions used 
to identify a unique decomposition are, in t;he STSM approach, to restrict the order of 
the moving average polynomial in the component models, and, in the AMB approach, to 
assign all possible noise to one of the components, so as to make the other one nonin
vertible. In this last case, the decomposition is termed "canonical" 1 and the associated 
noise-free component, a canonical component. 

Be that as .it may, the fact remains that there is no universally accepted criterion to 
reach identifica.tion in unobserved component models, and the properties C!f the different 
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admissible decompositions have not been much explored: In this paper, we analyse 
some of these properties, mostly in co'nnection with the component� estimation error. 
Burridge and Wallis (1985) within the STSM approach, and Hillmer (1985) within the 
ABM approach, have provided algorithms for computing the variance of the components 
estima.tion error. In �his paper, an alternative approach, close to the one in Watson 
(1987), is followed, which permits us to obtain simple analytical expressions for the 
variances of the components estimation error for different admissible decompositions. 

When choosing between two admissible decompositions that only differ in the allo
cation of white noise to the components, one relevant considera.tion could be the precision 
of the associated estimators. There are, however, several types of estimators, depending 
on the available information. Foi" periods close to the end of the series, prel.i.m.inary 
estimators have to be used, which will be revised as new observations become available, 
until the final or historical estimator is obtained. Since it seems reasonable that an 
agency producing seasonally adjusted data, for example, would like to provide historical 
series as precise as poosible, we begin by considering (Sections 3 and 4) the historical 
estimator. 

Several properties of the historical estimator and its associated error are derived. 
In particular, it is shown that the crosscovariance-genera.ting function between the es
timators of the two components is identical to the autocova.riance-generating function 
of each component estimation error. Thus the admissible decomposition that minimi2es 
the components estimation error minimizes also the covariance between the two comper 
nent estimators. Given that the components are assumed orthogonal,' this feature seems 
an additional desirable property of the decomposition that provides the most precise 
estimator. 

For a given overall ARIMA model, the different admissible decompositions can 
be expressed 88 a. function of a. parameter a: in the unit interval. The two extreme 
values, a: = 0 and a = 1, correspond to the two possible canonical decompositions, 
each one associat� with noninvertibility of one of the components. Section 4 expresses 
the variance of the final estimation error as a second-order polynomial in a, where the 
coefficients can he determined from the overall ARIMA model. The decomposition that 
yields the most precise component estimators is derived and it is shown that it will 
always be a canonical one. Which of the two canonical decompositions it happens to be 
dependS on the stochastic properties of the series, and a simple algorithm to determine 
which component should be made canonical is provided. Heuristically, the rule can be 
i,\terpreted as making noninvertjble the most stable of the two components (i.e., adding 
all noise to the most stochastic component). 

1n Sections 5 and 6 the results are extended to any preliminary estimator and to 
forecasts of the components. The estimation error is, in this case, equal to the sum 
of the error in the historical estimator plus the so--<:a.lled revision error. Since, for an 
agency involved in short-term policy, m.in.imizing the error in the measurement of the 
signal for the most recent period seems an important feature, special attention is paid 
to the error in the concurrent e;stimator of the components. It is seen how,' for all 
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preliminary estimators, the variance of the estimation error is a polynomial of degree 2 
in Q, with coefficients that are straightforward to derive from the overall AruMA modelj 
furthermore, this variance is always minimized at a canonical decomposition. 

Which one of the two canonical decompositions it is can be det�ed from the 
following rule, whiCh applies to historical as well as to preliniinary estima.tion: Specify 
each component in its canonical form. and consider the MMSE .estimation filter for the 
component at time t. Let Vo denote the coefficient of Xt in this filter. H the component 
with smallest Vo weight is made canonical, then the estima.tion error variance (for both 
components) is m.inimizedj i.e. all noise is then assigned to the component with the 
largest weight. Thus, if interest centers on ha.ving the most precise historical estima.tor, Va 
denotes the central weight of the WK filter. H, alter:natively, the most precise concurrent 
estimator is sought, Vo denotes the first weight .of the one-sided filter. More generalJ.y, 
if interest centers on minimizing the error of the estimator of the component for time 
t, computed at time (t + k), then Va is the weight of Xt i.D. the truncated filter (i.e., the 
filter that e"l"nds up to Xt+k). 

It will often be the case that the same canonical decomposition minimizes �he' 
variance of the different types of estimators and, broadly, that decomposition will be 
the one with the most stable cpmponent made noninvertible. There. are, however, cases, 

when the components have sim.ila.r degrees of stability, where the solutions "switch" and, 
for example, one of the canonical decompositions yields the most precise finaJ. estimator, 
while the other one yields t1;le most precise concurrent estimator. Still, the switching of 
solutions is seen to happen when the estimation error variances for the two canonical 
decompositions are relatively close, and hence the choice matters little. 

Three examples are discussed in Section 6. The first one is a "trend-plus-<:ycle" 
model similar to the ones used hY economists in business-qcle analysis. The second 
example is a quarterly· AruMA model; these two examples illustrate the derivation of 
the estimation error variances from the parameters of the "observed" model within the 
STSM and the AMB approaches. The third example consists of a class of models that 
are often found to approximate reasonably well the stochastic properties of many series: 
the so-<:a.Ued Airline Model of Box and Jenkins (1970. chapter 9). This example extends 
the results in Hillmer (1985). and presents some stylized facts often found in·actual time 
series. 

1 The Model 

We consider the problem of decomposing an observed series Xt into two Unobserved 
Components, St and nt, as in 

Xt=St+nt (1.1) 

The two components are the output of the linear stochastic processes 

4>.(B) s, = 8.(B) a ... (1.2.a) 
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4>n{B) n, = 8n{B) /In,, (1.2.b) 

where 4>.(B) denotes a finite polynomial in the lag operator B, having all roots on or 
outside the unit circle. �tting 6. (B) represent the stationary transformation of the 
component) we shall also use the representation 

4>.{B) = 'P.{B) 6.{B); 4>n{B) = 'Pn{B) 6n (B), (1.3) 

where ep.(B) contains the roots outside the unit circle and 6.(B) contains the unit roots. 
Finally, B. (B) denotes a finite polynomial in B with the roots on or outside the unit 
circle. The model consists of equation (1.1)-{1.2) and some additional assumptions. 

Assumption 1: The variables an and elm are independent normally distributed white
noise innovations in the components. • 

Assumption 1 implies, of course, that the two components are uncorrelated. Impor
tant examples of the decomposition (1.1) are the "trend + detrended series" decompo
sition often used in business cycle analysis, where the trend may be a random walk and 
the detrended series a low-order stationary process, and the "seasonal component + sea
sonally adjusted series" decomposition, where the seasonal component is often modeled 
as 

U{B) 8, = 8,{B) a", (1.4) 
with U{B) the nonstationary "seasonal" polynomial U{B) 1 + B + ... + BT-l (r 
denotes the number of observations per year), and the seasonally adjusted series is given 
by a process of the type: 

v, n, = 8n{B) an" (1.5) 

with d typi�y 1 or 2. Since, as the examples illustrate, each component is basically 
characterized by its autoregressive (AR) roots, AR roots associated with different fre
quencies should be allocated to different components. Thus we specify the follOwing 
assumption, which also avoids redundant roots in the polynomials of (1.2.a) and (1.2.b). 

Assumption 2: The polynomials 4>.{B) and 4>n{B) share no root in common. The 
same holds true for the polynorilials 4>.{B) and 8.{B), and for the polynomials 4>n{B) 

-��. . 
Equations (1.1) and (1.2), and Assumptions 1 and 2 imply that the observed series 

Xt follows the general AruMA process 

4>{B) x, = 8{B) a.,. (1.6) , 
The AR polynomial 4>{B) is given by 

4>{B) = 4>.{B) 4>n{B), (I. 7) 

and hence it can also be factorized as 'P{B) 6{B), with 'P{B) = 'P.{B) 'Pn{B), and 
6{B) = 6,{B) 6n{B), so that 6{B) denotes the stationarity-inducing transformation for 
x,. The Moving Average (MA) part, 8{B) a" is determined by the identity: 

8{B) a., = 4>n{B) 8.{B) a" + 4>,{B) 8n{B) an" 
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and the constraint that the roots' of 8(B) lie on or outside the unit circle. Although not 
strictly needed, for convenience, we shall introduce the following assumption. 

Assumption 3: The polynomial8(B) is invertible. • 
In the next section we shall see that Assumption 3 implies no loss of generality. 

Also without loss of generality, and uniess otherwise specified, throughout the paper it 
will be assumed that Va = 1, where Vci is the variance of O-t in (1.6). It should be kept 
in mind, thus, tha.t the innovation variances � and Vn will be -implicitly expressed as a 
fraction of Va. Let F = B-1 denote the forward operator; it will prove useful to define 
the inverse (or dual) model of (1.6), given by 

8(B) Zt = 4>(B) Ilt· (1.9) 

Under Assumption 3, model (1.9) is stationary, with Autocovariance Generating FUnc
tion (ACGF) given by 

� 
h(B, F) = L h;(B; + F;) = ,,(B) "(F), 

;=0 

where ,,(B) contains the coefficients of the AR expansion of (1.6), that is 

� 
,,(B) = 4>(B)/8(B) = L ,,; B;, (". = 1). 

;=0 
Notice that the variance of the inverse process is given by 

� 

ho=L"J j=O 

2 Identification of the Model 

(1.10) 

(1.11) 

(1.12) 

Having observations on Xt, model (1.6) can be identified. from the data. For the rest of 
the discussion, we shall assume that the ARIMA model for Xt is known. Given this overall 
model, there is obviously an infinite number of ways of decomposing x, as in (1.l)-(1.2) 
under Assumptions 1-3. 

If the only identification restrictions that are considered are restrictions in the 
orders of the polynomials of (1.2), then the necessary and sufficient condition for model 
identification is that, for at least one of the components, the order of the AR polynomial 
be larger than the order of the MA polynomialj see Hotta (1989). Thus, letting p"Pn, q" 
and q. denote the orders of the polynomials 4>.(B), 4>.(B), 8.(B), and 8.(B), respectively, 
under 

Assumption 4a: p, > q, or Pn > qn (or both), • 
the model consisting of equations (1.l)-(1.2) and Assumptions 1, 2, and 3, is identified. 
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Be that as it may, one may question whether zero-coefficient restrictions are the 
most adequate ones. To illustrate the point, we consider a simple UC model similar to 
the ones used in business cycle analysis (see, for example, Stock and Watson, 1988). The 
observed (annual) series is the sum of a trend component, Btl and a detrended series, nh 
where the trend is·the random-walk process 

(2.l.a) 

and the, detrended series is the stationary ARMA(I, 1) model 

(I + .7 B) ... = (I + .2B) a",. (2.l.b) 

(Since (2.1.a) satisfies Assumption 4a, for a particular observed. series Xt St + nt, 
the model would be identified.) Direct inspection of (2.l.b) shows that the detrended 
series consists of a stationary cyclical behavior (with period 2) and some random noise . 
. Assumptions 1-3 are assumed to hold, and the equations in (2.1) imply that the observed 
series Xt can be seen as the output of the ARIMA (1, 1, 2) process: 

(I + .7B) V' x, = 8(B) <>t. (2.2) 

Setting, for our example, V, = 5Vn, it is easily found that 8(B) = (1 + .364B - .025B'). 
For a time series generated by (2.1), Figures la and Ib display the two components, 
and Figures 2a and 2b exhibit the spectra of Xt and of the two components, which we 
shall represent as 9.(w), 9,(W), and 9n(W), with w being the frequency in radians. (To 
simplify terminology, "spectrum" will also denote the pseudospectrum. of nonstationary 
series; see Harvey, 1989.) Figure 2b shows that 9,(W) has a minimum for w = "., which 
is found to be equal to 9,("') = V,/4. It follows that if a white-noise component u" with 
variance Vu in the interval [0, Y./4], is removed. from St and added. to nt. the resulting 
components also provide an acceptable decomposition of Xt. The only difference would 
be that the new St component would be smoother. while 1lt would now be noisier, as 
evidenced in Figures Ic and Id for the case Vu = V,/5. 

In general, if white noise with variance 0 :$; Vu :$; V./4 is removed. from St and 
assigned to 1lt. it is straightforward to find that the new St and nt components follow 
processes of the type: 

V' s, = (1 + 8,B) aot 
(I + .7B) ... = (I + 8nB) an" 

(2.3.a) 
(2.3.b) 

For a given model (2.2) for the observed series, different decompositions of the type 
(2.3) would provide admissible decompositions that would differ in the way the noise 
contained in the series is allocated to the two components. 

Consider an analyst interested. in whatever is in the series that cannot be attributed 
to the trend. He wishes, thus, to remove the trend and nothing but the trend. He will, 
consequently. avoid adding noise to the trend component. and would choose the decom
position for whicl:!- Vu is equal to its maximum. value y'/4. (Identification of unobserved 
components by using the "minimum extraction" principle was first prop�ed by Box, 
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Hillmer, and Tiao, 1978; and Pierce, 19,78.) The spectra of the two components in this 
case are given in Figures 2c and 2d, where they are compared to the spectra of the com
ponents in Figure 1. Since the requirement that it should not be possible to decompose 
St into a smoother component plus white noise implies that g,(1\'") = 0, and since the 
time domain equivalent of this spectral zero is the presence of the factor (1 + B) in the 
MA part of the component model, St will follow the noninvertible model 

" s, = (1 + B) a", 

and the model for n, will be as in (2.3.b). 

Alternatively, a similar type of reasoning may lead to the transfer of noise from 
1tt to St. Assume, for example, that model (2.2) holds for a time series observed with 
a twiee-a-year frequency. Then model (2.3.b) represents a seasonal component and, if 
interest centers on the seasonally adjusted series, one may wish to remove from the series 
as little as possible, and hence the choSen decomposition would consist of a noninvertible 
seasonal component nt, with 9n(0) = 0, and an invertible seasonally adjusted series St. 
As a consequence, the seasonal component would follow the model 

(1 + .7B) n, = (1- B) a"" 

and the model for St would be as in (2.3.a). Therefore, the minimum extraction require
ment yields two canonical solutions, both of which can be easily justified; each one is 
characterize9, by noninvertibility of one of the two components. 

Back to the general case of (1.2), assume, in general, that St is an invertible and 
identified component (Le., p, > q,). Then, a white-noise component can be removed 
from St and assigned to nt . . It is easily seen that the new model for St has p, = q,; thus 
we replace Assumption 48 with the more general one 

Assumption 4b: p, 2: q, or Pn 2: qn (or both). • 
For a given AruMA model for the ob�rved variable, the class of admissible decomposi
tions is given by the pair of components s, and n, satisfying (1.1), (1.2), (1.7), (1.8), and 
Assumptions 1, 2, 3, and 4b. We require, of course, nonnegative spectra g,{w) and 9n{W). 
In the general case of an infinite number of admissible decompositions, identification of 
a unique model can then be reached with the following assumption: 

Assumption 5: For w E [0,11"), either ming,(w) = ° or mingn(w) = ° (or both). • 
Identification is, in this case, obtained by forcing a component to be noninvertible. 
FollowiUg Box, Hillmer, and Tiao (1978), a noninvertible component will be denoted a 
"canonical" component, and the associated decomposition, a canonical decomposition. 
Since the spectra of the components cannot be negative, in the two-component case 
there will be two canonical decompositions. One of them puts all additive white noise 
in the component nt, the other one, in the component St. Any admissible decomposition 
can be seen as something in between, whereby some noise is allocated to 1tt and some 
to St. Notice that, since no additive noise can be extracted from a noninvertible 'series, 
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if the observed series is noninvertible, the decomposition (if there is one) is necessarily 
unique, with all components canonical, sharing the same spectral zero. In this case, no 
identification problem arises, and hence, for our purposes, Assumption 3 implies no loss 
of generality. 

As shown in Hillmer and Tiao (1982), canonical components display some impor
tant features. In particular, any other admissible component is equal to the canonical one 
plus added noise, and hence the canonical requirement makes the component as smooth 
as possible. On the negative side, Maravall (1986) shows how canonical components 
can produce large revisions in the preliminary estimators of the component. Besides, 
the existence of two canonical solutions reflects some basic ambiguity concerning the 
desirable properties of a component. �t seems reasonable, for example, that, in order to 
avoid noise-induced overreaction, the monetary authority may be interested in a smooth 
(noise-free) seasonally adjusted series. On the other hand, it sounds also reasonable 
that the analyst wishes to keep in the series everything but seasonality, in which case 
the seasonal component would be noise-free. Therefore, both canonical solutions could, 
in principle, be rationalized. 

Some additional suggestions have been made to ov�rcome uncertainty over which 
admissible decomposition should be chosen. For example, given that different admissi
ble decompositions imply different properties of the estimators, to be on the safe side, 
Watson (1987) and Findley (1985) propose to select a "minimax" solution (Le., the de
composition that maximizes the MSE of the MMSE estimators). Still, as a general rule, 
canonical components (Le., Assumptions 4b and 5) are used in the AMB approach, while 
zero-coefficient restrictions (Le., Assumption 4a) are used in the STSM approach and in 
econometric applications of UC models. Besides its simplicity, the choice may possibly 
reB.ect the tradition in econometrics of identifying models (in particular, simultaneous 
equation models) by using zero-coeflicient restrictions (see, for example, Theil, 1971). 

3 MMSE Estimators and Their Properties 

3.1 Optimal Estimators of the Components 

We have mentioIied that the properties of the component estimator will depend on the 
admissible decomposition selected. Our intention is to explore this dependence. In order 
to do that, we consider first the case of a complete realization of the process, i.e., the 
case of a series Xt with t going from -00 to 00. Let the series be stationary, and write 
(1.2) and (1.6) more compactly as 

x, � ",(B) a,; 5, � ",,(B) a .. ; (3. 1) 
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where ",(B) = 9(B)f¢(B), ",.(B) = 9.(B)f¢.(B), and "'n(B) = 9n(B)f¢n(B). The 
minimum Mean Squared Error (MSE) estimator of St is given by 

_ ",,(B) ",.(F) 
s, = v(B, F) x, = Y, "'(B) ",(F) x" (3.2) 

where F is the forward operator F = B-1; see Whittle (1963). The symmetric and cen
tered filter v(B, F) is the so-<:alled Wiener-Kohnogorov (WK) filter. Letting A;(B, F) 
denote the ACGP of component j, 

A;(B, F) = "';(B) "';(F) V;, j = s,n, 

and A.(B, F) = "'(B) "'(F), expression (3.2) can be rewritten 

s, = [A.(B,F)/A.(B,F)I x,. (3.3) 

In terms of the AR and MA polynomials, after simplification, the WK filter can be 
expressed as: 

(B F) = 
v. 9.(B) 9.(F) MB) ¢n (F) v , , .9(B) 9(F) (3.4) 

Expression (3.4) shows that, under Assumption 3 (invertible observed series), the filter 
will be convergent, independently of the roots of the AR polynomials. The filter (3.4) 
in fact extends to nonstationary series, with unit roots in tP.(B) and/or ¢n(B); see Bell 
(1984), and MaravaU (1988). Direct inspection shows that the WK filter (3.4) is simply 
the ACGF of the model 

9(B) z, = 9.(B) tPn(B) b" (3.5) 

with bt white noise with variance v.. Since B(B) is invertible, the model is stationary and 
its ACGP will converge. The effect on the filter of different admissible decompositionS 
will show up in the MA part of (3.5), through the polynomial9;(B) and the variance Y,. 

Unless the model for the series is a pure AR mod�l, the filter (3.4) will extend 
from -00 to 00. Its convergen� however guarantees that, in practice, it could be a.p
proximated by a finite filter, and it is generally the case that, for the usual series length, 
the estimator of the component for the central periods of the series can be safely seen 
as generated by the WK filter (3.4). This estimator, obtained with the complete filter, 
is often denoted "historical" or "final" estimator; it shall be the one of interest until 
Section 5. 

3.2 Covariance Between Estimators 

It is a well-known result that minimum MSE estimators of orthogonal components yield 
estimators with nonzero crosscovariances. This discrepancy has been the cause of concern 
(see, for example, Nerlove, 1964; Granger, 1978; and Garcia Ferrer and Del Hoyo, 1992), 
and hence one could argue that another possible identification criterion could be to select, 
among the admissible decompositions, the one that minimizes the (lag-D) covariance 
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between the estimators. This covariance is easily found from the following result (proofs 

of the results not derived in the text axe in the Appendix). 

Lemma 1: Let C{B, F) denote the CrossCovariance Generating FUnction ( COGF) for 

the two estima.tors St and itt. Then G(B, F) is equal to the ACGF of the model 

9{B) zt = 9.{B) 9.{B) b" (3.6) 

where bt is white noise with variance (\1, Vn). • 
Lemma 1 implies that C{B, F) is symmetric and convergent. Since model (3.6) 

is stationary, all covariances will be finite. The variance of the model yields the lag-{) 

covariance between St and fit; this covariance, thus, will always be positive (and hence 

the variance of the estimator will always underestima.te the variance of the component). 

However, the fact that the covariances between St and fit are finite implies the following 

result. 

Lemma 2: When the series Xt is nonstationary, the historical estimators St and fit are 

uncorrelated. • 
For nonstationary series (the case of applied interest) minimum MSE estimation of the 

components preserves, thus, the orthogonality assumption, and, for example, the state

ment in Garda. Ferrer and Del Hoyo (1992) that "whereas the theoretical components are 

uncorrelated, the estimators will be correlated in general" is only correct for stationary 

series. Further, it is easily found from (A.l) ·and (A.2), and the equivalent expressions 

for n,;, that, although the estimators St and 'lit are uncorrelated, certain linear .combina

tions of them - namely, the stationary transformations 6,(B) St and 6n(B) 'lit - are 

correlated. 

It is worth pointing out an interesting feature of the estimators of nonstation

ary trend and seasonal components. Although both are nonstationary series which, 

moreover, cannot be cointegrated. (since the unit AR roots are different). they display 

stationary crosscovariances. Thus. the two estimators diverge in time, each one with a 

nonstationary variance, but their crosscovariances remain constant. 

Back to the covariance between the component estimators, model (3.6) shows that 

different admissible decomposition would affect itsMA paxt, through 9.{B), 9.{B), V. 

and Vn. But before we look at which admissible decomposition minimizes the covariance 

between the estimators. let us turn our attention to another possibly desirable feature 

of the estimators. 

3.3 The Error in the Component Estimator 

The error in the UC estimator depends on the particular admissible decomposition se
lected. Since the data do not discriminate among admissible decompositions, the selec

tion of a particular one reflects a choice of the analyst. In the absence
. 
of a compelling 

reason to select a particular noise allocation, why not choose the one that provides the 
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most precise estimators? Since the error in St is equal to that in fit, minimizing both 
estimation errors seems an attractive feature of the selected model. 

To see the dependence of the estimation error on the admissible decomposition 
chosen, we use the .following Lemma, which is an application of Theorem 3 in Pierce 

(1979), for the case b,(B) = 1 and Va = I. 
Lemma 3: Let et denote the estimation error ee = 5e -St = fit - nt. Then et can be 
seen as the output of the ARMA model 

8(B) e, = 8,(B) 8n(B) d" 

where dt is a white noise with variance (V, Vn). 

From Lemmas 1 and 3, the following results are trivially obtained.. 

Lemma 4: The ACGF of et is equal to the CCGF between 8e and h,.. 

(3.7) 

• 

• 
Corollary 1: The admissible decomposition with minimum estimation error of the 
components minimizes also the covariance between the two component estimators. • 
We turn our attention to the identification of the admissible decomposition that exhibits 
those desirable properties. 

4 Historical Estimation Error and Admissible De

compositions 

As mentioned in Section 2, each admissible decomposition is characterized by a particular 
allocation of the noise to the two components. Let Se and nt denote an admissible 
decomposition of x,; then 9.(W) = 9,(W) + 9n(W). Let, for W E [0,11"], V,: = min9,(w) , 
and v: = min9n(W). The total amount of "additive" noise in Xt that can be distributed. 
between the components is equal to Vu = V: + V:. Following an approach similar to 

Watson (1987), we shall express each admissible decomposition in terms of a parameter Q 
that reflects the particular noise allocation. Denote by 5� and n� the decomposition with 

s, canonical and n, with maximwn noise, and let 9�(w), 9�(w), A�(B, F), and �(B, F) 
be the associated. spectra and ACGFS of the components. These functions, as well as the 
models for the underlying components, can be derived. from the ARlMA model for the 
observed. series. Since any admissible component sf is equal to s� plus an amount of 
noise with variance in the interval [0, Vu], any admissible decomposition, s� and n�, can 

be expressed. as 
9�(W) = 9�(W)+" VU 
9�(W) = 9�(W) -" Vu 

(4.l.a) 
(4.l.b) 

with Q E [0,1]. The two canonical decompositions (one with 5t canonical, the other with 
canonical nt) can be seen as the two extreme cases Q = ° and Q = 1. The time domain 
equivalent of (4.1) is given by the relationships 

A�(B, F) = A:(B, F) +" Vu (4.2.a) 
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A;:(B, F) = 
,
�(B, F) -" V" (4.2.b) 

and, for any", A,(B, F) = A�(B, F) + A;:(B, F). Our aim is to derive an expression 
that relates the variance of the component estimation error, V(er), to the parameter 0'. 
That variance, we recall, is also the covariance between the two component estimators. 

For O,� a � 1 denote the estimators of the components for a particular a by 

(4.3.a) 

(4.3.b) 

where the WK filter is (k = s, n): 
00 

vk(B, F) = L VkJ (Bi + Fi ). 
j=O 

Thus s� and n� correspond to the decomposition with canonical St. and s} and n: to the 
one with canonicalrtt. 

Lemma 5: Let er = sr - sr = nf - nf. Then, 

V(e�) = V(e�) + (1- 2 v2,o) v. " - flo V': ,,', (4.4) 

where e� is the error in sr, v�,o is the central weight of the filter v�(B, F), and ho is given 
�(1.�. • 

Lemma 5 expresses the variance of the component estimation error as a second
order polynomial in 0', with coefficients that can be obtained from the "observed" AruMA 

modeL Considering that Vee?) is the variance of model (3.7) and v�,o is the variance of 
model (3.5), both for the case of a canonical Sh and ho is the variance of the inverse 
model (1.9), the three coefficients of (4.4) can be easily computed as the variance of 
ARMA models with the AR polynomiai always equai to.9(B). 

From Lemma 5. it is straightforward to find which admissible decomposition mini
mizes the variance of the component estimation error: 

Lemma 6: For" E [0, 1), V(e�) is minimized 

(a) ati>=O 

(b) at,,=1 

when 2 v�,o + Vu Ito � 1, 

when 2 v�,o + Vu Ito � 1. • 
As a function of a, Veer) given by (4.4) is a parabola, positive over the interval 

[0,1], with a finite maximum for, say, am. If.om is contained in the interval [0,1], then 
either a = 0 or a = 1 may minimize V(er)j when am > 1, the minimum will be for 
0 =  0, and when am < 0, it will be for a = 1. Since am = (1 - 2v2,o)/2ho Vu, it can be 
easily checked that the three cases are possible. 

Lemma 6 implies that the component estimators with minimum MSE and minimum 
crosscovariance are always found at one of the two canonical decompositions. Up to 
now, the two components St and nt have been treated symmetrically. We now break 
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this symmetry and denote by St the component with the largest central weight in the 
associated WK filter that provides the canonical component estimator; these weights are 
v�,o and v�,o' Thus, without loss of generality, we assume the following: 

Assumption 6a: v�,o 2:: v�,o· • 
Now it becOmes possible to identify· which of the two canonical decompositions has 
minimum estimation error. 

Lerr..ma 7: Among all admissible decompositions, under Assumption 6a, the historical 
estimator MSE is minimized for the decomposition with canonical nt. • 

Lemma 7 provides a simple procedure to determine which canonical decomposition 
provides minimum component estimation error (and minimum covariance between the 
two component estimators). For each of the two components compute the central weight 
of the WK filter that yields the estimator of the component in its canonical form. Th�n, 
set as canonical component the one with the smalleSt weight (Le., add all noise to the 
one with the largest weight). Notice that, from the two canonical specifications, the 
central weights of the WK filters can be simply computed as the variance of the ARMA 

model (3.5). Three remarks seem worth adding: 

(a) Since v2,o measures the contribution of observation Xt to the component estimator, 
the precision of the estimator is maximized by assigning all additive noise to the 
component for which that contribution is largest. 

(b) In the important application to seasonal adjustment, if St denotes the seasonal 
component and nt the adjusted series, it is often the case that v�,o < v�,o and 
hence the most preciSe estimates of St and nt are obtained with a canonical seasonal 
component. In these cases, the "minimum extraction" principle used in the AMB 

approach to seasonal adjustment provides also the .most precise estimators, with 
minimum crosscovariance. 

(c) While one of the two canonical decompositions always provides the most precise 
estimators, the other may or may not yield estimators with maximum MSE. When 
am < 0 or am > 1, then it maximizes V(ef), and coincides thus with the minimax 
solution of Watson (1987). For this solution, of course, the covariance between the 
estimators is also maximized. 

It is worth noticing that the two opposite criteria (choosing the admissible decom
position with maximum or with minimum estimation error variance) stem from a 
"philosophical" difference. While Watson believes that there is a "true" underly
ing (unknown) seasonal component model among the set of admissible ones, we 
believe that reality does not provide for a particular allocation of noise among 
the two components and that this allocation is, in essence, arbitrary. In so far 
as unobserved components, such as trend or seasonality, are tools designed by the 
analyst to address problems, it makes sense to choose the most precise tool among 
the admissible ones. 

-19-



(d) Expression (4.4) corresponds to expression (3.9) in Watson (1987). The difference 
is due to the fact that Watson considers a �ed. filter, while the filter, in our case, 
is the optimal ODe for every value of Q. The fact that the filter depends on Q 

invalidates the derivation in Watson, and expression (4.4) is obtained instead. 

5 Preliminary Estimation Error, Revisions, and Ad

missible Decompositions 

Up to now we have considered estimation of the components for an infinite realiza.tion of 
the series. Since the WK filter converges in both directions, as mentioned in Section 3, it 
can be safely truncated and, for most series lengths, the estimator for the central periods 
can be seen as the one obtained with the complete filter (the historical or final estimator). 
While it seems reasonable that, a data-producing agency wishing to produce historical 
series as precise as possible, minimizes the error in the final estimator, it also seems 
reasonable that someone involved in short-term monitoring or policy-making would 
seek to minimize the error in the estimator for the most recent periods, in order to avoid 
error-induced policy actions (this concern is certainly present in, for example, monetary 
policy). Given that for the most recent observation the WI( filter cannot be applied, a 
preliminary estimator has to be used instead. We proceed to consider the error in this 
preliminary estimator. 

Assume that only a finite realization of the series is available. Deno.te this real
ization by XT = [Xl, X2, " " XT), and by Xt/T the forecast of Xt when observations are 
available up to and including period T. Then, as shown by Cleveland and Tiao (1976), 
the optimal "preliminary"

. 
estimator of St is given by 

(5.1) 

where v(B, F) is the WI( filter given by (3.4), and xllT is the series extended with fore
casts xT+ilT and backcasts Xl_j/T, j = 1,2, . . .. As new observations become available, 
the forecasts are updated or replaced by the new data and, as a consequence, the esti
mator of St will be revised until it becomes the historical estimator, onc� the filter has 
converged. Since the above forecasts and backcasts are linear functions of the elements 
of.XT, expression (5.1) can be rewritten 

StItH = v,(B, F, k) Xt, (5.2) 

where T = t+k, v,(B, F, k) denotes the truncated, asymmetric filter, and Xt the elements 
of XT. We shall assume that the series is long enough for the weights of (5.2) to have 
converged in the direction of the past. In the vast majority of practical applications this 
is not a restrictive assumption, and it allows us to associate the finite-sample effect on 
the preliminary estimator with the unavailability of future observationa. We can then 
write the error in the preliminary estimator, dtlT = St - StlT as 
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where let = St - S, is the error in the final estimator St (analysed in Section 3.3), and 

TtlT = St - StlT is the "revision error" in the preliminary estimator. Under Assumptions 
1-3, the two errors, et and TtIT, are independent (see Pierce, 1980), and this will be true 
for any admissible decomposition. Rewrite expression (A.I) as 

" = �.(B,F) '" = . . . + �.,_I "'-I + �.,o a, + �.,I "'+1 + . . .  + �.,T-' � + 

+�.,T-'+1 �+I + . . , = �.(B)- � + �.(F)+ �+1' (5,3) 

The weights t;,J are easily determined from the identity. 

¢.(B) 8(F) �.(B, F) = V. 8,(B) 8.(F) ¢.(F). (5.4) 

Under suitable conditions concerning the starting values (see Bell, 1984), the estimator 

StlT can be obtained by taking conditional expectations at time T in (5.3), yielding 

(5.5) 

since ErllT+j = 0 for j 2:: 1. Substracting (5.5) from (5.3), the revision in the concurrent 
estimator can be expressed as 

� 
T'IT = �.(F)+ �+1 = L �'J "'+;' 

j=T-t+l 
(5.6) 

which involves only the coefficients of F;, j � 1, in (5,4) and hence is a convergent 
filter that can be truncated after a finite number of terms. Expression {5.6}, properly 
truncated, can then be used to compute the ACGF of TtlTi in particular 

M 
V(T'IT) '" L �;J' 

j=T-t+l 

where M is the truncation point. 

(5.7) 

Up to now, the discussion in this section applies equally to preliminary estimators, 
for which T 2:: t, and to forecasts of the component, for which T < t. We proceed to 
consider first preliminary estimation and, for notational convenie�ce, set T = t + k( k = 
0,1,2, . . . ) . For the admissible decomposition associated with 0, Xt = s� + nt. the 
components preliminary estimation error and revision error can be expressed as: 

S� - S�t+k = e� + T�t+k 
� 
L t;�J at+;. 

j=k+l 

(5,8) 

(5.9) 

respectively. In the previous section we looked at the dependence of ef on o. Now we 
look at the dependence of the revision error, T�t+k' and of the total error, dfJt+k' on Q. 
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From (1.11), (3.4), and (5.4) it is seen that 

,,(B) ��(B, F) � v�(B, F), (5.lO.a) 

or, since ,,(B) � If1jJ(B), 
(5.lO.b) 

Equating coefficients of BO in (5.lO.a), it is obtained that 

� 
v�o = E {:'i 7rj. (5.11) 

r=o 

where v�o is the coefficient of x, in tbe estimator (4.3.a). Denote by �o(k) and by ho(k) 
the sum of the first (k + 1) terms in the r.h.s. of (5.11) and of (1.12), respectively. Thus, 

v�o(k) 
ho(k) 

.;�o + 1Tl ';�l + . . .  + 7I'"k ';:'k' 
1 + 7l'� + . . .  + 1r�, 

and the following lemma is proved in the Appendix. 

(5.12) 

(5.13) 

Lemma 8: The variance of the revision error in the preliminary estimator S�t+k' is 
given by 

(5.14) 

where the superscript 0 denotes the decomposition with St canonica.l. • 
As a result, the variance of the revision in a preliminary estimator is given by a 

polynomial in Ct of degree 2, where the coefficients can be derived from the overall AruMA 
model. From Lemma 8, the following results are obtained. 

Lemma 9: For a E [0, 1[, V (T�'+k) is maximized: 

(a) at a � 0 when 2v�,0 + (ho - ho(k» V. � 2 v�,o(k); 
(b) at a � 1 when 2v?,0 + (ho - ho(k» V. 2 2 v�,o(k). • 

Corollary 2: The variance of the revision error in the preliminary estimator (of St and 
of nt) is maximized at one of the two canonical decompositions. • 

Corollary 2 generalizes the result in Maravall (1986), and shows an unpleasant 
feature of the canonical decompositions: they may imply relatively large revisions in 
the concurrent estimator of the signal. However, since V (r?) is a convex parabole, it 
follows that, as was the case for the error in the historical estimator, while one of the 
two canonical decompositions maximizes the variance of the revision error t it may well 
be that the other canonical decomposition minimizes that variance. This will happen 
when am, the value of a that minimizes (5.14), falls outside the interval [0,1]. 

Be that as it may, the main concern is not the revision error peT set but the total 
error in the preliminary estimator of the signal. The dependence of the variance of 
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this error on the particular admissible decomposition selected. is shown in the following 
lemma, obtained by using expressions (4.4) and (5.14) in V(ct:jt+') = V(e�) + V(r�.+,). 
Lemma 10: The variance of the error in the preliminary estimator StitH is given by 
the second-degree polynomial in a 

where �It+k is the error that 'corresponds to the canonical signal. 

(5.15) 

• 
Lemma 10 allows us to determine which admissible decomposition minimizes the 

error in the preliminary estimator. 

Lemma 11: For Ct E [0, 1], V(ct:j.+,) is minimized 

(a) at Ct = 0 when 2v�o(k) + ho(k) Vu <:; 1; 
(b) at Ct = 1 when 2v2,o(k) + ho(k) Vu 2: 1. • 

Corollary 3: The variance of the en:.or in the preliminary estimator of the signal is 
always minimized at one of the two canonical decompositions. • 
As a consequence, when the effects of the historical estimation error and of the revi
sion error are aggregated, it still remains true that a canonical specification yields the 
most precise preliminary estimators of the components. Which one of the two canoni
cal decompositions displays that property can be determined through Lemma 11 or, as 

was done in Section 4, by breaking the symmetric treatment of the two components. 
Proceeding in this way, it is possible to express the general result in a very simple way: 

For a particular admissible decomposition, rewrite expression (5.2) as 

S�t+k = v: (B, F, k) It, (5.16) 

so that the decomposition with St canonical yields the estimators s?lt+k and n?lt+k' while 
that with nt canonical yields S�IHk and n�lt+k· It will be convenient to consider the filter 
that yields the preliminary estimator of Ut given by (A.5), that is, 

(5.17) 

where ", - niid (O, Vu). The parameters v2,o(k) and ho(k), defined by (5.12) and (5.13), 
turn out to have a simple interpretation in terms of the filters that provide the preliminary 
estimators of the components, as shown by the following lemma. 

Lemma 12: 
(8) v2,o(k) is the weight of BO in the filter v2(B, F, k). 
(b) ho(k) is the weight of SO in the filter vu(B, F, k). • 

As before, without loss of generality, denote by St the component with the largest 
weight for Xt in the filter that provides the preliminary estimator of the component in 
its canonical form, Le.: 
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Assumption 6b: v�,o(k) � v!,o(k). • 
Lemma 13: Among all admissible decompositions, under Assw:b.ption 6b, the most 
precise preliminary estimators are obtained for the decomposition with canonical 11t. • 

From Lemma 13, the decomposition with the most precise estimators of the com
ponents is straightforward to obtain. 

Corollary 4: Let (1.1) and (1.2) represent the admissible decompositions of a given 
ARIMA model under Assumptions 1-3. To select the decomposition with smallest MSE 
in a preliminary estimator of St and 'nt, 

a) compute the weight of Xt in the two filters that provide the preliminary estimators 
of the components specified in their canonical f�rm; 

b) choose the canonical decomposition with canonical component the one with the 
smallest weight. • 

Since when k � 00, from (5.12) and (5.13). v�,o(k) � v?,o and ho(k) � 110. 
expression (5.15) becomes then (4.4). in agreement with the fact that. for k � 00. 

the preliminary estimator becomes the historical one. A particular case of considerable 
importance is when k = O. The associated estimator, Btlt. is denoted the "concurrent" 
estimator. Obviously, to use the most precise concurrent estimator (Le., the estimator of 
the signal for the most recent period) could be a reasonable choice for an agency involved 
in short-term economic policy and monitoring. 

By setting k = 0 in (5.12) and (5.13). it is seen that 110(0) = 1. and v?,o(O) = f,',o' 
Expression (5.15) becomes 

V(<f,i,) = V(�,) + (1 - 2 f,',o) V.a - V,.' a'. 

Assumption 6b becomes: �,o � e�,o, and the decomposition with most precise estimators 
is the one that sets nt canonical, and adds all noise to St. As was the case with historical 
estimation, while one of the two canonical decompositions always minimizes the variance 
of the error in the preliminary estimator, the other canonical decomposition may or may 
not maximize that variance. It will maximize the variance when am, the value of a 
that maximizes the function (5.15). falls outside the interval [0. 1]. From (5.15) it is 
easily seen that a will fall outside the unit interval when lI�o(k) is outside the interval 

[.5 - ho(k) V • • . 5]; in this case the two canonical decomposiiions provide the most and 
the least precise estimators. 

Although historical and preliminary estimators have minimum MSE when one of 
the two canonical specifications is employed, the canonical specification may well not be 
the same for different estimators. Thus, for example, there are models, as we shall see 
in the next section, for which the historical seasonally adjusted series is best estimated 
with a canonical seasonal component, while the concurrent seasonally adjusted series is 
best estimated with a canonical trend. The switching of solutions is due to the fact that 
Assumption 6b may imply that, for different values of k, different components may have 

- 24 -



the largest v8(k) weight. Focussing attention on historical and concurrent estimation, 
from Lemmas 6 and 11, the following corollary is immediately obtained. 

Corollary 5: Under Assumption 6a, when (� < (1 - Vu)/2, the historical estimation 
error is minimized with a canonical nt and the concurrent estimation error is minimized 
with a canonical St. Otherwise, nt canonical minimizes both types of errors. 

Under Assumption 6b (with k = 0), replacing � with £120, and Vu with ho Vu in the 
above inequality, the same result holds. • 

The possible switching of solutions is an inconvenient feature since, in practice, 
it could mean that agencies producing historical series and agencies involved in short
term policy would use different seasonally adjusted series. Perhaps the most sensible 
procedure would be, in the case of switching solutiOns, to publish the most precise 
historical estimator, and use the most precise concurrent estimator for internal short
term policy making. In any event, as will be seen in the next section, the switching 
of solutions tends to occur when the difference between the two solutions is small, and 
hence the inconvenience is minor. 

6 Forecasts 

Since any admissible component can be expressed as the sum of the canonical comptr 
nent plus an orthogonal white-noise component (with variance a Vu), the forecast of 
the component will be that of the canonical one plus the forecast of orthogonal white 
noise. Since the latter will always be zero, it follows tbat, although different admissible 
decompositions will provide differ'ent historical and preliminary estimators, they will all 
provide the same forecast�. The standard errors of these forecasts, however, will differ: 
obviously, they will become larger as a: Vu increases. Trivially, thus, the decomposition 

_ that minimizes the standard error of the component forecast is that with the component 
itself canonical. Contrary to the case of estimation errors in current or past signals, 
the forecasting errors of s� and n� are not the same. The minimum variance forecast 
error of sf is reached at the canonical decomposition with a: = 0, while that of nf at 
the canonical decomposition with a = 1. There is not an admissible decomposition that 
simultaneously minimizes the forecasting error variance of St and 14. Still, if forecasts 
are the estimators of interest, the selection of an admissible decomposition is not a very 
relevant issue, since all decompositions yield identical forecasts. 

7 Examples 

7.1 Trend-plus-Cycle Model 

We begin with the same example used to illustrate identification in Section 2. The mode 
is that of equation (2.2) with 8(B) = (1 + .364B - .025B'), and accepts a "trend-plus· 
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cycle" decomposition, where the admissible decompositions are given by components of 
the type (2.3). The identity (1.8) becomes: 

(I + .364B - .025B') a, = (I + .7 B)(I + B,B) a" + (I - B)(I + BnB) an" (7.1) 

Since (7.1) is an identity among three MA(2) processes, the associated system of co
variance equations consists of 3 equations (one for the variance, and one for each of the 
lag-l and lag-2 covariances). The unknowns are the 4 parameters 8" On, v" and Vn, 
and hence (2.3) is not identified. 

As seen before, an easy way to identify the component models is by adding the 
zero-coefficient restriction 0, = 0, which yields of course 'the decomposition (2.1), with 
If. = 5V. = .621 (model (2.2) is standardized by setting Va = 1). From this initial 
decomposition, it is found that 9,{W) = 1f./2{I-cosw), so that for w E  [0, "J, min9,{W) = 
9,{") = V,/4 = .155. Similarly, 9n{W) = Vn{1.04 + .4oosw)/{1.49+ 1.4cosw), and hence 
min 9n{W) = 9n(0) = .062. Since the amount of additive noise that can be exchanged 
between the components is the sum of these two minima, V" = .217. 

Starting from the decomposition (2.1), if we substract from g,(w}. its minimum 
.155, the resulting spectra can be factorized to obtain the model for the canonical signal 
(for a simple algorithm to factorize a spectrum see Maravall and Mathis, 1994.) This 
model is found to be 

"s� = (I + B) a:" v,. = .155. (7.2.a) 

Since the noise removed from s, is added to n" factorizing the spectrum (9n{w) + .155) 
yields the model for the component n�, associated with the canonical S�i namely. 

(I + .7B) n!i = (I + .443B) a�" v.? = .301. (7.2.b) 

From models (2.2) and (7.2), expressions (3.7), (3.5), and (1.9) can be nsed to 
compute the variance of the estimation error. The variance V(e�}, the central weight 
of the WK filter for s�, lI�,o, and the coefficient Ito of Lemma 5 are the variances of the 
processes 

B{B) Z, 
B{B) z, 
B{B) z, 

(I + B) (I - .443B) 11" 
= (I + B) (1 + .7 B) b" 

(I + .7B) (1 - B) b" 

\Ii, = v,. v.? = .047, 
.\Ii, = v;' = .155, 
Vi, = VII = 1, 

respectively, where B{B) = (I + .364B - .025B') in all cases. This yields V{e1) = .101, 
v� .• = .441, ho = 1.653, and, using (4.4), for any admissible decomposition 

V{ef) = .101 + .0260 - .078,,'. (7.3) 

The historical estimation error variance is seen to be minimized for Q' = 1, that 
is, for the decomposition with canonical n�, in whit? case V(e�) = .049. The maximum 
value of V(ef) is reached for am = .164, .an interior point of the interval {OJ 1]; therefore, 
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the other canonical, decomposition (7.2L is not, in this case, a minimax solution. That 
the decomposition with minimum estimation error is the one with canonical nt can also 
be found through Lemma 7: The decomposition with canonical nt is found by removing 
mlngn(w) = .062 from gn(w), and adding it to g,(w) in the initial decomposition (2.1). 
Factorizing the resulting spectra yields the models 

" .: = (1 - .084) a!" 
(1 + .7B) n: = (1 - B)a�" 

V,' = .739, 
V� = .018. 

Proceeding as before, v�,o is the variance of the model 

OrB) Zt = (1 - B)' b" 11; = V,,' = .018, 

equal to .'200. Thus, since v�,o = .441 > v�,o = .200, Assumption 680 holds and Lemma 7 
can be directly applied. For this example, thus, the MSE of the historical estimators of 
the two components are minimized when the cycle is made canonical. (Notice that, if Xt 
is a series observed every 6 months, the component Tlt represents a seasonal component. 
The most precise estimator of the seasonally adjusted series would then be obtained by 
removing a canonical seasonal component.) 

Concerning preliminary estimation, we focuss on the concurrent estimator and its 
one-period revision. In order to obtain the error variances for any admissible decompcr 
sition, from (5.15), we need the parameters V(<f,'I,+k)' v�,o(k), and hoek), for k = 0, 1. 
The first parameter V(<f,'I,+k) is equal to the sum of V(e1), already computed, plus 
V(T�t+k)' which can he computed through (5.7). For this we need the coefficients in Fi, 
j = 0, 1, . . . , M of the filter ��(B, F), given by (5.4), For this example, 

�(B F) = II!' (1 + B) (1 + F) (1 + .7F) = II!' (B F) " , (1 - B) (1 + .384F - .025F') • � , . (7.4) 

In order to express the filter 1](B, F) as the sum of a filter in B and a. filter in F, we 
first write the numerator and denomlnator of �(B,F) as (1 + B) (.7 + 1.7B + B') F" 
and (1 - B) (-.025 + .384B + B') F', respectively, and then obtain the partial fractions 
decomposition: 

B P _ �  c, + c,B + c,B' �( , ) - I - B + -.025 + .364B + B" (7.5) 

The coefficients Co. Clo C2. and C3 are determined by removing denominators i� 
(7.5), and equating coefficients of B', B, B', and B' in the left- and right-hand
side of the resulting identity. This yields a linear system of equations with solution 
Co = 5.078, c, = .827, c, = 1.378, and c, = -1. The filter �(B, F) can then be 
expressed as �(B, F) = �-(B) + �+(F), where �-(B) = 5.078 (1 - B)-', and �+(F) = 
(-1 + 1.378F + .827 F") (I + .364F - .025F")-'. Multiplying by v,o, it is found that 

�j .788, j < 0, � =  .633, 
�, .270. �, = .026, �, = -.003, 
�4 . 002, �5 = -.001, ��j � 0, j > 5 . 
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Table 1: TREND-PLUS-CYCLE EXAMPLE: Estimation Error Variance 

Concurrent One-period Final 
Estimator Revision Estimator 

canonical 
seasonal co�)onent .175 .103 .101 

{a = 0 
canonical seasonally 

adjusted series .070 .055 .049 
(a = 1) 

Expression (5.7) yields V{r�,) = .074, and hence V{dl'I') = V{e�) + V{r�,) = .175. 
For the one-period revision of the concurrent estimator, since V{�) = V{�lt+l) +(�.1)2, 
it follows that V{<f,\'+1) = .103. The coefficients ho{k) are found through (5.13), with 
11"{B) = (I + .713B) \l /9{B). In particular 11"0 = 1, 11"1 = -.664, and hence ho{O) = 
1, h{l) = 1.441. Finally, from (5.12), v� 0(0) = .633, and v� 0(1) = .453. Replacing 
the coefficients of () in (5.15) with their �mputed values, th� estimation error of the 
concurrent estimator and of its one-period revision, for any admissible decomposition, 
are equal to 

.175 - .057a - .047<>', 

.103 + .020<> - .068a'. 

(7.6) 

(7.7) 

Expression (5.14) provides also the variance of the revision errorj for the concurrent 
estimator it is found equal to 

V{r�,) = .074 - .0B3a + .031a'. (7.8) 

The four variances (7.3), (7.6), (7.7), and (7.8) are represented in Figure 3. For 
this example, considera.tion of different estimators does not produce any switching of 
solutions, and the specification with canonical � (Q = 1) always minimizes the estimation 
error variance. {It is straightforward to find that (�o = .150 < �,o = .633, and hence the 
conditions of Assumptions 680 and 6b are both met.) The variances of the concurrent, 
one-period revision, and final estimation errors ate given in Table 1. The use of a 
canonical � component instead of a. canonical St cuts in less than half the variance of 
the error, a nonnegligible gain in precision. 

7.2 Quarterly AruMA Model 

We consider the model 
(I - B') x, = (I - .5B) a" (7.9) 
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which is the same example used for illustration by Kohn and Ansley (1986) and Gomez 
and Maravall (1994). The AR part of (7.9) can be rewritten (I - B') = ,\?U, where 
U = 1 + B + B2+ B3, and hence the model can be decomposed into a seasonal component, 
St. and a. seasonally adjusted series, 1lt;, having models of the type 

Us, B,(B) a,, · 
V' n, Bn(B) an" 

where, under Assumption 4b, 8.(B) and 871(B) are, in general, of order 3 and 1, respec
tively. The identity (1.8) is now given by 

(I - .5B) a, = (1 - B) B,(B) a" + U Bn(B) an" (7.10) 

and there will be, in gener.al, 5 covariance equations associated with this identity. Since 
there are 6 unknowns (8,l! 8,2. 813• 871, V, and Vn) ,  the model is not identified. ProceediIig, 
as before, we start with an initial decomposition identified with the use of zero-coefficient 
restrictions. Restricting to 2 the order of B,(B) and to 0 that of Bn(B), the system of 
covariance equations has now 4 equations and 4 unknowns (8Jl, 8,2. v" V'l). The system, 
however, is highly nonlinear and a more efficient way to proceed is the following, 

Setting B,(B) = (I + BdB + B.2B') and Bn(B) = 1, the Fourier transform of the 
identity between the ACGF of the left- and right-hand-side of (7.10) yields 

1.25 - cosw . = (gO + gl COSW + g2 cos2w) (2 - 2cosw) + (4 + 6cos w +  
+ 4 cos 2w + 2 cos 3w) V., (7.11) 

where 90 = (1 + 9�1 + 9�) v,� 91 = 9d (1 + 942) v" and 92 = 842 v,. Using the identity 
2 cos (jw) cosw = cos (j-I)w+cos (j+I) w, operating in (7.11), and equating coefficients 
in cos fjw), j = 0, 1, 2,3, a linear system of equations is obtained, with solution 90 = .656, 
gl = .125, g2 = .031, and Vn = .016. Therefore, the initial decomposition is given by 

( )  
.656 + .125cosw + .031 cos2w 

g. w = 
4 + 6 cosw + 4cos2w + 2cos3w' 

gn(W) = .016/(2 - 2cosw). 

From these spectra it is found that, for w E [0, I], min g.(w) = g.(O) 
min gn(w) = gn(1T) = .004. Therefore, Vu = g.(O) + gn(1T) = .055. 

(7.12.a) 

(7.12.b) 

.051, and 

To obtain the canonical decomposition for Q = 0 (i.e., the decomposition with 
canonical seasonal), one simply needs to substract 94(0) from (7.1:2.a). Factorizing the 
spectrum obtained, the model for the canonical St component is found to be given by 

U s� = (I - .501B - .342B2 - .156B3) a�" 11,0 = .325. (7.13.a) 

Adding, in turn, g,(O) to (5.6.b) and factorizing the resulting spectrum yields the model 
for 1>\': 

V' n� = (1 - .578B) a�" 0.' = .088. (7.13.b) 
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We can now compute V(e�), v�,o, and ho of Lemma 5 as the variances of the models 

(1 - .5B) z, = (1 - 501B - .342B' - .156B3) (1 - .578B) b,,v. = 0,' v.!' = .029, 
(1 - .5B) z, = (1 - 501B - .342B' - .156B3) (1 - B) b" v" = v,' = .325, 
(1 - .5B) z, = (1 - B') b" v" = Va = 1, 

which yields V(e1) = .042, r},'., = .701, and ho = 2.5. Since 2v:\, + V, ho = 1.54 > 1, 
according to Lemma 6 the decomposition with minimum estimation error variance is 
that with" a canonical flt component (a = 1). This is easily confirmed. by the expression 
for V(ef), from (4.4) equal to 

V(en = .042 - .022" - .0080', (7.14) 

in the interval " E [0,1). The minimum is reached for V(eD = .013. Notice that, in 
this case, the maximum of V(ef) is reached. at am < 0, and hence (s� , n�) represents 
the decomposition with the largest error variance in the component estimatorj Le., the 
minimax solution. 

The model for the canonical flt component is found by removing from (7.12.b) the 
constant mingn(w) = gn(") = .004 and factorizing the resulting spectrum; the model 
is found to be V n� = (1 + B) a�t, V'; = .004. According to (3.5), v�o is equal to the 
variance of the model (1 - .5B) z, = (1 + B) U b" v" = .004, so that v�, = .162. Since 
v� > v�o, Assumption 6a is satisfied. and Lemma '7 confirms that the decomposition 
with 1lt canonical provides the most precise component estimators. Notice that, while in 
the first example, these estimators are obtained with a canonical seasonal (or cyclical) 
componen�, in the second example they are obtained with a canonical trend. (It can be 
seen that the result still holds if 0 = .5 in (7.9) is replaced by any invertible value of 0.) 

In order to obtain the variances of the preliminary estimation error, 
V(�t+k)' and of the revision error, V(rftt+k), we also need the parameters V(T�t+k)' 
V(ti1I'+k)' �,,(k), and ho(k) of Lemmas 8 aod 10. As in the previous example, we 
consider the concurrent estimator and its one-period revision: The variance V(�lt+k) 
for k = 0, 1 are obtained from the sum V(e1) + V(r11'+k)' where the first term has al
ready been computed, and the second term is found using (5.7), once the coefficients 
in Fi(j > 0) of �(B,F) have been obtained. These �-<:oeflicients cail be obtained as 
follows. As in the first example, write �(B,F) = V,' ,,(B, F), with 

(B F) = 

[O';(B)] [O';(F)(l - F)] 
" , 

U O(F) , 

where O';(B) aod O(B) denote the MA polynomials in (7.13.a) and (7.9), respectively. 
Then ,,( B, F) can be rewritten as 

(B F) = F' [O,(B) 8.(B) (1 - B) ] 
" , F U O(B) 

, (7.15) 

where 8(B) denotes O(B-') as a function of B (i.e. if O(B) = 1 - .5B, 8(B) = -.5 + B). 
Using a partial fraction expansion, the expression in brackets in (7.15) can be decomposed. 
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as in 
c(B) d(B) 
u + 8(B)' 

where c(B) and d(B) are of degree 2 and 4, respectively. Therefore, 

c(B) d(F) 
T/(B, F) = F' u + 8(F) = F' cl(B) + d1(F) . 

Shifting forward by 3 periods the coefficients of cl(B), adding them to the coefficients 
of d1(F), and multiplying by v,' (given by (7.13.a)), the coefficients of {�(B, F) are 
obtained. For our purposes, only the weights in p;, j � 0, are of interest, namely 

� = .824, �1 = -.135, �, = -.099, � = -.065, � = .018, �5 = .009, f.'. = .005, 
�7 = .002, � = .001, {:\ '" 0 (i > 8). Using expression (5.7), V(r?t,) = .033, and 
hence V(<l,'I') = V(e�) + V(r�+,) = .075. Further, V(�t+l) = V(<l,'I') - (�.1)' = .060. 
Finally, the weights "0 and "1 are obtained from ,,(B) = (1 - B')(l - .5B)-I, which 

yields "0 = 1 and "1 = .5. From (5.12) and (5.13), the parameters v�,o(k) and ho(k) can 
now be computed, and Lemmas 8 and 10 yield 

V(r�,) 
V(�,) 

V(�t+l) 

.033 - .014<> + .0050' 
.075 - .0360 - .0030' 
.060 - .0280 -.0040'. 

Figure 4 plots these variances in the admissible range 0 E [0,1], together with 
(7.14). It is seen how the canonical decomposition with nt canonical (a = 1) minimizes all 

estimation errors, while the decomposition with canonical seasonal component maximizes 
them. (Again, this result is valid for any invertible value of 8 in (7.9).) Table 2 presents 

the variances of the errors in the concurrent, I-period revision, and final estimators of 
the components. As in the previous example, there is a large gain in the precision of. 
the component estimators when moving from the canonical decomposition with Q = 0 
to the one with a = 1. Since the two canonical decompositions represent the maximum 

and minimum values of the estimation eITor variance, they are bounds for the estimation 
error variance associated with any other admissible decomposition. Finally, compared 

to the first example, the revision between the concurrent and final estimator now lasts 
longer: the first-period revision accounts for roughly 40% of the total revision. 

7.3 The "Airline Model" 

We consider a class of models, appropriate for monthly or quarterly series, that display 
trend and seasonality. The model is given by the multiplicative ARIMA expression 

(7.16) 

where T is the number of observations per year and, as before, Va = 1. Following the 
work of Box and Jenkins (1970), model (7.16) is often referred to as the "Airline Model" . 
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Thhk.2: QUARTERLY ARIMA EXAMPLE: Estimation Error Variance 

Concurrent One-period Final 
Estimator Revision Estimator 

canonical 
.075 .060 .042 8eaSOG cO�fonent 

0 = 0  
canonical seasonally 

adjusted series .037 .028 .013 . 
(0 = I) 

On the one band, it is often encountered in practice; on the other hand, it provides a 
convenient reference example, since the parameters 81 and (}.,. are directly related to 
the stability of the trend and of the seasonal component. In particular, a. value of the 
parameter (h (or 8T) close to -1 indicates the presence of a stable trend (or seasonal) 
component. For - 1  < 81 < 1 and -1 < 8.,. < 0-, where 0- is a. small positive value (see 

Figure 6), the model accepts a decomposition of the type (A.5); see Hillmer and Tiao 
(1982). If the two components decomposition is considered, as in (1.1), with St denoting 
the seasonal component and nt the seasonally adjusted series, then, for an admissible 
decomposition, the components follow models of the type 

where 8';(B) and II::(B) are, in general, polynomials in B of order T-I and 2, respectively. 

We have seen earlier that the component estimators with minimum MSE are always 
obtained with one of the two canonical specifications. Tables 3 and 4 present the final and 
concurrent estimation error variance associated with the two canonical decompositions, 
for T = 12, and for different values of 61 and 612 within the admissible region. For 
both types of errors, �he variance is large for models whose spectra are dominated by a 
very stochastic trend (values of 61 close to 1). On the other hand, the estimation error 
variance is small when the model contains relatively stable components. 

An interesting result from Tables 3 and 4 is that, when the error variance is large, 
the difference between the two canonical decompositions is relatively smalli in that case, 
which canonical decomposition (and more generally, which admissible decomposition) 
is chosen has little effect on the precision of the estimator. On the contrary, when the 
error variance is small, the difference between the two decompositions becomes more 
pronounced. 

Comparing Tables 3 and 4, it is further seen that the variance of the final estimation 
error accounts for (roughly) between 1/3 and 1/2 of the variance of the concurrent 
estimation errorj the revision error is, thus, typically larger than the final estimation 
error. 
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Table 3: AIRLINE MODEL: Variance of Error in Final Estimator 
- S _. - -. -

\,.;&nOJllceJ 
." ., .410 .ro< .436 .259 Canonical n, .• 07 .504 .439 .267 

.50 
VlW�nK:BI 

" .308 .3n .327 .195 Caaonk:a1 . no .300 .376 .337 .220 

.25 Gan�� .22\> .274 .239 .144 Canonical n, .210 .271 .255 .190 vanon\CII.I 
a .. .164 .197 .173 .100 Canonical n, .138 .186 .191 .168 

�oo� 
-.25 ., .121 .143 .129 .081 Canonical n, .082 .119 .139 .146 ........ onlUN 
-.50 .. .096 .113 .106 .070 Canonieal n, .042 .070 .095 .118 GaDo""," 
-.75 .. .on .U8 . 116 .07 • Canonical n, .019 .036 .054 .074 

If: MO. 8eII8OnaJ com po 
R,; DOnaeasonal component 

Table 4: AIRLJN� MODEL: Variance of Error in Concurrent Estimator 

.75 .. 1.257 1.151 .905 .521 Ca.nonkaJ. n, 1.261 1.157 .913 .532 

.50 .... �:- .956 .873 .665 .393 Canonical n, . 964 .... .710 .• 33 u.noo,,'" 

.25 .. .... .641 .50.5 .292 Canonical n, .710 .665 .551 .369 �o� a .. .491 .458 .367 .215 

��'" .• 98 .483 .426 .327 

. -.25 ��;""" .333 .323 .269 .164 Canonical n, .326 .336 .324 .292 

-.50 ..,....�;'''''''' .22' .239 .214 .139 Caoo_ n, .193 .217 .234 .244 �oo� 
-.15 .. .1(9 .205 .2111 .143 Can�� .097 .12Q .141 .,., 

nt: component 
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Table 5: AIRLINE MODEL: Estimation Error Variance 

Concurrent 12-period Final 
Estimator Revision Estimator 

canonical 
seasonal component .263 .153 .125 

(a = 0) 
canonical seasonally 

adjusted series .293 .124 .116 
(a = 1) 

Using, as an example, 81 = -.. 34 and 812 = -.42, the parameters of expressions 
(4.4), (5.14), and (5.15) for the decomposition with a canonical seasonal component, can 
be derived from the overall ARIMA model in a. manner similar to that illustrated in· the 
two previous examples. For an admissible decomposition, the variances of the errors can 
be expressed as 

V{rf) 
V{<f,') 

V{<f,j.+!,) 
V{ef) 

.138 - .01Ba + .057a' 

.263 + .081a - :051a' 

.153 + .065a - .094<>' 

.125 + .099a - .108a', 

and they are represented in· Figure 5. This example illustrates a case of "switching 
solutions": while the final estimation error is minimized with the decomposition with 
canonical seasonally adjUsted series, the concurrent estimation error is minimized with 
the decomposition with a canonical seasonal component. Still, as seen in Table 5, the dif
ference between the errors associated with the two ca.no�cal decompositions is relatively 
small, in particular for the final estimation error case. 

For the monthly and quarterly Airline Model, Figure 6 displays the lines that sepa
rate the regions of the admissible parameter space where a canonical seasonal minimizes 
the final and concurrent estimation-error, from that where the minimum is achieved with 
a ca.n:onical seasonally adjusted series. The region where a canonical seasonal component 
provides the most precise estimators is larger for the concurrent estimation error, and the 
area. between the two lines represents the region of switching solutions. What is clearly 
seen in Figure 6 is that stable trends imply the use of a canonical seasonally adjusted. 
series (Le., of a canonical trend), while stable seasonals imply the use of a canonical 
seasonal component. This was to be expected from Assumption 6b and Lemma 10, since 
more stable components will have smaller central weights in the corresponding WK filter. 
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Appendix 

Proof of Lemma 1: Combining (3.4), (1.6), and (1.7), it is possible to express the estimator 
St in terms of t.hl:' innovations at of the model for the observed series. After simplification, it is 
found that 

1>,(E) s, = 9,(E) a,(F) "", 

where a,,(F) is the (convergent) forward filter 

(F) = lC 9,(F) <I>n(F) a, 
• 9(F) . 

(A.I) 

(A.2) 

An equivalent expression is found for nt by simply interchanging the subindices s and n. 
Comhining the two expressions and cancelling common factors, it is obtained that 

C(E F) = (lC V. ) 9,(E) 9n(E) 9,(F) 9n(F) 
, , n 9(E) 9(F) , (A.3) 

which is the ACGF of model (3.6). • 
Proof of Lemma 5: From Lemma 4, ACGF (t;Q) = CCGF (sf, nf). Since the latter can be 
expressed as (A�(E,F) A!:(E,F))/A.(E,F), considering (4.2), 

ACOF (en = [A�(E, F) + a Vu] [A!!(E, F) - a Vu] [A.(E,F)r' = A�(E, F) 

A�(E, F)/A.(E, F) + [I - 2A�(E,F)/A.(E,F)] Vu a - [I/A.(E, F)J V; a'. (A.4) 

Equating constant terms in the identity (A.4) directly yields (4.4). • 
Proof of Lemma 6: Expression (4.4) implies that Vee?) is a concave function of Ct. It 
follows that, within the interval 0 :$. a :s;; 1, the minimum of Veer) will always be at one 
of the two boundaries. Since V(eD - V(ef) = Vu (1 - 2v�,o) - vJ ho, under condition (a), 
V(eD 2: V(e�) and a = 0 will provide the minimum; trivially, a = 1 provides the minimum 
otherwise. 

When 2v�,o + Vu ho = 1, then V(4) = V(e�), and both canonical solutions provide the 
same estimation MSE, and provide thus two minima. for V(ef), within the admissible range for 
a. • 
Proof of Lemma 7: The series Xt can always be decomposed as in 

Xt = s� +n� +tI.t, (A.5) 

where s� and nl are the two canonical components, and tit is white nOise with variance Vu. 
The WI( filter for tit is given by 

1>(E) 1>(F) 
vu(E, F) = Vu 9(E) 9(F) 

= Vu ".(E) ".(F), (A.6) 

equal thus to the ACGF of the inverse model (1.10), scaled by Vu. It follows that Vu 11.0 is the 
central coefficient of the WK filter for tI.t. Therefore, 

(A.7) 
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is the central weight of the WK filter associated with the decomposition tha.t assigns all white 
noise to St (Le., with the decomposition with 1lt canonical). From Asstlmption 6a., lI�o 2: lI� o 
or, adding 1I� 0 + Vuho to both sides of the inequality, 

, , 

(A.S) 

where use has been made of (A.7). From Xt = n1 +s1, the r.h.s. of (A.S) myst equal one, hence 
we are in case (b) of Lemma 6. (When Assumption (6a), and hence (A.S), holds as an equality, 
then the two canonical decompositions provide two identical minima of V(ef,).) • 
Proof of Lemma S, From (3.2), (3.3), and (4.2 .• ), 

v�(B,F) A�(B, F)/Az(B, F) = 
IA�(B,F) + " V.I/A.(B,F) = 
v�(B, F) + "  V. h(B, F), 

where use bas been made of h(B, F) = I/A.(B, F). For the coefficient of Fi, 

Subetracting (5.1) from (3.2), 

� 
r�t+k = s� - s�t+k = 2: lI�J(Xt+j - xt+ilt+k), 

i=k+l 

(A.9) 

where use has been made of the fact that Xt+ilt+k = Xt+i when j :$;  k. Or, using (A.9), 

� 

r�t+k = 2: (lI�J + a hj Vu)(xt+i - xt+ilt+k)' 
j;;k+1 

The (i - k)-period-ahead forecast error e(i - k) = Xt+i - XtHlt+k can be expressed as 

i-k-l 
e{i - k) = L ,pj 4t+i-;, 

i""'O 
(>Po = I), 

and inserting (A.Il) in (A.IO), 

Deline 

Then, we can write 

� 
2: [(lI�'i + ,pl ll�,f+l + . . .  ) 4t+i+ 

i""k+l 
+0: VU(1I"i + ,pl 1I"i+1 + . . . ) 4tH) ' 

li lI�,i + 1/11 lI�,i+1 + ¢2 1I�,f+2 + . . .  , 
fnj = 1I"i + ,pl 11"£+1 + 1h 1I"i+2 + . . .  , 

� 

L li Qt+i, 
i=k+l 

� 

L mi atH, 
i=k+l 
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Setting 0: = 0, V(it) is the variance of the revision in the canonical specification of the com� 
nent. that is 

(A. IS) 

From (A.16), V(fnt) = L:�kH mt, where, according to (A.14), mi is the coefficient of F in 
the polynomial h{B, F) ¢(B). Given that ¢(B) � l/�(B), from (J.JD), m; � �i' Thus 

Vern,) � ho - hoek). (A.19) 

Finally, Cov (It,mt) = �ktl lj ffli = L:�kH 1fi, ii· From (A.13) and (5.10.b), it is seen that 
ii is the coefficient of F in G(B, F), or Cov (it. mt) = "E:k+l 1fi e�,j' Using (5.11) and (5.12), 
it follows that 

Cov (lt, me) = v�,o - v�.o(k). (A.20) 

Plugging (A.IS), (A.19), and (A.20) in (A.17), 

V(r�'H) � V(r�'H) + 2 [v�,o - v�,o(k)l V. a + rho - ho(k)lV: a'. 
• 

Proof of Lemma 9: V(r�Hk) is a parabole with positive constant term. Since, by oon
structioD, the coefficient of 0:2 is positive, over the range 0: E 10, I), V(r?} is a positive, convex, 
function and will, as a consequence, display a maximum at one of the boundary values 0: = 0 
or 0: = 1. By comparing V(r�) and V(rl) , oonditions (a) and (b) of the Lemma are 
immediately obtained. • 
Proof of Lemma 11: As a function of 0:, since hoek) > 0, V(dijt+A) is a concave parabole, 
and within the interval 0 :s; a ::; I, it will display a minimum at one of the two boundaries. By 
oomparing the values of (5.15) for 0: = 0 and 0: = I, conditions (a) and (b) are obtained. • 
Proof of Lemma 12: Inserting (3.1) in (5.2), 

" 1<+' � v,(B, F, k) ¢(B) a" (A.21) 

where the superscript 0: has been deleted. for notational simplicity. Taking conditional expec
tations at time T = t + k, expression (5.3) yields 

'<ltH � {,(B, F, k)"" (A.22) 

where �.(B, F, k) is the filter e.(B, F) truncated at Fk, and use has been made of the property 
E,H aT � D when T > t + k. Comparing (A.21) and (A.22), it is seen th.t 

v,{B, F, k) � {,(B,F,k)�(B). (A.23) 

Equating the coefficients of IfJ at both sides of the identity (A.23), if wo denotes that of the 
I.h.s., 

• 
Wo = L �jI,j 1fj. 

i=O 
(A.24) 

For the canonical specification of St, (5.12) and (A.24) imply wo = v�.o(k}. Part (b) is proved 
in an identical manner, by noticing that (5.11) and (A.6) imply 

UtIHk = at + 11"1 atH + . . .  + 'Kk 4tH = 'K(F, k) at, 

and hence {.(B,F,k) � �(F, k). • 
Proof of Lemma 13: Using the decam'position (A.5), the lemma is proved in the same way 
as Lemma 7, replacing the v- by the v(k)-coefficients, and ho by hoek). Then, condition (b) 
of Lemma 11 is seen to be satisfied. • 
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Fig. 2 : SPECTRAL DECOMPOSITION 
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Fig. 3 : V..-imce of cst. cm:n : TREND-CY� EXAMPLE 
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Fig. 4 : VatiaDce of cst. errors : QUARTERLY ARIMA EXAMPLE 
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Fig. 5 : Variance of est. errors : AIRUNE MODEL EXAMPLE 
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Fig. 6 : CANONICAL SOLUTION THAT MINIMIZES THE ESTIMATION 

ERROR VARIANCE 
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