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I 

Abstract 

The paper addresses the situation in which an economic variable, for which 

a series of observations is available, can be seen as the combination of several 

unobserved components (UC). ue models have been intensively used in 

applied economic research; they are often found, for example, in business 

cycle analysis. ue are also important in short-term policy and monitoring of 

economic variables, and an important example is seasonal adjustment. UC used 

in these two fields of applications (applied econometric research and 

statistical practical applications) often share the same basic structure. This 

paper deals with ue models displaying that type of structure. First, the 

limitations of ad-hoc fixed filters are briefly discussed; attention is focussed 

on the Hodrick-Prescott filter to detrend a series, and on the Xll filter to 

seasonally adjust a series. The paper develops then a general set-up for a 

model-based approach common to the vast majority of VC model applications. 

The basic feature is that the components follow linear stochastic processes. 

The problems of model identification, estimation and forecast of the 

components, diagnosis, and inference are sequentially addressed. The 

properties of the estimators (preliminary and historical) and of their 

associated estimation and forecasting errors are derived. Two examples are 

discussed: the quarterly series of US GNP (to illustrate business cycle 

analysis), and the monthly series of the UK money supply (to illustrate 

seasonal adjustment). 

The paper contains some implications for applied econometric research. Two 

important ones are, first, that invertible models, such as AR or V AR models, 

cannot in general be used to model seasonally adjusted or detrended data. 

The second one is that to look at the business cycle in detrended series that 

are seasonally adjusted is a misleading procedure, since detrending plus 

seasonal adjustment will always induce a non-trivial spectral peak for a 

cyclical frequency. 
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Introduction 

The paper addresses the situation in which an economic variable, for which a time 

series of observations is available, can be seen as the combination of several components. 

Having only observations on the aggregate variable, the analyst wishes to learn about the 

unobserved components and, in particular, about the joint distribution of their estimators 

and forecasts. 

Unobserved components in time series have been of interest to economists for some 

time, and a good review of the early developments and applications is contained in 

Nerlove, Grether and Carvalho {1979}. Although the treatment and modeling of un­

observed components (be that in the context of business cycle analysis or of seasonal 

adjustment, to quote two important applications) lack an economic theory foundation 

(see Ghysels, 1990), they are nevertheless used. extensively by economists and statisti­

cians when dealing with economic time series. The interest has developed along two 

separate (although related) fronts. First, unobserved component models are used in 

economic research in a variety of problems when a variable, supposed to play some rel­

evant economic role, is not directly observable. For example, unobserved components 

have been used in modeling agents' reaction to (permanent or transitory) changes in 

the price level (Lucas, 1976), in analyzing the stability of some of the macroeconomic 

"big ratios" (Pagan, 1975), in relation to the "natural" level of the labor supply (Bull 

and Frydman, 1983), in modeling technical progress (Slade, 1989; Harvey and Marshall, 

1991), in modeling credibility of the monetary authority (Weber, 1992), in measuring the 

persistence (or long-term effects) of economic shocks (Cochrane, 1988), or in estimating 

the underground economy (Aigner, Schneider and Ghosh, 1988). 

Where, unquestionably, unobserved components have been most widely employed 

in economic research is in the area. of macroeconomics. An important example is in the 

context of the permanent income hypothesis, where permanent and transitory comper 

nents play a central role (some references are Muth, 1960j Fama and French, 1988; Stock 

and Watson, 1988; Christiano and Eichenbaum, 1989; Quah, 1990). More generally, un­

observed components are heavily used in the business cycle literature, in the detection 

and analysis of the business cycle both at the methodological and applied levels (see, 
'for example, Sargent and Sims, 1977; Beveridge and Nelson, 1981; Nelson and Plosser, 

1982; Kydland and Prescott, 1982; Harvey, 1985; Prescott, 1986; Watson, 1986; Clark, 

1987; Crafts, Leybourne and Mills, 1989; Stock and Watson, 1988, 1991). 

Most often, in the applications we have mentioned, a series is expressed as the sum 

of two components, such as a permanent and a transitory (or temporary) component, or 

as a trend and a cycle component. Typically, one of the components attempts to capture 

the trend-type nonstationarity of the series, while the other is a stationary component. 

Often, moreover, the series to be decomposed has been previously seasonally adjusted, 

and hence a third component containing the seasonal' variation is also implicit in the 

decomposition. 

But, besides their use in applied econometric research, unobserved components play 
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an important role in short-term economic policy-making and monitoring of the economy. 
Typically, short-term policy and evaluation are based on the seasonally adjusted series. 
(Often, seasonal adjustment simply aims at providing a better picture of the underlying 
evolution of the series of interest. On occasion, it plays a direct role in the design of 
economic policy. An example is found in short-term monetary policy, where the money 
supply is set up so as to accommodate seasonal fluctuations in the demand for money, 
in order to avoid seasonal fluctuations in interest rates; see Pierce, 1983.) It is indeed 
the case that, for many important macroeconomic series, seasonal movements dominate 
the short-term evolution of the series. When the seasonally adjusted series displays 
undesirable erraticity, some further smoothing may be performed, attempting to capture 
the trend component. In fact, the standard decomposition of macroeconomic variables, 
as used in applied institutions or agencies, can be seen as decomposing the series into 
a nonstationary trend, a nonstationary seasonal, and a stationary irregular component 
(see, for example, Moore et al., 1981). This practical need for unobserved components 
estimation has also generated a large amount of research, most of it developed in the 
statistics field (see, for example, Zellner, 1978, 1983, and the references in Den Butter 
and Fase, 1991). 

Unobserved components used in these two fields of applications (applied economet­
ric research and statistical practical applications) often share the same basic structure. 
This paper deals with unobserved component models displaying that type of structure. 
First, linear filters are introduced and ad-hoc fixed filters are briefly discussed. Attention 
is focussed on the Hodrick-Prescott filter to detrend a series, and on the X11 filter to 
seasonally adjust a series. Some dangers of ad-hoc filtering are illustrated, in particular 
the risk of spurious results and the effects of over and underestimation of a component. 
Some limitations are also pointed out, such as its incapacity to provide estimation stan­
dard errors and forecasts (with their associated standard errors). This is discussed in 
sections 1 and 2. 

Section 3 presents the general set-up for a model-based approach common to 
the vast majority of unobserved component model applications. The basic feature is 
that the components follow linear stochastic processes. Section 4 reviews and compares 
some of the most frequent specifications for the most common components (such as the 
trend, cyclical, seasonal, transitory or· irregular components). For a given series, the 
lack of a unique decomposition reflects a general underidentification problem inherent in 
unobserved component models. This problem is addressed in section 5; the most relevant 
solutions are discussed and the implied decompositions compared. Section 6 illustrates 
the presentation with an example, the quarterly series of US GNP, which has been the 
center of a.ttention in business cycle research. One "philosophical" point should perhaps 
be stressed: My discussion is not based on the prior belief that there is a unique (though 
unknown) Data Generating Process for, say, the trend or the seasonal component, and 
that the analysis will a.ttempt to reveal its true nature. An unobserved component is 
rather viewed as a (statistical) tool that we devise in order to provide sensible answers 
to questions of applied interest. 
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Estimation of the components is considered in section 7. The optimal estimator 
is the conditional expectation of the component given the observed series. Since it 
is well suited for analytical discussion, the Wiener-Kolmogorov representation of that 
conditional expectation is considered. First, we present the case of an infinite realization 
of the series and look at the component estimation filter; for most applied cases, it will 
be close to the one that yields the estimator of the component for the central years of 
the series (the historical estimator), independently of whether it has been obtained with 
the Wiener-Kolmogorov or with the Kalman filter. 

Section 8 analyses the properties of the estimator. It is seen to be generated by 
a linear stochastic process, structurally different from the process assumed to generate 
the component. This difference is analysed in terms of the direction of the bias, the 
auto and crosscorrelation structure, and the corresponding spectra. An application to 
diagnostic checking of the model, and some estimation extensions are also considered. 
Two important implications for applied econometric research are discussed at the end of 
the section. One concerns the use of seasonally adjusted series (also of other components 
such as the trend or the detrended series) in econometric testing and model building, 
as well as in some commonly used unobserved component models. The second one 
concerns the procedure of looking for business cycles in a detrended series which has 
been seasonally adjusted. 

Estimation and forecasting of unobserved components for a finite sample, as well 
as preliminary estimators, are considered in section 9. Analytical expressions are derived 
and the structure of the preliminary estimator and associated revisions are discussed. 
Some illustrations are provided in the field of applied econometrics and in the field of 
statistical practical applications. 

Section 10 deals with estimation errors. The models generating the errors in the 
historical and preliminary estimators are presented. Since the errors depend on the 
model specification, some relevant implications concerning identification of the unob­
served component model are derived. Finally, the use of an unobserved component 
model in inference is illustrated with the monthly series of the U.K. money supply and 
the standard procedures used in monitoring monetary aggregate series. 

1 Linear Filters 

Consider an observed times series Xt which we wish to express as 

k 
Xt= L Xitl 

£=1 
(1.1) 

where Xlt, ... 1 Xkt denote k unobserved components. Since often interest centers on one 
of the components, it will prove useful to rewrite (1.1) as the sum of two components: 

(1.2) 
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where m denotes the component of interest (the "signal"), and n denotes the sum of the 
other components (the non-signal or "noise"). 

For components such as a trend or a seasonal component, deterDiinistic specifica­
tions, such as fixed polynomials in time or cosine functions, have been employed, and 
references can be found in Stephenson and Farr (1972), FUller (1976), and Hylleberg 
(1986). The gradual realization that economic time series display moving or evolving 
trend and seasonal behavior lead to the replacement of deterministic models by the so­
called Moving Average methods, which can be seen as approximating the trend by local 
polynomials (see Kendall, 1976) and the seasonal by local cosine functions (see Box, 
Hillmer and Tiao, 1978). 

The most widely used moving average filters are linear (except for some possible 
tapering of outliers) and, for the observations not close to either end of the series, centered 
and symmetric_ This last property is due to the requirement that the filter should 
not induce a phase-shift in the estimation of the component; since it is most desirable 
that the underlying seasonal or cyclical ups and downs of the series be properly timed, 
the requirement seems a sensible one (a good presentation of moving average filters 
can be found in Gourieroux and Monfort, 1990)_ IT B denotes the lag operator and 
F = B-1 denotes the forward operator, such that Bk Xl = Xt_k and Fk Xl = Xe+k, a 
linear symmetric moving average filter is of the form 

C,(B) x" 
, 

C,(B) Co + L ci(Bi + Fi). 
j_l 

(1.3) 

(1.4) 

A filter for a trend component will naturally be designed to capture the series vari­
ation associated with the long-term movements (i.e., the movements displaying very low 
frequencies), and the seasonal component filter will be constructed to capture variability 
associated with seasonal frequencies. Since the components are often associated with 
specific frequencies, the frequency domain view will be of help in analysing the prop­
erties of the filters. Broadly, if a component is designed to capture the series variation 
for a specific frequency region, the moving average filter to estimate the component can 
be seen as a bandpass filter, that should have a close to I gain in that region, and a 
zero gain for other frequencies. Filters have been constructed in an ad-hoc manner to 
display that bandpass structure. These filters are fixed (perhaps allowing for a few op­
tions), and independent of the time series under analysis. One important example in 
the area of applied economic research, where interest centers on detrending of series, is 
the Hodrick-Prescott (HP) filter; see Hodrick and Prescott (1980) and Prescott (1986). 
In the area of data treatment for policy and monitoring of the economy, where seasonal 
adjustment is the most frequent application, massive use is made of XII-type filters; see 
Shiskin et al. (1967) and Dagum (1980). (Lineax expression for the central Xl! filter can 
be found in Ghysels and Perron, 1993.) 

Let w denote frequency, measured in radians; the frequency domain representation 
of the HP filter (for the recommended value of A = 1600) and of the symmetric Xl! 
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quarterly filter are displayed in figures 1 and 2, which evidence the bandpass character 
of the two filters. The HP filter is seen to remove variation near the 0 frequency and has 
a value of 1 for frequencies associated with periods of less than 4 or 5 years. The XU 
filter removes the variance in the neighborhood of w = 7r and w = 7r /2, the once- and 
twice-a-year seasonal frequencies. 

An important property of two-sided symmetric filters of the type (1.4) is that the 
estimator of the component Xit cannot be estimated with (1.3) when t is close enough 
to either end of the series. If [Xtl = [Xl, X2, ... , xTl denotes the observed series, when 
t < T, unavailable starting values of x are requiredj when t > T - r, future observations 
are needed to complete the filter. Ad-hoc filters (except for Xll ARIMA) truncate 
the filter for those end observations with ad-hoc weights. Therefore, the centered and 
symmetric filter characterizes "historical!! or final estima.tors. For recent enough periods, 
asymmetric filters ha.ve to be used, which yield preliminary estimators. As time passes 
and new observations become available, those preliminary estimators will be revised until 
the final estimator is eventually obtained. To this issue I shall come back later. 

It would seem that a convenient feature of ad-hoc filters could be that, by defining 
the component as the outcome of the filter (see Prescott, 1986), the issue of properly 
defining the component is simplified. The Simplification, however, is misleading. To 
illustrate the difficulties involved in using that definition, consider an example: the trend 
component obtained with the HP filter applied to the series of US GNP. The series is 
discussed in detail in section 6j it consists of 35 years of quarterly observations. Assume 
we are in the middle of year 18 (t = 70), and use the HP filter to estimate the trend 
for that period. According to the definition of Prescott, this estimator is the trend for 
t = 70. But if one more quarter is observed, the HP filter yields a different estimator for 
t = 70. Additional quarters will further change the estimator, and the HP filter is in fact 
a filter that implies a very long revision period. Figure 3 displays the trend estimated for 
t = 70 as the length of the series increases from 70 to 140 observations. The estimator 
is seen to fluctuate considerably, and takes nearly 10 years to converge. Which of these 
estimators is the trend? Obviously, a preliminary estimator is inadequate, since one 
would then conclude that new information deteriorates the estimator. If the trend is 
defined as the historical estimator, then it will take 10 years into the future to know 
today's trend. 

More relevant virtues of ad-hoc filters are that they are simple and easy to use .  
This is  an important property when there is  an actual need of estimating components for 
a large number of series. Thus one can understand that in a statistical agency, having 
to routinely seasonally adjust thousands of series, heavy use is made of an ad-hoc filter 
such as XU. In applied economic research, where attention centers on methodological 
issues having to do with few series, the convenience of using ad-hoc filters is far less 
clear. 
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2 Ad-Hoc Filtering: Dangers and Limitations 

The dangers and limitations of ad-hoc filtering ha.ve been often pointed out. Here we 
illustrate with simple examples some of the most important ones. 

(A) The danger of spurious adjustment is illustrated in figures 4 and 5. For a 
white-noise series with unit variance (expressed, for convenience, in units of 211"). the 
HP filter yields a trend component with spectrum that of figure 4. Yet, by construction, 
there is no trend in the white-noise series. For the same type of input, XlI extracts 
a seasonal component with spectrum that of figure 5. The spectrum is certainly that 
of a seasonal component, but it is spurious since the white-noise series contained. no 
seasonality. 

For a white-noise series, it is obvious that the filter that seasonally adjusts the series 
should simply be 1. On the other hand, if the series under analysis has a spectrum like 
that of figure 5, the filter to seasonally adjust the series should be 0, since all variation is 
seasonal. The filter should depend, thus, on the characteristics of the series. To illustrate 
this dependence, consider the model 

(2.1) 

where at is a white-noise innovation (with variance Va), 'V = 1- B, \74 = 1- B4, and 
the two moving average parameters lie between -1 and 1. It is a model similar to the 
so-<:alled Airline Model of Box and Jenkins (1970, chap. 9), for quarterly series. On the 
one hand, it is often encountered. in practice; on the other hand, it provides an excellent 
reference example. The model accepts a sensible decomposition into trend, seasonal, 
and irregular components (see Hillmer and Tiao, 1982). As 81 approaches 1, model (2.1) 
tends towards the model 

'V, x, = (1- 8,B')a, + p." 
with a more deterministic trend. (Notice that, since '\74 contains the root (1 - B), 110 
is the - now deterministic - slope of the trend.) Similarly, when B4 becomes 1, the 
seasonality in (2.1) becomes deterministic. Thus, broadly, the parameters BI and ()4 can 
be interpreted. as a measure of how close to deterministic the trend and the seasonal 
components, respectively, are. The behavior of a component is easily illustrated. in the 
frequency domain. Model (2.1) does not have a proper spectrum, since it is nonstation­
ary; it will be useful however to use its pseudo-spectrum (see Hatanaka and Suzuki, 
1967, or Harvey, 1989). For a linear model x, = II«B) a" with II«B) = 8(B)/¢(B), 
where 8(B) and <I>(B) are finite polynomials in B, the pseud<Hlpectrum is the Fourier 
transform of '1/{B) '1!"{F) Va; it will display infinite peaks for the frequencies associated 
with the unit roots of <I>(B). In what follows, the term spectrum will be used also to 
denote a pseudospectrum. 

The closer to deterministic behavior of a component is revealed by the width of 
the spectral peak for the relevant frequency. Thus, for example, figure 6 displays the 
spectra of two series both following models of the type (2.1) with Va = 1, one with 
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81 = -.1, 84 = .7, and the other with 81 = .7, 84 = -.1. Comparing the two spectra, 
the one with the continuous line contains a more st.able (doser to deterministic) trend, 
and a more unstable seasonal. Since an ad-hoc filter displays holes of a fixed width, 
the filter will underadjust when the width of t.he spectral peak in the series is larger 
than the width of the filter hole. Alternat.ively, it. will overadjust when t.he spectral 
peak in the series is narrower than that. for which t.he filter has been designed.. Figure 7 
illustrates the effect of using XII on t.he series wit.h unstable seasonality of figure 6. In 
part (a) it is seen how the width of t.he filter is narrower t.han the spectral peak in the 
series. Part (b) shows how the underestimat,ion of the seasonal component has spillover 
effects, reflected by peaks in the seasonally adjusted series spectrum in the vicinity of the 
seasonal frequencies. For the case of t.he HP filter, figure 8 illustrates its application to 
the series with a relatively unstable trend of figure 6. (Since the HP trend filter becomes 
zero much before the first seasonal frequency, it will have no effect on the spectrum for 
the seasonal frequencies.) As seen in part (a) of the figure, the filter underestimates the 
peak around the zero frequency contained in the series, and part (b) shows the effect 
of this underestimation: the detrended. series will be overestimated, and will exhibit a 
strong cycle, induced entirely by the underestimation of the trend. The spurious cycle 
is associated with a period of approximatele 6 years. (It is worth mentioning that the 
quarterly Airline Model used to illustrate the danger of underestimation with the HP 
filter is in fact very close to the model appropriate for the US GNP series, which has been 
the center of attention in business cycle researchj see section 6.) The danger of spurious 
results induced by the HP filter have been often pointed outj examples are found in King 
and Rebelo (1993), Cogley (1990), Canova (1991), and Harvey and Jaeger (1991). 

(B) The lack of a proper statistical model limits in many important ways the 
usefulness of ad-hoc filters. First, it makes it difficult to detect the cases in which the 
filter is not appropriate for the series at hand. Moreover, if such is the case, there 
is no systematic procedure to overcome the filter inadequacies. Second, even when 
appropriate, ad-hoc filtering does not provide the basis for rigorous inference. Given 
that the filter yields an estimator of the unobserved component, it would be desirable to 
know the properties of the estimator, and in particular the underlying estimation errorSj 
as shall be seen later, this knowledge may have relevant policy implications. Further, ad­
hoc filters do not provide the basis for obtaining forecasts of the components, which can 
also be of interest. Forecasts and estimation (and forecasting) errors of the components 
will be discussed in sections 9 and 10. 

3 The Model-Based Approach 

To overcome the black-box character of ad-hOC, filtering, and the limitations mentioned 
in the previous section, over the last 15 years, new approaches to unobserved component 
estimation, based on parametric models, have been developed. These models are closely 
related to the AutoRegressive (AR) Integrated (I) Moving Average (MA) - or ARIMA 
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- models, popularized by Box and Jenkins (1970). They have been the subject of 
considerable statistical research having to do with practical applications, such as seasonal 
adjustment. They have also been used intensively in applied econometric research and, in 
fact, most of the references given in the Introduction contain model-based applications. 

Except for some nonlinear extensions (examples are Carlin and Dempster, 1989; 
Harnilton, 1989; Harvey, Ruiz and Sentana, 1992; Fiorentini and MaravaU, 1994), the 
vast majority of model-based approaches use a linear assumption, which I shall state as 
follows: 

Assumption 1: Each component in expression (1.1) can be seen as the outome of a 
linear stochastic process, of the type 

(3.1) 

where ait denotes a white-noise variable and the polynomial1/Jj(B) can be expressed as 
",,{B) = B,{B)/'I',{B). The polynomials 6;(B), B,{B), and 'I',{B) are of finite order. The 
roots of 6,{B) are on the unit circle; those of 'I',{B) lie outside and, finally, B,{B) has all 
roots on or outside the unit circle. For each i, the three polynomials are prime. • 

Throughout the paper, a white-noise variable will denote a zero-mean, normally, 
identically, and independently distributed variable. I shall refer to !lit as the p{ seudo)­
innovation associated with component i. The variable Zit = 6i{B) Xt represents the 
stationary transformation of Xt, and the parametric expression for the component will 
be 

'I',{B) 6;(B) Xi< = B,{B) a.;" (3.2) 

or, in compact form, 
<p,{B) Xi< = B,{B) a.;" (3.3) 

where <p,{B) is the product of the stationary and the nonstationary AR polynomials. 
The orders of the polynomials <p,{B) and B,{B) are p, and q" respectively. Since different 
roots of the AR polynomial induce peaks in the spectrum of the series for different 
frequencies, and given that different components are associated with spectral peaks for 
different frequencies, the following assumption will be made. 

Assumption 2: The polynomials <p,{B) and <p;{B), i � j, share no common root. • 
From (1.1) and (3.3), 

• B,{B) 
x, = L ".{B) a.;,; 

1=1 '1'1 
which implies, under Assumption 2, that Xt is also the outcome of a linear process, 
namely 

'I'{B) 6{B) x, = B{B) a" (3.4) 
• • 

where 6{B) = IT 6;(B), 'I'{B) = IT 'I',{B), B{B) is a polynomial of finite order in B 
i_I i==1 

(say, of order q), and at is a white-noise innovation. Expression (3.4) can be rewritten 
as 

<p{B) x, = B{B) a" (3.5) 
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and consistency between the overall model and the ones for the components implies the 

two constraints: 

• 
4>(B) II 4>,(B), i=1 

• 
B(B) a, � L B,(B) 4>n,(B) ai<, i=1 

where 4>n,(B) is the product of all AR polynomials excluding 4>,(B), that is 

• 
4>n,(B) � II 4>;(B). 

j=lU'I"'i) 

(3.6) 

(3.7) 

Assumption 1 allows for noninvertible components. I shall require, however, the 

model for the observed series to be invertible. Since noninvertibility is associated with 

a spectral zero, there should be no frequency for which all component spectra become 

zero. The following assumption guarantees invertibility of the overall series. 

Assumption 3: The polynomials (Ji(B), i = I, ... , k, share no unit root in common . 
• 

4 Characterization of the Components 

In the same way that there is no universally accepted definition of a trend or of a 

seasonal component, there is no universally accepted model specification for a particular 

component. When building the overall model, one can proceed by directly specifying a 

model for each unobserved component that in some way captures the prior beliefs about 

the component. This is the so-called Structural Time Series (STS) approach, and some 

basic references are Engle (1978), Gersch and Kitagawa (1983), Harvey and Todd (1983), 
and Harvey (1989); direct specification of the component model is also the most used 

approach in applied econometrics. Alternatively, since observations are only available on 

the overall series, one can proceed by identifying first a model for it, and then deriving 

appropriate models for the components that are compatible with the overall one. This 

is the so-<:aUed AruMA Model Based (AMB) approach, and basic references are Box, 

Hillmer and Tiao (1978), Burman (1980), Hillmer and Tiao (1982), Ben and Hillmer 

(1984), and Maravall and Pierce (1987). It is of interest to review some of the most 

common specifications used to characterize some of the most common components. 

a) Trend Component 

Consider the deterministic linear trend mt = a + Ilt, for which 

p" 
o. 
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A moving or stochastic trend will not satisfy (4.1) and (4.2) exactly at every period; 
instead, one can assume that the above relationships are perturbated every period by 

a zero-mean random shock, with a small variance. When the shock is a white-noise 

variable, (4.1) becomes 

Vmt = J.l+Omt, (4.3) 

where Omt is the white-noise shock. Its variance Vm will re8ect how important is the 
random element in the trend. Model (4.3) is the standard "random walk plus drift" spec­

ification, widely used in econometric applications (see, for example, Stock and Watson, 
1988). Alternatively, (4.2) can generate the stochastic trend model 

(4.4) 

similar to the one in Gersch and Kitagawa (1983). The STS approach of Harvey and 

Todd (1983) models the trend as a random walk plus drift process, 

'ilmt=Jl-t +Omt, (4.5.a) 

where the drift is also generated by a random walk, as in 

(4.5.b) 

with apt white noise. (Similar types of "second-order" random walks are also found in 

the trend models of Harrison and Stevens, 1976, and of Ng and Young, 1990.) Writing 

(4.5) as '\7' m, = a", + '\7 am" it is seen to be equivalent to an IMA(2, 1) model of the 
type 

'\7' m, = (1 - em B) am" (4.6) 

with the constraint em > O. Notice that as em approaches 1, model (4.6) tends to the 
standard random walk plus drift model (4.3). Since I' is the slope of the linear trend, 
the choice between an 1(1) and an 1(2) trend reflects thus the choice between a constant 

and a time-varying slope. Finally, in the AMB approach, the model for the trend will 
depend on the model for the observed series and, in particular, its order of integration at 
w = 0 will be the same. As an example for the Quarterly Airline Model (2.1), the trend 

follows an IMA(2, 2) model. 

In general, stochastic trends are modeled as in 

(4.7) 

with d = 1 or 2, and Wm(B) amt a low-order ARMA process. The same type of stochastic 
linear trend specification is often used to model economic variables that are treated as 

unobserved components. Some examples are the model for the permanent component in 
permanent/transitory-type of decompositions (Muth, 1960; Pagan, 1975; Clark, 1987; 
Stock and Watson, 1988; and Quah, 1990); the model for the unobserved planned pol­

icy targets (Weber, 1992); for technical progress (Slade, 1989); for productivity effects 
(Harvey, et al., 1986); or for the general "state of the economy" in Stock and Watson 
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(1989). (A more complete discussion of stochastic linear trends is contained in Maravall, 
1993a.) 

b) Seasonal Component and Seasonally Adjusted Series 

In most economic applications of unobserved components, the seasonal component is 
not explicitly dealt with. If the series contains seasonality, as many macroeconomic 
series do, the seasonally adjusted data are typically employed. Although not explicitly 
modeled, the seasonal component may certainly affect the results of the analysis, and 
some limitations associated with the use of seasonally adjusted data have been pOinted 
out (see, for example, Wallis, 1974; Ghysels and Perron, 1993; Miron, 1986; and Osborn, 
1988). As shall be seen later, moreover, the seasonally adjusted series are likely to 
be particularly inadequate for business cycle analysis. Since, within the model-based 
framework, it can be done in a straightforward manner, it is preferable to incorporate 
the seasonal component as part of the model to be estimated, jointly with the rest of 
the components {a good example, in the context of an econometric model, is provided 
by Harvey and Scott, 1994}. In the statistical applications having to do with economic 
policy or monitoring, explicitly modeling the seasonal component is certainly important, 
since seasonal adjustment is the most common application. 

The structure of the model for the stochastic seasonal component can be motivated 
in a manner similar to that used for the trend. Let s denote the number of observations 
per year, and mt a deterministic seasonal component (expressed as the sum of dummy 
variables or of cosine functions). Then the sum of s consecutive seasonal components 
will exactly cancel out, that is 

(4.8) 

where S = 1 + B + ... + Bs-1. If the component is moving in time, (4.8) cannot be 
expected to be satisfied at each period, although the deviation should average out and 
be relatively small. If we assume that equation (4.8) is subject 'each period to a random 
shock, a stochastic model for the seasonal component is obtained. If the shock, for 
example, is the white-noise variable amt, the model becomes 

(4.9) 

which is the model for the seasonal component in the STS approach of Harvey and Todd 
(1983), and also the seasonal model specification used in the approach of Gersch and 
Kitagawa (1983). There is no compelling reason for the deviations from zero in S mt 
to be uncorrelated and, for example, in the AMB approach, the seasonal component 
obtained in the decomposition of (2.1) is of the form 

where Bm{B) is of order 3. Similar types of models can be found in, for example, Aoki 
(1990), and Kohn and Ansley (1987). More generally, expression (3.1), with 6,{B) = S 
and 1./Js{B) a relatively low--order ARMA process, is indeed a frequent specification for 
the seasonal component. 
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Some departures are found in Burridge and Wallis (1984), where O,(B) is of a 

relatively high order (although parsimonious), or in Hylleberg et aI. (1990), where some 

seasonal harmonics are allowed not to be present, and hence some of the unit roots in S 
may be missing. In many of the earlier model-based approaches, the seasonal component 

was modeled as having V s in its AR part. In the presence of a trend, this specification 

would be ruled out by Assumption 2. In f""t, "'7 s includes the root (1 -B), which should 

not be a part of the seasonal component, otherwise the filter that yields the seasonal 

estimator would contain part of the trend. (A more complete discussion of the seasonal 

component model specification is contained in Maravall, 1989.) 

As for the seasonally adjusted series (also an unobserved component), its structure 

will depend on which components, other than t.he seasonal, are present in the series. 

For example, in the AMB decomposition of model (2.1), the seasonally adjusted series 

equals the sum of an IMA(2, 2) trend and a white-noise irregular. Thus the adjusted 

series will also follow an IMA(2, 2) model. In the STS decomposition of Harvey and Todd 

(1983), when no cycle is present, the adjusted series (the sum of an IMA(2, 1) trend and 

a white-noise irregular) also follows an IMA(2, 2) model. 

c) Cyclical Component 

There have been two different ways of characterizing the cyclical component. One has 

been as a periodic stochastic component, which can be rationalized. as in the two previous 
cases: It is well known that, for ¢t < 4 <P2. the difference equation 

Xl +¢IXt_l + <P2Xt-2 = 0 (4.11) 

displays deterministic periodic behavior of the type Xt = Aort cos (wt + Ad, where 

r � ..;q;; is the modulus and w � arccos [-¢d2v'¢2] is the frequency (in radians). 

For some values of 1>1 and ¢1., W will fall in the interval 0 < w < WI, where WI is the 

fundamental seasonal frequency Wl = 2:rr / 5, with period equal to s. Values of winside 

that interval will generate deterministic cycles of period longer than a year. As before, 

if the cyclical component is of the moving type, (4.11) will not be satisfied. exactly. If it 

is assumed. that the deviations from zero are white noise, the linear stochastic model for 

the ,cycle becomes an AR(2) model; more generally, allowing for some autocorrelation in 

the deviations, the model for the cycle can be written as: 

(4.12) 

where 8m(B) is a low-order MA polynomial. Models of this type will be referred to as 
"periodic cycles" , and they have been used. in many applications (examples are Jenkins, 

1979; Kitchell and Pena, 1984; Harvey, 1985; Crafts, Leybourne and Mills, 1989). 

In macroeconomics, however, the cycle is seldom seen as a periodic behavior in 

the previous sense. Typically, the cycle represents the deviations (that are not seasonal) 

from a long-term component or trend. The cycle is therefore measured as the residuals 

obtained. after detrending a seasonally adjusted. series. Of course, these residuals need. 

not exhibit periodic cyclical behavior, and may follow, in general, a stationary ARMA 
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process. What characterizes this concept of the cycle is that it represents in some sense 
the stationary variations of the series. I shall refer to this view of the cycle as the 
"business cycle" view. 

Within the model-based approach, a different concept of the cycle has been recently 
proposed by Stock and Watson (1989, 1991, 1993). The cycle is given by sequences of 
growth of an unobserved component (the state of the economy) above or below some 
threshold. The unobserved component is then modeled as a stochastic trend. 

d) Irregular and Transitory Component 

In statistical decompositions of economic time series, the series is often expressed as 
the sum of a trend, a seasonal, and an irregular component. In practice, the irregular 
component is obtained as the residual after the trend and seasonality have been removed. 
In the model-based approach, the irregular component is a stationary low--order ARMA 
process, quite frequently simply white noise. 

Transitory (or temporary) components are used in econometrics to capture short­
term variability of the series and are equal to the series minus its permanent component. 
The permanent component, as already mentioned, is typically modelled as a stochastic 
trend, and hence the transitory component can also be seen as the detrended (often 
seasonally adjusted) series. Again, the transitory component will be a stationary ARMA 
process; in econometrics, it is frequently modeled as a finite AR process. 

e) A Remark on Stationarity and Model Specification 

Nonstationarity of the trend and of the seasonal component is somewhat implied 
by the very nature of the component. H the trend is stationary, in which way can it 
measure the long-term evolution of the series? As for the seasonal component, the 
basic requirement that its sum over a year span should, on average, be zero, implies the 
presence of the operator S in the AR expression for the component, as in (4.10), and 
hence the presence of nonstationary seasonality. Fpr the case of the periodic cyclical 
component, if ¢2 = 1 the component will be nonstationary. In practice, however, most 
cycles detected using models of the type (4.12) are found to be stationary. 

The business cycle, the irregular, and the transitory components are modelled 
as stationary processes and, basically, can be seen as, the residual obtained after the 
trend and seasonal components have been removed fr�m the series. This common basic 
structure does not imply that, for the same series, the three components have to follow 
necessarily the same model. A simple example will illustrate the point: 

Let x, be a (nonseasonal) series, the output of the process ·(1 -.7 B) 'V x, � O{B) a" 
where 8(B) is a low--Qrder MA. If one is interested in short-term analysis (as is the 
case in statistical practical applications) and wishes to remove from Xl only white-noise 
variation, one may consider the model Xt = mt + ne, where 

{1 - .7B) 'Vm, a"" 

fi.t ant· 
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On the contrary, if interest centers in long-run analysis (as in some econometric appli­
cations), one may prefer an alternative specification of the type 

'V mt amt 

(1 - .7B) nt ,,"t. 

Both specifications are perfectly reasonable; the second one will yield a smoother sta­
tionary component. In fact, it is a virtue of the model-based approach that the purpose 
of the analysis can be incorporated in the specification of the models. 

5 Identification 

a) The General Problem 

Conditional on some starting conditions, and under Assumptions 1-3, the overall AruMA 
expression (3.5) determines entirely the joint distribution of the observations (or of the 
transformation 6(B) Xt). Since the parameters of (3.5) can be estimated consistently, and 
given that our interest centers on estimation of the unobserved components, for most of 
the remaining discussion I shall make the following assumption: 

Assumption 4: The polynomials ¢(B) and B(B), as well as the variance of at (Va) in 
model (3.5) are known. • 

Considering expression (3.6) and Assumption 2, factorization of ¢(B) directly yields 
the polynomials ¢,(B) of the unobserved components. The different roots may be al­
located to the different components according to the behavior they induce in the se­
ries. Thus, the AR polynomials of the components are identified and can be obtained 
from the AR polynomial in the model for the observed series. The parameters that 
remain to be determlned are those in the MA polynomials B,(B), i = 1, . . .  , k, and in 
the contemporaneous covariance matrix of the vector of p-innovations, namely those in 
E = [COY ("'" a;t)]. These parameters have to be obtained from the identity (3.7). Under 
the Normality assumption, if the system of equations that results from equating the au­
tocovariances of the left-hand side (l.h.s.) to the autocovariances of the. right-hand side 
(r.h.s.) of the identity (3.7) has a locally isolated solution for the parameters in B,(B) 
and E, the models for the components are identified. Obviously, without any additional 
assumption there will be an infinite number of possible specifications that will satisfy 
(3.7) (and the implied system of covariance equations). In order to isolate a particular 
solution (Le., in order to reach identification) additional restrictions are needed. 

b) Restrictions on the Covariance Matrix E 

On occasion, the components are allowed to be correlated; see, for example, Watson 
(1986) and Ghysels (1987). The most widely used decomposition that allows for cor­
related components is the one proposed by Beveridge and Nelson (1981). If Xt denotes 
an 1(1) variable such that 'V Xt has the Wold representation V Xt = w(B) at, then Xt 
can always be expressed as the sum of a permanent and a transitory component, where 
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the permanent component is given by 'V mt = W(l) at, and the transitory component 
is equal to n, � w'(B)a" where w'(B) satisfies (1 - B) w'(B) � W(B) - W(1). The 
Beveridge-Nelson decomposition can be seen as an ingenious decomposit!on of an 1(1) 
variable, but it does not properly fit into the unobserved components framework, since 
the components are, in fact, observable. This is easily seen by rewriting, for example, mt 
as Tnt = W(l) W(B)-l Xt, and hence both components are defined as linear combinations 
of the observed series. The assumption, besides, that the permanent and transitory com­
ponent share, at every period, the same innovation is a strong assumption, of limited 
appeal. Instead, I shall assume that what causes the underlying long-term evolution of 
an economic variable is different from what causes it to display seasonal variation, and 
from what causes the transitory deviations. Accordingly, the following constraint will be 
imposed. 

Assumption 5: The p-innovations ait and ajt are uncorrelated for i :j:. j. That is, 

E � diag (Vi) . •  

Assumption 5 is a standard assumption in statistical practical applications. The 
choice between correlated and orthogonal p-innovations, as shall be seen in section 8, 
is less drastic than it may appear. Ultimately, the component estimators will be linear 
projections on the observed times series Xt, and hence linear filters of the innovations 
at. In fact, the Beveridge-Nelson decomposition can be seen as the estimators that are 
obtained. for a particular permanent/transitory decomposition with uncorrelated com­
ponents (Watson, 1986). 

c) Additional Restrictions 

Assumption 5 is not enough to identify the model, and more restrictions are needed. 
The discussion will be clearer if we look at a particular example, namely the quarterly 
Airline Model (2.1). Assume we wish to decompose Xt into a trend (xmt), a seasonal 
(x,.), and an irregular component x." as in (1.1). Since the AR part of (2.1) can 
be rewritten V V4 = V2 S, the trend and seasonal components can be assumed to be 
the outcomes of the models V2 Xmt = 8m(B) llmt, and S Xst = 8s(B) ast, respectively; 
the irregular component can be assumed to be white noise, Xut = am. Thus, letting 
O(B) � (1 - OlB) (1 - 0, B'), consistency with the overall model (i.e., equation (3.7)) 
implies 

(5.1) 

Since the l.h.s. of (5.1) is an MA of order 5, we can set Om(B) and O,(B) to be of order 2 
and 3, respectively, so that the three terms in the r.h.s. of (5.1) are also of order 5. The 
component models will then be of the type: 

(5.2.a) 

(5.2.b) 

- 2 1 -



and x .. = a,.,. Equating the covariances of the l.h.s. and the r.h.s. of (5.1), a system of 6 
equations is obtained. These equations express the relationship between the parameters 
of the overall model and the unknown parameters in the component models. Since the 
number of the latter is 8 (Om,l. (Jm,2. O.,I t  9,,2. 0 •. 3• Vm) V., Vu), there is an infinite 
number of structures of the type (5.2) that are compatible with the same model (2.1). 
The identification problem is similar to the one that appears in standard econometric 
models (see, for example, Fisher, 1966). The model for the observed series is the reduced 
form, whereas the models for the components represent the associated. structural form. 
For a particular reduced form, there is an infinite number of structures from which it 
can be generated. In order to select one, additional information has to be incorporated. 

The traditional approach in econometrics has been to set a priori some parameters 
in the structural model equal to zero (see, for example, Theil, 1971). Identification by 
zero-coefficient restrictions in unobserved component models has been analyzed in Hotta 
(1989). The ith component model is identified if the order of its AR polynomial (Pi) 
exceeds that of its MA polynomial (qi). In fact, setting, for example, ()m,2 � 0 and (}11,3 = 
0, the system of 6 equations has now 6 unknowns, and the model becomes identified. 
This way of reaching identification is the approach most widely used in practice. For 
example, the STS decomposition would set a priori components with Pm = 2 > qm = 1 
and p, = 3 > q. = 1, Pauly (1989) sets Pi = qi + 1 for all components (apart from 
the noise Xut), and in econometrics, the practice of using random-walk trends (with 
p = 1 > q = 0) guarantees that the trend component is identified. But if traditional 
econometric models rationalize setting a priori some coefficients equal to zero on the 
grounds of economic theory (for example, some variable may not affect demand), no 
such rationalization holds for the unobserved component case. 

However, despite the lack of a priori information on the components MA parame­
ters, other types of considerations may be brought into the picture. In the decomposition 
of Xt into components, let Ut represent a noise component, and assume that for all com­
ponents, except for Ut, Pi � qi in (3.3). Thus, when P � q in the overall model, Ut 
will be white noise; when q > p, Ut will be an MA(q - p), and hence colored noise. 
Then, consider all possible model specifications (under Assumptions 1-5) that satisfy 
the identity (5.1), and have nonnegative component spectra. For a given model for the 
observed series, they form the set of "admissible" decompositions. Different admissible 
decompositions have different model specifications for the components, and therefore will 
display different properties. Since, as mentioned earlier, the component is a tool that 
we devise, we.....can choose, among the different admissible decompositions, the one that 
presents certain desirable features. As I proceed to show, this is the approach followed 
in the AMB method to achieve identification. 

In the decomposition of model (2.1) into three orthogonal components as in (5.2), 
the sum of the components spectra should be equal to the spectrum for the observed 
series. Figure 9 displays (with the continuous line) the spectra of the components of 
an admissible decomposition for a particular case of model (2.1), namely that given by 
(6.1). Let 9m(w) denote the trend component spectrum. By noticing that its minimum is 
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9m (1f) = .1, it follows that Xmt can be further decomposed into a trend and an orthogonal 

white-noise irregular, with the variance of the latter in the interval (0, .1). Removing 

white noise with variance .07 from Xmt, and assigning this noise to the irregular compo­

nent, another admissible decomposition is obtained, and it is given by the dotted line 

in figure 9 (the seasonal component has not changed). IT x:nt and X�t denote the trends 

in the first and the second decompOSitions, respectively, then x:nt can be expressed as 

x:nt = X�t + nt, where � is white noise, orthogonal to X�t. Thus the trend x� can 

be seen as obtained from the trend x;"t by simply adding white noise. The latter trend 

would seem preferable since it contains less noise. 

The previous consideration leads to the idea of choosing, within the set of admissi­

ble decompositions, the one that provides the smoothest trend. Since the spectrum of a 

trend component should be monotonically decreasing in w, its minimum will be obtained 

for W = 7r. IT this minimum is larger than zero, further white noise could still be removed 

from the trend. Therefore, the noise-free condition implies 9m(-7f) = 0, which is equiva.­

lent, in the time domain, to the presence of the root B = -1 in the polynomial Bm(B). 
Components from which no additive noise can be extracted were first proposed by Box, 

Hillmer, and Tiao (1978), and Pierce (I978)j they have been termed "canonical compo­

nents" . The canonical component has the important property that any other admissible 

component can be seen as the canonical one plus superimposed (orthogonal) noise. If an 

admissible decomposition exists, moreover, the canonical requirement identifies the com­

ponent, since the canonical component is uniquely obtained by simply subtracting from 

any admissible component spectrum its minimum. As Hillmer and Tiao (1982) show, 

the canonical condition also minimizes the variance of the component p-innovation amtj 
since Gmt is the source of the stochastic variability, the canonical component can be seen 

as the closest to a deterministic component that is compatible with the stochastic struc­

ture of the series. (Some additional interesting properties of canonical components will 

be seen in section 10.) 

It is worth noticing that the random-walk trend, popular in econometrics, is not 

a canonical component. In particular, for the model 'iJ Xt = at with Va = 1, Xt can be 

decomposed as in (1.2), with ffit and nt orthogonal, the first given by 

Vmt = {I + B) amt (Vm = .25), (5.3) 

and nt white noise, with variance Vn = .25. Model (5.3) is the canonical trend within a 

random-walk trend. 

Back to the admissible decomposition of figure 9, and noticing that the spectrum 

of the seasonal component has a positive minimum, it follows that that component can, 

in turn, be expressed as the sum of a smoother seasonal component and an orthogonal 

white noise. Again, maximizing the smoothness of the component leads to a noninvertible 

component model. As with the trend, any admissible seasonal component can be seen 

as the canonical one with superimposed noise, and hence, if an admissible component is 

available, the canonical one can be trivially obtained. Finally, if, in the decomposition 
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of (2.1), the canonical trend and seasonal components are specified, then the variance of 
the irregular (white-noise) component is maximized. 

In the time domain analysis, the canonical requirement replaces the zero-coefficient 
restrictions with more general constraints among the coefficients. A canonical trend 
implies Om (-1) = 1 - Om,l + Om,2 = 0, and if, for example, the spectral zero of the 
canonical seasonal component occurs at w = 0, then fJ, (1) = 1 + fJt,l + fJ$,2 + fJ,,3 = o. 
The two constraints, added to the system of6 covariance equations associated with (5.1), 
provide now a system of 8 equations which can be solved for the 8 unknown parameters, 
and hence the model becomes identified. 

Other solutions to the identification problem have been suggested, having to do for 
example with the different size of the component estimation error for different admissible 
decompositins (see, for example, Watson, 1987, and Findley, 1985). To this issue I shall 
return in section 10; what is worth stressing now is that the underidentification problem 
I have discussed affects equally the AMB and the STS approach. To see how it applies 
to the latter, let the component models be of the type (3.3), and �ompute, for every i, 
Ie; = ming, (w), w E  [0, III, and set Vu = L:, Ie;. Then the set of admissible decompositions 
is given by the different ways of allocating a white-noise component with variance V" 
among the different components (preserving the nonnegativity of the spectrum). All 
admissible decompositions imply, of course, the same overall model, and the particular 
STS model identified can be seen as the choice of a particular distribution of the noise. 

Although the examples will often use canonical components, the general discussion 
that follows makes no assumption on the particular identification criterion used. It 
applies to any unobserved component model under Assumptions 1-5, independently of 
whether it is of the STS type or it has been derived within an AMB approach. 

6 An Example 

a) The Quarterly US GNP Series 

I shall illus�rate some of the previous discussion and, in particular, the AMB decom­
position with the series that has attracted more attention in the business cycle (and 
permanent component) literature: the quarterly series (Yt) of (nominal) US GNP. I shall 
consider the original, not seasonally adjusted, series, and seasonality will explicitly be a 
part of the modeL (The series contains 140 observations, from Jan 51 to Dec 85, and 
was kindly supplied to me by Fabio Canova.) Letting x, = log y" the model 

V V, x, = ( 1 - .702 B') a" (6.1) 

provides a very good fit. The residual standard deviation is (Ja = .015, and the only 
anome.1y is a slightly high Kurtosis value of 4.02 (SE = .42), due to two outlier obser­
vations, of opposite signs, for 1958/1 and 1984/1. Following the procedure of Chen and 
Liu (1993), the two are identified as temporary changes. Correcting for the outliers, the 
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model varies very little with respect to (6.1). Since the two outliers are of moderate size 

and have little effect on the model, for illustration purposes we opt for the uncorrected 

series. 

Model (6.1) is a particular case of (2.1), and hence the series Xt can be expressed 

as the sum of a trend, a seasonal, and an irregular (mutually uncorrelated) components, 

with models as in (5.2). We proceed. to show a simple way to obtain, from (6.1), the 

unknown parameter values of (5.2) for the canonical specification of th� components. 

Let « B) denote a finite polynomial in B, and denote by "( (, B) the product 

"( (, B) = « B) « F) = "(0 + L "(i(Bi + Fi). 
i 

(-y is the Auto Covariance Generating Function, ACGF, of the process ((B) et, with Ve = 

I).  Denote by G« , w) the Fourier transform of "(, that is 

G«, w) = go + L gi cos (j w), 

where 90 = "(0, and gi = 2"(i (j -f 0). (Note that G is the spectruro of the same proceas 

« B) e,.) From (5.2) and (3.5) we have the identity: 

G (9, w) 
G (</>, w) 

where the only unknowns are the g-parameters in 

G(9m, w) 

G(9" w) 

9m,O + 9m,1 cosw + 9m,2 cos 2uJ 
g"o  + g,,1 cosw + g.,2 cos 2w + g,,3 cos 3w, 

(6.2) 

and the constant k = Vu. Removing denominators in (6.2), and using the relationship 

cos (r,w) cos (r,w) = {cos (r,-r,)w)+cos (r,+r,)w}j2, T, > r" an identity is obtained 

between two harmonic functions of the type E;=o 9j cos (j w). The function in the Lh.s. 

of the identity is known, and the one in the r.h.s. contains the unknown parameters. 

Equating the coefficients of cos (j w), j = D, . . .  , 5, in both sides of the identity yields a 

linear system of 6 equations in 8 unknown parameters. A simple way to obtain a first 

solution is by setting, for example, Om,2 = 0,,3 = D. which implies 9m,2 = 9,,3 = D. Solving 

DOW the system of equations yields 

G (9!!" w) 

G (�,w) 

1.424 - 1.418cos w, 
.036 + .044 cos w + .014 cos 2 w 

(6.3) 

and k = v.!' '" O. Replacing these values in (6.2), a first decomposition is obtained; since 

nODe of the three spectra in the r.h.s. of (6.2) is negative for wE[D, 7rJ. the decomposition 

is admissible. It is given by 

g!!, (w) 

g� (w) 
G(9!!" w)jG(V', w) 

G(�, w)jG(S, w) 
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and II;? '" O. Let Ie", = ming! (w) and k. = ming� (w), for we[O, "I. Then the canonical 
trend and seasonal components are obtained through 

9m {W) 

9. (w) 
9! (w) - Ie", 
9� {W) - k, 

and Vu = V� + km + k$o To find the ARIMA expression for each component, one simply 
needs to factorize the corresponding spectrum (an easy and accurate procedure for spec­
tral factorization is described in Appendix A of Maravall and Mathis, 1992). It should be 
pointed out that knowledge of the component models, although of interest, is not needed 
in order to obtain the component estimation filter, which can be trivially· computed. from 
the spectra (see section 7). 

For the US GNP series, the models obtained. for the canonical components are: 

'\7' Xm, = (I + .085B - .915B') a.m, Vm = .194V. 

S x., = (I + .996B + .338B' - .456B3) a", V; = .000V. 

(6.5.a) 

(6.5.b) 

and Vu = . 18211". The trend MA polynomial can be factorized as (I - .915B) (I + B), 
and hence the trend spectrum has a minimum of zero for w = 7r. The zero in the 
seasonal component spectrum occurs for w = . 76rr. As the variances of the p-innovations 
indicate, the series is characterized by a relatively strong stochastic trend, and a fairly 

'
stable seasonal component. Since the variance of the white-noise irregular is 18% of the 
variance of the one-period-ahead forecast error of the series, the stochastic variability 
of the seasonal and (in particular) of the trend component contribute in an important 
way to the error in forecasting the series. 

The model for the seasonally adjusted series, Xdt 1 is easily derived from Xdt = 
Xmt + Ut. It is an IMA(2, 2) model, given by 

'\7' Xd' = (I - .921B + .005B') ad', Vd = .783 V •. 

b) Some Comments on the Specification of the Component Model 

(6.5.c) 

I. From (6.3) and (6.4), the first admissible decomposition yielded the trend spectrum 

o 
( ) 

_ 1.424 - 1.418 cos w 
9m w - 6 - 8 cos w + 2 cos 2w' 

whiCh, upon factorization, implies the IMA(2, 1) model: 

v.:: = .777 V • .  

The model is as (4.6), and can be expressed as an STS secOnd-order random walk 
model of the type (4.5), with Vm = .70911" and V" = .OO6V •. Since estimation may 
well indicate that VI-' can be accepted as zero, the trend model would again be given by 
the random-walk plus drift model, in accordance with the results in Harvey and Jaeger 
(1991). Notice, however, that restricting the order of the MA implies a considerable 
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increase in the variance of the p-innovation when compared to that for the canonical 
trend (.777 versus .194); the canonical trend is therefore considerably smoother. 

2. Compatibility with the observed series model implies that an overall ARI�A 
model with 'V V 4 in its AR part will always produce an 1(2) trend. Yet if we consider 
(6.5.a), factorize the MA part, and cancel the MA root .915 with one of the unit AR 
roots, the trend model becomes V Xmt � (I + B) a"" + /l, an 1(1) model, similar to the 
"trend in a random-walk trend" of equa.tion (5.3). FUrthermore, looking at the model 
for the seasonally adjusted series given by (6.5.c), it is immediately seen that it can be 
approximated by V Xdt = adt + p., and hence is very close to the standard "random-walk 
plus drift" trend used in econometrics. 

The near cancellation of a unit root in the trend of ARIMA models with a V 'il, 
stationarity-inducing transformation, is often found in practice, and explains the a.ppar­
ent discrepancy between the 1(1) models of econometricians and the 1(2) trends of most 
statistical decompositions (see Maravall, 1993a). For the usual number of observations 
in quarterly or monthly series, it is most unlikely that sample information can reliably 
discriminate between the two models: 

(I - .92B) a"" 

Omt + p.. 
(6.6) 

(6.7) 

Model (6.6) can be expressed as model (6.7) by replacing the constant slope /l by a 
slowly changing /.Lt. This flexibility is achieved at the cost of losing one observation, due 
to the additional differencing. Be that as it may, the short-term adaptability of the slope 
makes model (6.6) more suitable for short-term analysis; on the other hand, it is likely 
that this short-term flexibility is unsuitable for long-term inference. Since statistical 
practical applications are aimed at short-term monitoring, while the applications of 
unobserved. component models by econometricians look at longer-term horiZOns, the use 
of specification (6.6) by the former and (6.7) by the latter seems justified. Still, the use of 
ARIMA models for long-term inference in economics has often been questioned.; see, for 
example, Cochrane (1988), Quah (1990), Christiano and Eichenbaum (1989), Diebold 
and Rudebush (1991), and MaravaIJ (1993b). 

3. Setting, without loss of generality, Vo. = I, it follows that, in the canonical decom­
position of model (2.1), although the model for the trend depends on two parameters, 
the model for the seasonal component on 3, and the model for the irregular on 1 ,  ·all 
those parameters are simply functions of 81 and 84- It can be seen that different values 
of 81 and 84 have little effect of the MA parameters of the trend and seasonal component 
models, and a strong effect on the variance of the component p-innovations. More sta­
ble trends (i.e., larger values of (1) yield smaller values of Vm, and more stable seasonal 
components (i.e., larger values of (4) yield smaller values of v,. 

4. The AMB decomposition of the GNP series is meant to represent a reasonable de­
composition; other specifications may be reasonable as well. What seems clear, however, 
is that the series does not contain much evidence of periodic cycles; there is none in the 
model, none in the residuals. 
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7 Optimal Estimation of Unobserved Components 

a) Minimum Mean-Squared Error Estimators 

For the model consisting of equation (1.1) and the set of assumptions 1-5, the next 
assumption defines the estimator of interest. 

Assumption 6: Denote by Xr = [Xl. " ' , XT] the series of available observations. The 
optimal estimator of the unobserved component Xit is given by 

Assumption 6 is a standard assumption in model-based estimation of unobserved com­
ponents; together with the other assumptions, it implies that XitlT is a linear projection 
and will be the MMSE estimator. 

There are two well-known procedures to compute the above conditional expecta­
. tion. One is based on the Kalman filter; the other, on the Wiener-Kolmogorov (WK) 
filter. Both were first derived for stationary series (see, for example, Whittle, 1963, and 
Anderson and Moore, 1979), and subsequently extended to the nonstationary case (see 
Cleveland and Tiao, 1976; Bell, 1984; Ansley and Kohn, 1985; Maravall, 1988b; De Jong, 
1988; among others). 

The Kalman filter approach starts by setting the model in a state-space format, 
and runs a set of recursions after having established appropriate starting conditions. (For 
nonstationary models, those conditions have been the subject of considerable research; 
see Kohn and Ansley, 1986; De Jong, 1991; Bell and Hillmer, 1991; and Gomez and 
Maravall, 1993.) The Kalman filter provides an easy to program, computationally effi­
cient algorithm, and is used in estimation of unobserved components in, for example, the 
approaches of Harrison and Stevens (1976), Engle (1978), Gersch and Kitagawa (1983), 

Harvey &Ild Todd (1983), Burridge and Wallis (1985), Dagum and Quenneville (1993) 

and, in general, in the STS methodology. It is also the standard procedure in most econo­
metric applications; a good general reference is Harvey (1989). Although less popular, 
the WK filter is also used on occasion. Examples are found in Nerlove, Grether and Car­
valho (1979), Sargent (1987) and, in particular, in the AMB methodology (see.Burman, 
1980). Ultimately, the two filters provide computationally efficient ways to obtain the 
same linear projection (that implied by the conditional expectation of Assumption 6). 

The WK filter offers the advantage of providing more information on the structure of 
the filter and is better suited for analytical discussion; for this reason, it shall be uS¢ for 
the rest of the paper. The discussion, however, will also apply to components estimated 
with the Kalman filter, although there may be some typically very small discrepancies 
due to the effect of different starting conditions. 

b) The Wiener-Kolmogorov Filter 

When considering estimation of a component, it will prove convenient to work with the 
two component representations (1.2), where mt denotes the component of interest, and 
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nt is the sum of the remaining components. The two components follow the models:' 

<Pm(B) m, � 8m(B) ","" 

<Pn(B) '" � 8n(B) a"" 

(7.1.a) 

(7.Lb) 

and (3.6) and (3.7) become <P(B) � <Pm (B) <Pn(B), and 8(B) a, � 8m(B) <Pn(B) am' + 
8n(B) <Pm(B) a",. It will facilitate the presentation to begin by considering the case of 

a complete realization of the series Xt. extending from t = -00 to t =00. Denote this 

realization by X. Assume, first, the case of a stationary series (and hence stationary com­

ponents), and write (3.5) and (7.1) as x, � >I1(B) a" m, � >I1m(B) ","" '" � >I1n(B) a",. 
Then, the WK filter is given by 

_ ( I )  >11m (B) >11m (F) m, � m,1� � E m, X � Ie". 
>I1(B) >I1(F) 

x" (7.2) 

where km. = Vm/Vo.. Replacing the w-polynomials by their rational expressions, after 

cancellation of roots, it is obtained that 

m, � v(B, F) x" 

(B F) � . 8m(B) 8m (F) ¢n(B) <Pn(F) v ,  .,.". 8(B) 8(F) , 

(7.3.a) 

(7.3.b) 

where v(E, F) is the WK filter. It is seen that no AR roots appear in the denominator 

of the filter, which, under Assumption 3, will always converge. In fact, expression (7.3) 

also yields the optimal estimator of Tnt in the (unit roots) nonstationary case. Direct 

inspection of v(B, F) shows that the filter is centered at t, symmetric, and convergent 

in B and F. In particular, the filter will be finite when the overall model (3.5) is a finite 

AR process. Expression (7.3.b) shows that the filter is precisely the ACGF of the ARIMA 

model 

(7.4) 

where Var (bt) = km.. Assumption 3 guarantees stationarity; as for invertibility, the filter 

that yields Tnt will be noninvertible when � is nonstationary. 

Since' v(B, F) is a 2-sided. filter, it will be subject to the problem of preliminary 

estimation and revisions mentioned. in section 1. This problem will be addressed. in 

section 9j preliminary estimation typically affects a few years at the beginning and at 

the end of the series, and the historical estimator can.be assumed to apply to the center 

years. For example, in the quarterly US GNP series of section 6, it can be seen that 95% 

of the variance of the revision in the trend concurrent estimator has been completed. 

after 3 years of additional data. Thus, in the 35 years of available data, the historical 

estimator can be assumed. to be approximately valid for the 116 central observations. 

By construction, the WK filter adapts itself to the series under consideration, and 

this adaptability avoids the dangers of under and overes�imation mentioned in section 2, 

and associated. with ad-hoc filtering. As an illustration, if the AMB method is used in 

the two extreme cases of unstable seasonality and unstable trend of figure 6, then figure 
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7 becomes figure 10. For the series with a highly stochastic seasonal, the filter adapts to 

the width of the seasonal peak, and the seasonally adjusted series does not display any 

spurious spectral peaks, as was the case in figure 7b. For the unstable trend case, figure 

8 also displays the AMB trend filter. From its closeness to the spectral peak around 

w = 0 in the series model, it is apparent that no spurious cycle will be induced in the 

detrended series. 

It is worth mentioning that many ad-hoc filters, including the HP and the XlI 
ones, have been given an (approximate) model-based interpretation under Assumptions 
1--6. Examples can be found in Cleveland and Tiao (1976), Tiao (1983), Burridge and 

Wallis (1984), King and Rebelo (1993), and Cogley (199O). In general, for a symmetric 

ad-hoc filter, it will be possible to find an approximation derived from a model-based 

approach under Assumptions 1-6. 

8 The Structure of the Optimal Estimator 

a) The Model for the Estimator 

Consider the optimal estimator (7.3), with v{B, F) given by (7.4). Using (3.5), the 

estimator of mt can be expressed in terms of the innovations (at) in the observed series 

as 

<Pm (B) mt = 8m{B) am (F) at, 

where am(F) is the (invertible) forward filter 

(F) = " 8m{F) <Pn{F) 
am "'on 8{F) . 

(8.1.a) 

(8.1.b) 

Comparing (7.1.a) with (8.1.a), it is seen that the expressions for the unobserved 

component (mt) , and for its estimator (mt), share the same AR polynomial. The 

stationarity-inducing transformation is the same for both, and component and estimator 

have the same order of integration. Moreover, the two models (7.1.a) and (8.1.a) share 

the same polynomials in the operator B. The basic difference between the two models 

is the presence of the polynomial am{F) in the model for the estimator. This forward 

filter expresses the two-sided. character of the WK filter, that is, the dependence of the 

final estimator rht on innovations posterior to period t (this dependence goes to zero as 

the time distance increases.) 

In any event, the models for mt and mt are structurally different. They will display 

different variances and covariances (for the stationary transformation), and different 

spectra. These differences are illustrated in figure 11, which compares the component 

and estimator spectra for the trend and seasonal components of the US GNP series. It is 

seen that the spectrum of a component is similar to that of its estimator, except for the 

dips displayed by the latter at the frequencies for which the other components present 

spectral peaks. 
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To understand the differences between the component spectrum and that of its 
estimator, from (7.3), the spectrum of fflt is equal to 

where 

g", (w) = R' (w) g, (w), 

R w} = gm (w) = 1 ( 
g, (w) 1 +  I/r (w) , 

(8.2) 

(8.3) 

and T (w) = 9m (W)f9n (w). Since mt is the component of interest, we shall refer to it 
as the signal; accordingly, 1tt will be denoted the noise. Therefore, r (w) represents the 
signal-to-noise ratio, and MMSE estimation proceeds as follows: For each w, it computes 
the signal-to-noise ratio. If the ratio is high, then the contribution of. that frequency 
in the estimation of the signal will also be high. Thus, . for the US GNP example, if 
the trend is the signal, then R(O) = I, and the frequency w = 0 will only be used for 
trend estimation. Since the noise, in this case, contains seasonal nonstationarity, for the 
seasonal frequencies, R(w) = 0, so that these frequencies are ignored in computing the 
trend. The associated spectral zeroes in 9m. (w) explain the dips in the spectra of figure 
11a; they also imply that model (8.1.a) is noninvertible. This noninvertibility of the 
estimator is also evident from the unit seasonal roots of <Pn(B} in (8.l.b), which appear 
in the MA part of model (8.l.a). 

b) Structural Underestimation and Bias Towards Stability 

Since r (w) 2: 0, then O :S  R(w} :s I, and considering that (8.2) and (8.3) imply g",(w} = 
R(w) 9m(w) , it follows that the estimator will always underestimate the component. The 
amount of that underestimation depends on the particular model under consideration. 
From (8.2) and (8.3), it can be seen that g",(w}/gm(w} is an increasing function of Vm/V.. 
Therefore, the relative underestimation will be large (Le., 9m.(W)/9m(w) will be small) 
when the variance of the component innovation V:n is relatively smalL Table 1 illustrates, 
for the two examples of figure 6, the effects of underestimation of the seasonally adjusted 
series (f'1tt) and of the seasonal component (nt), where underestimation is measured as 
the ratio of the variance of the stationary transformation of the estimator to that of the 
component. 

It is seen that underestimation of the component will be particularly intense when 
the stochastic variability of the component is already small. Thus the estimator will 
always be biased towards producing a series more stable than the component. As a 
consequence, even though the component and its estimator have the same order of in­
tegration, the bias towards stability displayed by the latter should warn against using 
trends or seasonally adjusted series to test for difference versus time stationary series. 
It is also worth noticing that departures between estimator and component will be large 
when the component is of little importance, and viceversa. 

In the model-based approach, the possibility of deriving the model that generates 
the component estimator can be a useful tool for diagnosis. In a particular application, 
the theoretical variance and AutoCorrelation Function (ACF) of the stationary trans­
formation of the estimator can be easily obtained from (8.1), and compared. to those of 
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Table I: Underestimation of the Component (V. = I) 

Stable m" Unstable mt. 
unstable � stable nt 

m, n, m, n, 
Variance of the 

.08 .20 .78 .01 
component innovation 

Estimator var. as a 

fraction of component .09 .77 .85 .08 
var. (station. transform.) 

the estimate actually obtained. As seen in Maravall 
"
(1987), large departures between 

the theoretical and empirical values would indicate misspecmcation of the overall model 

and, as a consequence, of the estimation filters employed. 

As an illustration, table 2 compares, for the US GNP series example, the theoretical 

and empirical variances of the stationary transformation of the estimated components 

for two filters: one is a "correct" filter, given by the AMB approach applied to model 

(6.1); the other one is the AMB filter of the stable trend-unstable seasonal example of 

figure 5 (i.e., an "incorrect filter" ).  The variances have been standardized by dividing 

them by the variance of V V 4 Xh and the reported Standard Errors (SE) are asymptotic 

a.pproxima.tions (under the assumption tha.t the underlying model is the one generating 

the filter). The table clearly indicates that, for the correct filter, the empirical variances 

are in close agreement with the theoretical ones; on the contrary, the two variances 

strongly disagree when the incorrect filter is employed. 

Table 2: Variance of the Stationary Transformation of the Estima.tor 

Correct Incorrect 

Filter Filter 

Trend Theoretical Value .102 .003 

Estimator Estimate (SE) .!l1 (.012) .029 (.0004) 

Seasonal Theoretical Value .001 . 143 

Estimator Estimate (SE) .001 (.0001) .208 (.017) 

Irregular Theoretical Value .052 .001 

Estima.tor Estimate (SE) .040 (.006) .002 (.0001) 

Seasonally Adjusted Theoretical Value .825 .009 

Series Estimator Estimate (SE) :645 (.100) .039 (.001) 

c) Covariance Between the Estimators 

Since the sum of the components is equal to the sum of their estima.tors, the under-
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estimation of the component implies that, while t.he crosscovariances between different 
components are always zero, this will not be the case for the estimators. For the two com­
ponent decompositions (1.2), let r(B, F) denoh' t.he Crosscovariance Generating Func­
tion (CCGF) between m, and n..; that is, r(B. F) = L:�_� "Ij Bj, where "Ij = E(m, n,-j). 
Then, from (8.1) and the equivalent expression for nt, 

r(B F) = (" k, )  8",(B) "m(B) 8n(F) "n(B) V. 
, """ . </Jm(B) </In(F) 4, 

or, after simplification, 

r(B F) = 8",(B) 8n(B) 8m(F) 8n(F) (V. V. IV. ) , 8(B) 8(F) m n 4 '  (8.4) 

Therefore, the CCGF between the two estimators is symmetric and convergent; in par­
ticular, it is equal to the ACGF of the model 

(8.5) 

where 9t is white noise with variance (Vm V",)/Va. Even when the components are non­
stationary, the crosscovariances between the estimators are finite. 

The discrepancy between theoretically uncorrelated components and the existence 
of nonzero crosscovariances between their MMSE estimators in the model-based. approach 
has been a cause of concern (see, for example, Nerlove, 1964; Granger, 1978; and Garcia 
Ferrer and Del Hoyo, 1992). This concern, however, should be somewhat limited: for a 
complete realization of the series, the fact that the crossvariance is finite implies that, 
when at least one of the components is nonstationary (overwhelmingly the case of applied 
interest), the crosscorrelation between the estimators is also zero. Thus, model-based 
MMSE estimators of uncorrelated components are also uncorrelated.. 

It is nevertheless interesting to notice that, although the estimators (in levels) 
will be uncorrelated., their stationary transformations will be correlated. This peculiar 
feature can be exploited at the diagnostics stage in a manner similar to that used. for the 
ACF of the estimators. Corresponding to the particular model at hand, the theoretical 
crosscorrelations between the stationary·transfortI.lation of the estimators can be easily 
derived from (8.4) or (8.5), and then compared to the ones obtained empirically. As 
an illustration, table 3 displays the theoretical value and the estimate obtained for the 
lag-Q crosscorrelation between the components for" the US GNP series, using the correct 
and incorrect filters of table 2. Again, for the correct filter, the theoretical and empirical 
values are quite close. Since the incorrect filter is aimed. at capturing a more stable 
trend than the one present in the GNP series, it underestimates the GNP trend, which 
contaminates then the seasonal and irregular estimates. 

d) The Component Pseudoinnovation 

Estimation of the component p-innovation, amh can be of some interest (an example 
is found in Harvey and Koopman, 1992), and the model-based. approach can provide 
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Table 3: Crosscorrelation Between the Stationary Transformations of 
the Estimators 

Correct Incorrect 
Filter Filter 

Between Trend and Theoretical Value - .22 - .30 
Seasonal Estimators Estimate - .21 - .63 
Between Trend and Theoretical Value - .01 - .36 
Irregular Estimators Estimate - .09 - .71 

optimal estimators of the component p-innovations, tlmt. Taking conditional expecta.­
tions in (7.l.a), it is obtained that ¢m(B)m. � Om(B) a,." and considering (8.1)., after 
simplification, the optimal estimator of the p-innovation can be expressed as 

- _ V. Om(F) ¢.(F) 
a",t - m 

O(F) 
at, 

a. convergent forward filter of the innovations in the observed series. Therefore, the 
estimator of the p-innovation has a stochastic structure quite different from that of the 
white-noise p-innovation in the model. In fact, comparing the filter a.bove with (7.4), it 
is seen that the ACGF of the standardized p-innovation estimator is precisely the WK 
filter. 

e) Implications for Econometric Analysis 

The properties of the optimal estimator have two relevant implications for applied econo­
metric work. One has to do with the use of seasonally adjusted series (also of trends and 
of detrended series) in univariate or vector AR models, and in some commonly used. un­
observed component models. The second implication concerns the practice of identifying 
cycles by detrending seasonally adjusted series. 

From expression (8.1), which expresses the estimator as a function of the innova­
tions in the .observed series, it is obtained that 

(8.6) 

The MA part in (8.6) will be noninvertible when Om(B) and/or ¢.(B) contain one or 
more unit roots. As seen before, Bm(B) will contain a unit root when mt is a canonical 
component. More relevantly, ¢n(B) will contain unit roots whenever 7lt is nonstationary. 
Thus, for example, if Tnt denotes the seasonally adjusted series· of the US GNP example 
of section 6, then, as implied by (6.5.b), ¢.(B) is the polynomial S. The same is true 
when Tnt denotes the trend component. FUrther, if mt denotes the seasonal component, 
then ¢.(B) � ", ; finally, if Tnt denotes the seasonally adjusted and detrended series (Le., 
the irregular), then ¢.(B) � " "  •. Therefore, the estimator of the seasonally adjusted 
series, of the trend, of the seasonal component, and of the irregular component will all 
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be noninvertible. More generally, since, as was argued in section 4, for series exhibiting 
seasonality, typically S is included in the AR polynomial of the seasonal component, 
seasonally adjusted series and trend estimators will typically be noninvertible. 

Noninvertibility of the estimator of a component (when some of the other compo­
nents are nonstationary) is a property of model-based estimation satisfying assumptions 
1-6, and hence is valid for the AMB as well as the STS approach. I� will also charac­
terize estimators obtained with ad-hoc filters for which a model-based interpretation 
with nonstationary components can be given. For example, the filter Ci,(B) in (1.3) that 
provides the detrended series of the HP filter can he written as (see Cogley, 1990) 

CHP(B) = O<HP(B, F) (1 - B)' (1 - F2), 

where Q:HP(B, F) is symmetric and convergent in B and F, and hence for series that 
are I(d) with d < 4, the detrended series will be noninvertible. For XU, the filter that 
provides the seasonally adjusted series can be expressed as (see Cleveland, 1972) 

Cxl1(B) = o<xl1(B, F) 8(B) 8(F), 

where, again, Q:xll(B, F) is symmetric and convergent in B and F, and hence the ad­
justed series will also be noninvertible. 

An immediate implication of the noninvertibility property is that the seasonally 
adjusted series will not have a convergent AR representation, and hence to fit finite 
AR models to seasonally adjusted series will not be appropriate. Furthermore, a vec­
tor autoregression (VAR) model should not be used to model a vector of time series 
some of which have been seasonally adjusted.. Given the reluctance, often encoWltered 
in applied econometrics, to deal explicitly with seasonality, the practice of using ad­
justed series when fitting AR or VAR models has become, since the influential work of 
Sims (1980), a close to Wliversal practice (see, for example, Liitkepohl, 1991). Given 
that noninvertibility implies nonconvergence of the AR representation, no finite AR or 
VAR can be justified. as an approximation when seasonally adjusted or detrended. series 
are used.. As a by-product, unit root tests based on AR representations (such as the 
Augmented Dickey Fuller test), or tests for cointegration based on VAR representations 
(such as Johansen tests) should not be applied to seasonally adjusted. series. Here, too, 
since the work of Campbell and Mankiw (1987), and Stock and Watson (1986), among 
many others, testing for unit roots or cointegration on seasonally adjusted series is also 
standard econometric practice. 

The error incurred. when AR models are fit to noninvertible seasonally adjusted se­
ries can be, both, insidious and devastating, since it may easily pass undetected. These 
two important features are easily illustrated with the (XII seasonally adjusted) US GNP 

series itself, a series which has often been the victim of this misspecification error. Fol­
lowing standard procedure, I consider the entire series, without truncation to remove 
preliminary estimators. Taking first differences of the log of the series, the ACF con­
verges fast, and a low-order model seems appropriate. In fact, a simple "AR(I) + 
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constant" model provides a reasonable fit, as evidenced by the relatively clean ACF of 
the residuals. This low�rder AR specifica.tion is often found in applied econometrics 
work (see, for example, Campbell and Mankiw, 1987, or Evans, 1989). The choice of 
the parsimonious AR(l) specification seems to be confirmed by looking at what happens 
when the order of the AR polynomial is increased to 2, 3, or 4 lags. The additional 
AR coefficients are not significant, and the residual variance and Box-Ljung-Pierce Q­
statistics for the residuals ACF remain roughly the same; this is shown in the first 2 
columns of table 4. (The small negative value for lag 4 reflects the negative lag-4 au­
tocorrelation often induced by seasonal adjustment.)  Thus it is easy to conclude that 
the AR(l) apprOximation is reasonable. Yet it is not. If the order of the AR is fur­
ther and further increased, additional significant coefficients keep shOWing up for large 
lags. Simultaneously, the residual variance and Q-statistics tend towards zero. This is 
evidenced in the last 2 columns of table 4; notice that in the AR(l3) model, 10 of the 
13 coefficients are significant. (This beha.vior could be expected since, for noninvertible 
series, the Partial ACF does not converge.)  The example illustrates, thus, on the one 
hand, the potentially devastating effects of noninvertibility (or close to noninvertibility) 
on estimation of AR models, and its perverse nature since, unless one is on the lookout, it 
may well pass undetected. (Good protection is provided by consideration of the sample 
Partial and Inverse ACF which, for noninvertible series, will converge slowly.) 

The noninvertibility of the seasonally adjusted series also affects the specification 
of some unobserved component models commonly used in business cycle analysis. An 
example is model (2) in Stock and Watson (1988), where income is the sum (as in 
(1.2» of a permanent and a transitory component (mutually orthogonal); the permanent 
component (Tnt) follows a random walk plus drift model, as in (4.4), and the transitory 
component (nt) is a stationary AR(2) model. The series has been seasonally adjusted 
with XU, and hence is noninvertible. On the contrary, the two components mt and 
ne in the r.h.s. of (1.2) are invertible, so that their invertible sum cannot be equal to 
a noninvertible series. What the analysis also shows is that the use of the seasonally 
adjusted series on the belief that dimensionality will be reduced is unjustified. As (8.1) 
indicates, the filtered series, even when the underlying component has a very simple 
structure, will follow a ra.ther complicated model, and may contain nonzero coefficients 
at relatively high�rder lags. 

I proceed now to discuss the second implication of interest for applied econometric 
research. As mentioned before, business cycle analysis often uses seasonally adjusted 
data, which is further detrended. The seasonally adjusted and detrended series is then 
analysed, perhaps by fitting an ARMA model where the AR part may contain a cycle. 
This way of proceeding can be extremely misleading, as the following example illustrates. 

Under Assumptions 1-6, consider a quarterly series which is the sum of a trend, a 
seasonal, and an irregular component. The model for the trend is given by (4.5), that 
for the seasonal component by (4.11), and the irregular is white-noise. The trend model 
is similar to that of the model-based version of the HP filter (King and Rebelo, 1993), 
and the seasonal component model is as in the STS model of H�y and Todd (1983). 
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Thl2k..1: AR Fits to US GNP Seasonally Adjusted (rate of change) 

AR(I) AR(4) AR(9) AR(13) 

I" (x lO') 1.28 (.18) 1.38 (.25) .83 (.31) .79 (.32) 

¢, .303 (.081) .all) (.085) .445 (.083) .� (.087) 

¢, - .039 (.088) -.045 (.086) -.097 (.091) 

¢, - .054 (.087) .131 (.084) .!.63 (.089) 
¢, - -.152 (.084) - ill)2 (.084) -.ill. (.090) 

¢, - - .143 (.084) .222 (.092) 

¢, - - .013 (.081) -.047 (.086) 

¢, - - .21.3. (.081) .Wi (.083) 

<Po - - -.362 (.085) -.445 (.090) 

<Po - - .;l.N (.083) .� (.092) 

¢10 - - - .030 (.091) 

¢ll - - - .222 (.090) 

¢12 - - - -.� (.090) 

¢13 - - - .2m (.085) 

Va (xlO') 1.49 1.44 1.12 .97 

Q", 28.6 28.2 19.4 9.8 
Slgmficant AR coefficIents are underlined. 

This unobserved components model is, in fact, the type of model used in Gersch and 
Kitagawa (1983). The innovation variances are set equal to Vm = Vu/1600 (the standard 
value in the HP filter). � = 2Vu, and Vu = 1,  and hence the series contains a very 
stable trend and a highly moving seasonal. By construction, it does not contain any 
periodic cycle, and the seasonally adjusted and detrehded series is simply white-noise. 
The model implies that the observed series Xt follows a model of the type 

'V 'V, x. = O(B) ... , (8.7) 

where 8(B) is of order 5. If the series is seasonally adjusted and detrended by removing 
the MMSE estimators of the trend and of the seasonal component, then the residual 
obtained is the MMSE estimator of the white-noise irregular component Xut. For a white­
noise irregular component (Xut) extracted from model (8.7), proceeding as in section 8a. 
it is found that its MMSE estimator can be seen as generated by the model 

O(F) Xu, = Ie,. (I - F) (I - F') 0.,. (8.8) 

Thus Xut will have the ACF of a stationary process (in particular, that of the inverse 
or dual model of (8.7)). For the example considered, figure 12 exhibits the spectrum of 
Xut. It is certainly far from being that of white-noise, and it is of interest to notice the 
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large spectral peak for a frequency between 0 aud the first seasonal frequency. This peak 

implies a relatively important cycle (with a pt:'.riod of approximately 5 years) that may 

easily show up in ARMA or even AR fits to .i\t. The cyclical behavior detected in this 

way is entirely spurious, since it was not ill the series. Notice that the spuriousness, in 

this case, is due to an incorrect interpretation of the filtered residuals, and not to the 

use of inappropriate filters to detrelld and seasonally adjust the series. 

The example illustrates a fairly general result. For models containing V" as part 

of the stationary transformatioll, the MMSE of a white-noise component will typically 

present a spectrum with two pronounced peaks towards the center of the frequency 

ranges (0, 7r/2) and (7r/2, 7r). This is a result of the spectral zeroes at w � 0, 7r/2, 
and 7r, induced by the presence of 'V'. in the MA part of the model for XU!. The first 

peak, of course, will be associated with a cyclical frequency, and will produce a spurious 

cyclical-type behavior. As a consequence, the two-step procedure of fitting a model to 

a seasonally adjusted and detrended series is inappropriate for detecting periodic cycles. 

H a cycle is suspected, it should be estimated on the observed series, in a joint model 

with the rest of the components. When ad-hoc filters (such as the HP and the Xll 
filters) are used to detrend and seasonally adjust white noise, a spectrum similar to that 
of figure 12 is obtained (with the peaks possibly more pronounced). 

The effect of filters on the spectrum of the series has also implicatiOns for a method­

ology that has become popular in macroeconomics, in which, first, the so-called stylized 

facts of macroeconomic variables are identified and, second, an economic model is cal­
ibrated with the purpose of reproducing those facts (see, for example, Kydland and 

. Prescott, 1982, and Danthine and Donaldson, 1993). The stylized facts typically consist 

of second-order moments of the seasonally adjusted and detrended series (most. often, 

with Xl! and the HP filter). As we have seen, the filters will have an effect on those 

second-order moments. This effect will affect the comparison since, to start with, the 

series produced by the calibrated model are not seasonally adjusted. Moreover, if the 

two filters are applied to two independent white-noise variables, the spectra of the two 

filtered series will display identical peaks and holes, and this fact will induce spurious 

crosscorrelation between the two (independent) series. 

9 Preliminary Estimator and Forecast 

8) General Expression 

In the previous section, attention was centered. on the historical estimator, i.e. on the 

estimator obtained applying the WK filter (7.3) to a complete realization on the series . 

. As before, let X and Xr denote the complete and finite realization of the time series, 

respectively, and let ffit be the component or signal of interest. To project. mt on the 

finite realization XT, since XT e X, the optimal estimator ca.n be expressed. as 

m'IT E{mtlXT) � E{E{ffitIXlIXT) � 
E{m,IXT), 
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which implies that mtlT can be expressed as 

(9.2) 

where v{B, F) is the WK filter given by (7.3.b), B and F operate on t, and X'IT = 
E{x,IXT). Since X'IT is the forecast of x, done at time T (equal to x, if T � t), the 
estimator (9.2) can be seen as the WK filter applied to the available series extended at 
both ends with forecasts and backcasts (i.e., applied to the "extended series"). For a 
large enough (positive) T - t, (9.2) provides in practice the final or historical estimator 
of m" equivalent to (7.3). As t approaches T, (9.2) provides preliminary estimators of 
recent signals; for t > T, (9.2) yields the {t - T)-periods-ahead forecast of the signal. 
Forecasts can thus be seen as particular cases of preliminary estimation (and can be 
computed in a simple recursive way; see Burman, 1980). 

Consider the model for the observed series, given by (3.5), and let p and q be the 
orders of the AR and MA polynomials. Unless q = 0, the filter in (9.2) will contain an 
infinite number of weights. Since the filter is convergent, it could be safely truncated 
and approximated by a finite filter of the type (1.4). {The finite approximation can also 
be viewed as the WK filter for the AR approximation to the invertible model (3.5).) 1n 
practice, however, there is no need to truncate the filter: The exact filter (7.3.b) can be 
applied in an efficient and easy maimer using an algorithm due to Wilson and Burman 
(detailed in Burman, 1980). The algorithm requires only [q + max (q,p)] forecasts and 
backcasts of the observed series, the solution of two sets of (p + q) linear equations, and 
some simple recursions. Besides its computational efficiency, the problem of the starting 
conditions is simplified since it reduces to the conditions associated with the assumptions 
E, <ltH = 0 and E, �_. = 0 (for k > 0), where <It and a; are the forward and backward 
innovations in the series. Thus the assumptions required are the same ones as those 
underlying ARiMA forecasting (see Box and Jenkins, 1970; Bell, 1984; and Brockwell 
and Davies, 1987). 

To simplify the discussion, I shall consider the finite approximation (1.4) applied 
to the series extended with forecasts and backcasts, and assume T > 2r + I, so that 
the estimator of the component for the center periods of the series can be taken as the 
historical estimator. For 1 < t < r, the estimator will make use of the backcasts and 
will yield "preliminary" estimators for the starting periods. When T - r < t < T, the 
estimator will use forecasts of the series and will thus yield preliminary estimators for 
recent periods. The two types of preliminary estimators �e mirror images of each other; 
I shall focuss attention on the preliminary estimator of �ecent periods, the one of applied 
interest. 

It is easily seen (Box and Jenkins, 1970) that the forecast of the series (X'IT, t > T) 
can be expressed as 

(9.3) 

where the subindex (t - T) indicates the dependence of the filter on the forecast horizon. 
Combining (9.2) and (9.3), the preliminary estimator of the component can also be 
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expressed as 
(9.4) 

which has a relevant implication for applied work. Let the component of interest be the 
seasonally adjusted series. If the observed series is XT � [Xl . : . .  , XT] ,  and the adjusted 
series used is [milT, . . . , TnTIT], as is standard procedure, then the adjusted series is 
nonstationary in the sense that, as (9.4) shows, the underlying linear process ge�erating 
the latter has time-varying coefficients. 

If (9.2) is rewritten as 

TntIT = v(O) (B) XT + L Vr-t+i xT+jlT, 
j>O 

when a new observation, XTH, becomes available, the forecast XTHIT is repiaced by 
the observation, and the forecasts, xT+jIT, j > 1, are updated to xT+jIT+l .  The new 
estimator obtained will be mtlTH, and the one-period revision in the estimator is 

d.IT(1) � ""ITH -""IT � L:: "'r-I+; (XT+iIT+l -XT+;IT) � (L:: "'r-.+; '11;-.) <iTH, (9.5) 
j>o j>O 

and hence the one-period revision is a constant fraction of the series innovations. More 
generally, as seen in Pierce (1980), the revision between two periods T and T + k is an 
MA(k - 1) process, which can be expressed in terms of the innovations <iT+l, . . .  , llT+k' 

When T ...... 00, the estimator mtlT becomes the historical estimator iilt. It will prove 
useful to rewrite expression (8.1) as 

(9.6) 

where the first term in the r.h.s. includes the effect of the starting conditions and of 
the innovations up to and including ar, and the second term contains the innovations 
posterior to T. From (8.l.b), the filter ryll){F) is convergent; its weights are easily 
obtained as the coefficients ryr_I+;(j � 1, 2, 3, . . . ) of the polynomial �(B, F) obtained 
through the identity 

(see Maravall, 1993c). From (9.6) and (9.1), the preliminary estimator is then equal to 

(9.7) 

and substracting this expression from (9.6), the full revision that the estimator will 
undergo is found to be: 

(9.8) 

and hence, due to the invertibility of 8(B), the full revision is a stationary process. 

b) Some Applications of Interest 

Among the many preliminary estimators, of particular relevance in economic policy­
making and monitoring is the so-called concurrent estimator, obtained when t = T. 
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The concurrent estimator yields the estimator of the component for the most recent 
period, and is obtained with the one-sided filter mtlt = 7](0) (B) nt. In pr8Ctic�, revision 
in the concurrent estimator of the seasonally adjusted series is an issue of .concern for 
policy makers. An example is provided by Maravall and Pierce (1983), in the context of 
the conduct of monetary policy by the Federal Reserve during the period of the seventies. 
We compared the concurrent estimator of the seasonally adjusted Ml monthly growth 
with its final estimator, and with the tolerance bands set every month by the Federal 
Open Market Committee, and obtained. that the concurrent estimator gave a false signal 
(in the sense of indicating unacceptable growth when the final estimator eventually 
showed that growth was within the tolerance range, or viceversa) 40% of the time. We 
further argued. that this proportion could be reduced. with improved seasonal adjustment 
methods; still, the percentage could not go below 20%. Thus an important percentage 
of false signals given by the concurrent estimator could be attributed to the single effect 
of the revision error it contains. 

Although damaging, revisions are unavoidable when two-sided. filters are employed. 
(Figure 3 illustrated, for example, the revisions in the concurrent trend estimator for the 
HP filter.) Their properties - in particular, their size - will depend on the character­
istics of the series and of the filter used to estimate the component. In the model-based 
approach, this filter depends, i(l turn, on the series, and hence revisions are a property 
of the series. For some, they will be small; for others, large. 

Besides interest in estimating components for recent periods, on occasion it is the 
component forecast that is of interest. An example in the area of economic policy is 
the role played by the forecasts of the monetary aggregate seasonal component, used in 
short-term control of the money supply, which shall be illustrated in the next section. In 
the area of applied econometrics, an example of an application of unobserved component 
forecasting is the work of Stock and Watson (1989, 1991, 1993) on forecasting the busi­
ness cycle using a model-based unobserved component model. Although an ingenious 
and attractive approach, care should be taken when interpreting the results precisely 
because of the unobserved cotq.ponent structure of the model. This is illustrated with 
the following example, consisting of the simplest nontrivial case of Stock and Watson's 
model, namely the model 

(9.9.a) 

(1 - ¢E) V c, = b" (9.9.b) 

where nt and bt are independent white-noise variables. (Notice that, since the r.h.s. of 
(9.9.a) is the sum of two. invertible processes, and hence invertible, once again the model 
cannot be applied. to seasonally adjusted. series.) The unobserved cOJ?ponent Ct represents 
"the sta.te of the economy" and it is modeled as an 1(1) trend. A recession (expansion) 
is then defined as a sequence of V c, that are below (above) a certain threshold. The 
definition is made, thus, in terms of the "true" unobserved component. (Associating the 
business cycle with the behavior of a trend is an important departure from the traditional 
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procedure of identifying the business cycle on the detrended. series, as in Watson, 1986, 
or Clark, 1987, and from the periodic stochastic cycle component of Harvey, 1985.) 

Stock and Watson attempt to capture in their model the official dating of recessions 
by the NBER Business Cycle Dating Committee (BCDC). Thus, assuming that (9.9) ac­
tually duplicates BeDe behavior, since the component is never observed, the BeDe is 
forced. to operate with U�e best possible estimator, that is with the historical estimator 
(BeDe behavior reveals, in fact, a two-sided, relatively long, filter, typical of a historical 
estimator). Finally, in order to obtain recession forecasts, Stock and Watson consider 
the joint distribution of future sequences of "iJ Ct conditional on the available information. 
By letting x, = " y, and m, = "Ct, the model is seen to be a particular case of the 
model-based procedure under Assumptions 1--6: the simple "AR(l) + noise" decompo.. 
sition. From previous results, the differences in the distributions of the component, the 
preliminary and the final estimator will imply that the probability of positive sequences 
of the component will be structurally different from that of the historical estimator (see 
Maraw, 1993c). Thus, a systematic bias will show up when matching the forecasted. 
probabilities with the series of historical estimators (in accordance with what Stock and 
Watson find). 

10 Estimation Errors and Inference 

a) Historical Estimation Error and R.eyision Error 

Point estimators or forecasts of the components are of limited interest unless some infor­
mation is provided about their precision. This information is unavailable when ad-hoc 
filters are applied. The model-based approach provides the framework for obtaining 
the standard error of the components estimators. Within an STS approach, Burridge 
and Wallis (1985) show how the Kalman filter can be used to compute those errors; 
alternatively, they can be computed, within the AMB approach, using the procedure in 
Hillmer (1985). More generally, the model-based method. allows us to derive, under our 
assumptions, the full distribution of the different estimation errors (associated with the 
final or with some preliminary estimator). 

Consider the two--component decomposition (1.2), and let ffit be the component of 
interest, whose estimator is given by (9.2). The estimation error is 

(1O.1) 

which can be rewritten as 
(1O.2) 

where dt = mt-ih.t, and dtlT = ffit-ffitIT' Thus, dt is the error in the historical estimator, 
and dtlT is the revision error contained in the estunator mtlT. As shown in Pierce (1979), 
the two errors d,. and dtlT are independent (under assumptions 1--6). and the historical 
estimation error can be seen as generated by the stationary ARIMA model 

8{B) d, = 8m{B) 8n{B) 9" (1O.3) 
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with Vg = Vm Vn/V4• The variance of de is therefore finitej both, variance and ACF, can 
be easily computed from (10.3). (The ACF of the error is of interest when computing 
approximate standard errors for the rates of growth of the component.) As noticed in 
Marava1l and Planas (1994), model (10.3) is identical to model (8.5), and hence the CCGF 
between the estimators ffl.t and fi.t is the same as the ACGF of the historical estimation 
error of "" (and of n,). This result has an implication of interest: When searching for a 
criterion to select a unique decomposition among the set of admissible ones, one could 
think of selecting the specification for which the (lag�) crosscovariance between the two 
estimators is minimized, given that tq.e components are assumed orthogonal. On the 
other hand, one may select the decomposition for which the historical estimation error 
is minimum. What the previous result tells us is that both criteria lead to the selection 
of the same decomposition. Moreover, Marava1l and Planas show that, in the selected 
decomposition, one of the two components is always a canonical one. 

As for the revision error, delT, from expression (9.8) its properties (in particular 
variance and ACF) can be easily derived, for any pair (t, T). From the orthogonality of d, 
and delT, the variance and ACF of the total estimation error eelT are, then, straightforward 
to obtain. Notice that the fact that d, and d,IT have finite variance implies that the 
theoretical component, Tnt, its historical estimator, fflt, and its preliminary estimator or 
forecast, ""IT are all pairwise cointegrated. 

b) An Example: The U.K. Money Supply Series 

To illustrate the use of the model-based approach in inference, I consider an example 
within the area of monetary policy, where the need for a measure of the estimator's 
uncertainty has been repeatedly pointed out (see, for example, Bach et aI., 1976; Moore 
et aI., 1981; and Hibbert Committee, 1988). The example is the monthly series of the 
monetary aggregate M, in the U.K. from January 1983 to December 1991; seasonal 
adjustment of the U.K. monetary aggregate has been, in fact, an issue of recent concern 
(see Bank of England, 1992). 

Letting Xt denote the log of the series, the model 

V V12 x. = (1 - .738B12) a., (10.4) 

, with (74 = '(XJ674, fits the series very wellj ,its structure is the monthly equivalent of that 
of model (6.1), obtained for the quarterly GNP series. As was the case then, the model 
reveals ,a relatively stochastic trend and a fairly sta.ble seasonal component. Using the 
AMB approach, and standardizing units by setting v, = I, the models for the trend and 
seasonally adjusted series are, respectively, given by the IMA(2, 2) models: 

(1 - .975B) (1 + B) a",. 
(1 - .975B) (1 - .000B) ad< 

(Vm = .191) 

(If" = .768). 

Both are indistinguishable from an "1(1) + drift" model and, in particular, the seasonally . 
adjusted series can be seen as a random walk with a slowly changing drift. The seasonal 
component model is of the type S x,. '" 9,(B) a .. , where S = 1 + B + . . . + B", 9,(B) 
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is of
. 
order 11,· and V, = .024. The irregular component Xut is simply white-noise with 

Vu "" .189. 

For this decomposition, the variance of the different estimation errors for the con­
current and historical estimators of the trend and of the seasonally adjusted series are 
displayed in table 5. For both components, the variance of the historical estimation error 
is close to that of the revision error; both types of error are smaller for the seasonally 
adjusted series than for the trend. The variance of the concurrent estima.tor of the trend 
is roughly 1/3 of the variance of the one-period-ahead forecast error of the series Xt; this 
fraction becomes 1/4 for the seasonally adjusted series estimator. 

Table 5: Variance of Estimation Errors: Concurrent Estimator (in units of Va) 

Type of Error Trend Sea.sonally 
Adjusted Series 

Final Estimation Error .169 .110 
Revision Error .163 .114 
Total Estimation Error .332 .224 

Besides the magnitude of the revision error in the concurrent estimator, it is also 
of interest to know the duration of the revision period, that is, how many periods it 
takes for a new observation to no longer Significantly affect the estimate. From (9.8) it is 
easily found that, for the example considered, after one more year of additional data, the 
variance of the trend revision error has decreased by 70%; for the seasonally adjusted 
series this percentage is 50%. After three years of additional data, 85% of the trend 
revision error variance has been removed; 77% for the seasonally adjusted series. After 
5 years, the percentages become 92% for the trend and 88% for the adjusted series. In 
5 years, thus, both estimators have practically converged. Notice that, despite its larger 
revision error in the concurrent estimator, the trend estimator converges faster than 
that of the sea.sonally adjusted series. Recalling that the trend component was highly 
stochastic, while the seasonal component was fairly stable, the example illustrates a 
general result: highly stochastic components are characterized by· large revision errors 
which converge relatively fast, while the removal of stable components implies smaller 
revision errors, which tend to converge slowly. Thus the revision lasts long when the 
removed component is of little importance in explaining the series variability. This 
"compensation" effect (i.e., large revisions converge fast) is easily understood from the 
following consideration. As mention� in section 3,· the stability of a component is 
associated with roots in 8(B), the MA part of the model for Xtt that are close to the unit 
AR roots. Due to these large roots, 8(B)-1 will converge slowly and hence, according to 
(7.3.b), the estimation filter of stable components will be long. Moreover, since 8(F) is 
also present in the denominator of TJ(B, F), expression (9.8) implies that the revision in 
the estimator will also last long. 

We have seen convergence of the concurrent estimator to the historical one, it is 
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also of interest to look at how fast the estimation error increases wh�n we consider the 

forecasts. For the log of the M1 series, figure 13 presents the standard errors for the I-to-
12-periods-ahead forecasts, for the trend, seasonally adjusted and original series. The 
(small but consistent) gain in precision from using the trend in short-term forecasting 
is apparent. All considered, comparing the seasonally adjusted series and the trend 
component, although the concurrent estimator of the latter has a larger error variance, 
it converges faster to the final estimator, and it provides more precise forecasts. These 
are important features to consider when deciding which of the two components provides 
a more adequate signal to measure the underlying evolution of the series. 

Assume now that at the beginning of a new year (with the last observation that 
of December), an annual money growth target is set. As time passes, new observations 
become available and it is of interest to see what growth this new data implies, once it 
has been cleaned of seasonality. The most frequent operating procedure is to compute, at 
the beginning of the year, seasonal factors for the next months (in XII, with an ad-hoc 
formula), and adjust incoming monthly data with these factors. (At some institutions, 
such as the Federal Reserve Board and the Bank of England, seasonal adjustment is 
done with a higher than once-a-year frequency.) There is an obvious loss of precision in 
using a forecasted factor instead of the one obtained. every month with concurrent esti­
mation. Since concurrent adjustment is a costly procedure for data-producing agencies 
(the series have to be constantly modified), as stressed by the Bank of England (1992), 

it is important to quantify the loss in precision associated with intermittent adjustment. 
This quantification is easily done in the model-based approach by comparing the error 
in the seasonal component concurrent estimator with the average of the errors for the 
forecasted. seasonal component. For the ex8.mple considered and the once-a-year versus 

concurrent adjustment comparison, it is found that concurrent adjustment produces an 
. 
average reduction of 11.2% in the Root MSE of the seasonal component estimator. This 
relatively small gain is explained by the fact that the seasonal component is fairly stable 
and displays relatively small forecasting errors. 

As new monthly observations become available, the forecast of the annual rate of 
growth will be updated. The standard error associated. with these updated. forecasts 
for a fixed horizon (that of the end of the year) are easily obtained from the standard 
errors in figure 13. At the beginning of the year, the forecasted rate of gro.wth for the 
year has approximately the same error whether the forecast is computed with the series, 
with the trend, or with the seasonally adjusted seriesj this standard error equals 2.35 
percent points (p.p.) of growth. For intra-year updating, after 4 months, for example, 
the standard error of the ra.te of growth is down to 1.83"p.p. if the trend is used, and 
to 1:91 p.p. for the forecast computed. with the observed. series. After 8 months, these 
standard errors become 1.24 p.p. and 1.35 p.p .. 

Although, as pointed out in Box, Pierce, and Newbold (1987), the updated fore­
cast of the trend rate of growth provides possibly the most natural tool for monitoring 
the underlying evolution of the series throughout the year, standard opera.ting proce­
dures rely heavily on a battery of different rate-of-growth measurements. Using linear 
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approximations, the model-based approach can be used to derive the variances of the as­
sociated estimation errors. Consider, for example, the concurrent estim{totor of the most 
commonly used rak the monthly rate of growth of the monthly estimator (typically, of 
the seasonally adjusted series), and denote this rate by R. (The wording of the Federal 
Open Market Committee Record of Policy Action, for example, states that modifications 
to the Federal funds rate had to be based on the evolution of this month-to-month rate 
of growth of the seasonally adjusted series.) If capital letters denote levels and small 
letters denote logs, the rate can be expressed as 

where Tnt is the signal of interest in the decomposition of (10.4). The concurrent estimator 
oU l ds 

Rtlt = Tntlt - mt_Ilt· 

Consider the auxiliary rate RA = Tntlt - Tnt-llt-l and its estimation error, et, which can 
be expressed as: 

(10.5) 

The second parenthesis in the r.h.s. of (10.5) is equal to R.I' -RA = -(m.-'1I< -""-11.-1), 
and represents, thus, the I-period update in the concurrent estimator of Tnt-I. From 
(9.5), R.I' - RA = dt-II' (1) = -ryl a" where ry, is the coefficient of F in the polynomial 
ry(l) (F) of (9.8). For the MI example, �I = .300 when "" is the trend, and �I = .112 
when "" is the seasonally adjusted series. The first parenthesis in the r.h.s. of (10.5) is 
the estimation error in Rtltj denote this error by e�. Since this error is the sum of the 
historical estimation error and a revision error which is a linear filter of innovations atH, 
k > 0, it follows that the two expressions in parenthesis in (10.5) are independent, and 
hence the variances will satisfy 

V(ef) = V(ef) - �1 V •. (10.6) 

To obtain V(et), notice that'et can be expressed as et = (Tnt-Tntlt) - (mt_l -Tnt-lit-I), 
and hence is equal to the difference between two consecutive concurrent estimation errors 
etlt and et_llt_l of (10.1). To simplify notation, let let] denote the series of concurrent 
estimation errors [etl'] ' Then, 

V(e�) = Vee, - e,-tl = 2(1 � pD v., (10.7) 

where Ve is the variance of e'lt, and Pi its lag-1 autocorrelation. As described earlier, both 
parameters can be easily obtained and for the M1 example, it is found that Ve = .333 Va, 
Pi = .574, when Tnt is the trend component, and Ve = .224 Va, pi = .584, when Tnt is 
the seasonally adjusted series. Inserting (10.7) in (10.6), the variance of the error in the 
concurrent estimator of Rt is V(e�) = 2(1 - Pi) Ve - TJ? Va· 

In order to compare R. with the annual target, the rate is multiplied by 12 and 
expressed in p. p. The standard errors of the rate computed in this way, for the trend 
and for the seasonally adjusted series,. are given in the first row of table 6. For both 
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components, the standard error is close to 3.5 p.p., and hence, at the 95% confidence 
level, a measurement of (say) 10% growth would be compatible with a target between, 
roughly, a 3% and a 17% annual growth. The implied range is certainly wider than the 
tolerance ranges used in practice. The rate Rt is therefore too volatile and does not 
provide a precise tool .for short-term monitoring. 

Thl1k..Q: Standard Error of the Rate of Growth; Concurrent Estimator 
(in percent points of annualized growth) 

'!rend Seasonally 
Component Adjusted Series 

Monthly growth of 
3.56 3.38 

the monthly series 
Monthly growth of a centered 

2.60 2.83 
3--month moving average 
Monthly growth of 

1.99 1.79 
the last 3 months 
Centered estimator of 

1.61 1.64 
12-month growth 

Rates computed over longer periods will of course be more stable. Within the 
model-based approach, linearizing the rate, the standard error of the estimators can be 
computed in a similar manner to that of the rate lit. Table 6 presents some examples: 
First, the second row contains the standard error of the estimator of the monthly rate 
of growth of a 3-month moving average. In order to minimize the phase effect, the 
moving average is centered, and hence the l-period-ahead forecast of the component is 
included in its computation. The third row of table 6 presents the standard error of the 
estimator of the rate of growth of a one-sided 3-month moving average, formed by the 
last 3 periOds. Finally, the last row contains the standard errors of a rate that measures 
the annual growth by comparing the 6-month-ahead. forecast of the component with its 
value one year before this horizon. This rate, which smoothes the data over a 12-month 
period, is clearly the most stable one, and provides more sensible tolerance ranges (± 3 
p.p., approximately). The rate, however, can also be computed directly on the original 
series, without having to estimate the components; the standard error of the estimator 
when the series is used. equals 1.65 p.p., slightly l�ger than the one obtained when the 
trend is used. 

These are some examples that illustrate inference in model-based unobserved com­
ponent estimation procedures; additional examples can be found in Cleveland and Pierce 
(1981), Bell and Hillmer (1964), Hillmer (1985), Burridge and Wallis (1985), and Mar­
avail (1988a). 
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c) A Final Remark 

In the previous paragraphs we have seen how the model-based. approach provides the 
tools to apply, in a simple way, proper statistical inference to answer relevant questions 
concerning the series components. Be that as it may, we had. seen previously that the use 
of unobserved components in econometric models has strong implications concerning the 
specification of the model and interpretation of the results. We saw, for example, that 
the seasonally adjusted, trend, or detrended series will typically be noninvertible and will 
not accept, as a consequence, a. finite AR representation or approximation. Thus, AR 
and VAR models should not be applied to such filtered. series. We saw that the same was 
true for some other type of models popular in business-cycle analysis, and that some 
popular unit root tests cannot be applied to the trend or to the seasonally adjusted 
series: We also showed how the stylized. facts of the series can be seriously distorted 
when some components are removed, and how the component estimator filters induce a 
spurious spectral peak for the cyclical frequency in the detrended and seasonally adjusted 
series. Besides, spurious crosscorrelations among the filtered series are also created. To 
make matters worse, the use of the seasonally adjusted series is not likely to reduce the 
dimensionality of the model, and, if the model for the series is linear and the full set of 
adjusted values is used, the underlying model for the seasonally adjusted series will have 
time-varying parameters. 

Added to already documented limitations (referred to in section 4b). the previous 
results strongly suggest that seasonally adjusted series, rather than helping economists 
in their analysis and research, make life considerably harder: From the set of available 
t(K>ls, they severely limit those that can be applied, and, besides, they may seriously 
contaminate the measurements. The practice followed by many da.ta-producing agencies 
of only publishing seasonally adjusted series for economic variables is, 88 a consequence, 
damaging and deeply regrettable. 

- 48-



Fig.l : HP FlLTER (FOURIER TRANSFORM) 
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Fig.2 : XII SEASONAL ADJUSTMENT FILTER (FOURIER TRANSFORM) 
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Fig.3 : lIP TREND FOR ",70; PRELIMINARY AND FINAL ESTIMATORS 
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Fig.5 : SEASONAL COMPONENT EXTRACTED FROM WHITE-NOISE BY XII 
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Fig.6 : lWO EXAMPLES WITH STABLE AND UNSTABLE COMPONENTS 
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FIg.7. : UNSTABLE SEASONAL SERIES AND XII SEASONAL COMPONENT 
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Fig. 7b : SEASONALLY ADJUSTED SERIES 
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Fig.8a : UNSTABLE TREND SERIES AND HP TREND 
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Fig.8b : DETRENDED SERIES 
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Fig. lOa : UNSTABLE SEASONAL AND AMB SEASONAL COMPONENT 
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Fig.H. : TREND 
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Fig. 12 : SEASONALLY ADJUSTED AND DETRENDED WHITE-NOISE 
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