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Abstract 

The paper deals with seasonal adjustment and trend estimation as a signal 

extraction problem in a regression-ARIMA model-based framework. This 

framework includes the capacity to preadjust the series by removing outliers and 

deterministic effects in general. For the preadjusted series the model considered 

is that of an ARIMA model for the aggregate series, with ARIMA-type models for 

the components. We address the issues of model (and signal) specification, 

optimal estimation of the signal and distribution of the estimators, preliminary 

estimation and revisions, optimal forecasting, estimation and forecasting errors, 

and show how the model-based structure can· be exploited to give precise answers 

to problems of applied relevan'ce. Further, it is seen how the model-based 

analysis can be extended to incorporate ad-hoc filtering, and an application is 

made to the problem of measuring the business cycle. The discussion is illustrated 

with an example (the Spanish Industrial Production Index) . 





CONTENTS 

INTRODUCTION 

2 SOME REMARKS ON THE EVOLUTION OF SEASONAL ADJUSTMENT 
METHODS 

3 THE NEED FOR PREADJUSTMENT 

4 MODEL SPECIFICATION 

5 ESTIMATION OF THE COMPONENTS 
5.1. Stationary Case 
5.2. Nonstationary series 

6 HISTORICAL OR FINAL ESTIMATOR 
6.1 Properties of Final Estimator 
6.2 Component versus Estimator 
6.3 Covariance between estimators 

7 ESTIMATORS FOR RECENT PERIODS 

8 REVISIONS 
8.1 The Structure of the Revision 
8.2 Optimality of the Revisions 

9 INFERENCE 
9.1 Optimal forecasts of the components 
9.2 Estimation error 
9.3 The precision of the rates of growth 
9.4 The gain from concurrent adjustment 
9.5 Innovations in the components (pseudo innovations) 

1 0  AN EXAMPLE 

1 1  RELATIONSHIP WITH FIXED FILTERS 

12  SHORT- TERM VERSUS LONG-TERM TRENDS; MEASURING ECONOMIC 
CYCLES 

REFERENCES 





1. INTRODUCTION 

Seasonal adjustment has a long and well·documented tradition; see. for 
example, Nerlove, Grether and Carvalho (1 979), Zellner (1 978), Moore et al (1981), 
Den Butter and Fase (1991), and Hylleberg (1 992). In essence, it consists in the 
removal of the seasonal variation from a time series. Since neither the seasonally 
adjusted (SA) series nor the seasonal component are directly observed, both can be 
seen as "unobserved components" (UC) of the series, and seasonal adjustment 
becomes a problem of UC estimation. Because the SA series is supposed to provide 
a cleaner signal of the underlying evolution of the variable, seasonal adjustment can 
also be viewed as a signal extraction problem in a "signal plus noise" decomposition 
of the series, where the noise is the seasonal component. 

The widespread use of seasonal adjustment reflects powerful reasons. The 
most basic one is simply the need to understand better our present situation and to 
adjust our forecasts. As an example, in Cervantes (1605), Sancho Panza, 
overwhelmed by the disasters that befall upon them, asks (the senior) Don Ouijote 
whether their misfortunes occur randomly or at periodic, forecastable, intervals. Of 
course, seasonal adjustment is also performed because of more sophisticated 
purposes. For example, in the preamble of the Federal Reserve Act of 1 913, the US 
Congress sets as one of the main objectives of the Federal Reserve to accommodate 
seasonal variations in credit so as to maintain interest rates stable (Federal Reserve 
Board, 1915). The fact is that seasonal adjustment of economic series has become 
a nearly universal practice and millions of series are routinely adjusted. Moreover, 
economic analysis and research make heavy use of SA series, in the belief that they 
help interpretation and simplify modelling. 

This chapter is not an attempt to summarize some of the last research 
developments, still at an early testing stage, but to present what we see as the "state 
of the art" concerning seasonal adjustment methods that satiSfy two general 
constraints: a) that the method be of general availability, and b), that they can be, at 
present, reliably and efficiently used in large-scale applications by data-producing 
agencies. An implication of these two general requirements is that they restrict us to 
a world of univariate analysis. Multivariate extensions are few, still of limited capacity, 
and at an experimental stage (an interesting example is contained in the program 
STAMP; see Koopman et ai, 1 996). 

It is a fact that the methods used to estimate UC in applied research often have 
little to do with the methods used by official data producing agencies, and this is a 
source of problems. The method presented in this chapter provides a relatively 
powerful tool that can be of interest in both cases. But, first, a word of caution may be 
appropriate. 
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The idea of living in a SA world is somewhat dangerous. It would, of course, 
cure Seasonal AutoDepression afflictions. But for a family 01 colibris whose brain size 
varies seasonally (enlarging for the winter, so as to be able to remember the places 
where food was stored,) seasonal adjustment of the brain size would prove disastrous. 
Within the economic field, the economics of seasonality (and some implications for 
seasonal adjustment) has attracted some attention; see, for example, Ghysels 
(t993a), Maravall (1 983), Plosser (1978), Canova (1992), and Miron (1 986). We shall 
not pursue this issue further, except to stress an important conclusion that will also 
emerge from our discussion, namely, that, as was the case with the brain of colibris, 
data used in econometric models should not be, as a rule, seasonally adjusted . 

. (Further arguments that favor this conclusion can be found, for example, in Wallis, 
1 974; Osborn, 1 988; Ghysels and Perron, 1 993; Maravall, 1 995; Findley et ai, 1 997). 

There are several seasonal adjustment methods that satisfy the two general 
requirements mentioned above (see, for example, Fisher, 1 995, and Balchin, 1995). 
We shall not survey them, but center on a particular class whose origins can be found 
in Nerlove, Grether and Carvalho (1 979), Cleveland and Tiao (1976), Engle (1978), 
Harrison and Stevens (1 976), Box, Hillmer and Tiao (1978), Piccolo and Vitale (1981), 
Burman (1 980), Hillmer and Tiao (1982), Harvey and Todd (1983), and Gersh and 
Kitagawa (1 983), to quote some important contributions. This class of methods is 
based on parametric models for the series and components, and computes the latter 
as the minimum mean squared error (MMSE) estimators given the observations (this 
is the 'signal extraction" procedure). The models used are linear stochastic processes, 
often parametrized in the ARIMA-type format (Box and Jenkins, 1 970). The methods 
that fall into this class will be called model-based signal-extraction (MBSE) methods. 

A linear stochastic process is understood to mean a linear filter of gaussian 
innovations. Therefore, we shall not deal with nonlinear extensions, such as the ones 
in Harvey, Ruiz and Sentana (1992), Kitagawa (1 987), Nelson (1996), Sheppard 
(1994), among others. Since what we have in mind is monthly (or lower frequency) 
data, nonlinearity is seldom a serious problem and, as seen in Fiorentini and Maravall 
(1996), proper outlier correction seems powerful enough to linearize most of those 
series. Moreover, one of the convenient features of the MBSE approach is that it 
permits to solve, in an internally coherent way, additional problems that might be 
relevant for the correct extraction of the signal. Examples are outlier correction, 
interpolation of missing values, trading day and easter effect correction, incorporation 
of regression or intervention variable effects, and, of course, forecasting; see, for 
example, Hillmer, Bell, and Tiao (1983) and Harvey (1989). 
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2. SOME REMARKS ON THE EVOLUTION OF SEASONAL ADJUHTMENT 
METHODS 

The crucial problem underlying the evolution of seasonal adjustment llethods 
is the lack of a precise answer to the question of "what is seasonality?". The absence 
of a well-defined and generally accepted definition has fostered prolife ation of 
procedures. and made it difficult to find common grounds for comparison. Ne shall 
briefly review some basic features of some approaches that provide the evolutionary 
line of the MBSE approach. In so doing. we leave aside important methods such as. 
for example, the bayesian BAYSEA procedure developed by Akaike and Ishiguro 
(1980), or the nonparametric SABL and STL procedures of the Bell Laboratories (see 
Cleveland, Dunn and Terpenning, 1 978, and Cleveland, Mc Rae and Terpenning, 
1 990). Description andior discussion of various of these methods can be found in 
Zellner (1 978, 1 983), Den Butter and Fase (1991), Hylleberg (1992), and Ghysels 
(1993b). 

It will prove helpful to establish first some simple definitions. One is that of a 
deterministic model, which is meant to denote a model that can be foreca, t without 
error if the parameters are known. The second is the concept of white nOi"e, which 
will denote a zero mean, finite variance, normally identically independently d stributed 
(niid) variable. Finally, a moving-average (MA) filter applied to the observc lions will 
mean a linear combination of the latter. 

The simplest way to model the seasonal component is as a det<Jrministic 
function with seasonal dummy variables, as in (for monthly data) s, = L:�. Pr d" , 

where d" = 1 for month i and 0 otherwise, and the p-cc efficients 
satisfy P. + ... + P'2 = O. An equivalent formulation uses cosine function" with the 
seasonal harmonics as frequencies. What characterizes these det "ministic 
components is that 

(2.1 ) 

that is, their sum over 1 2  consecutive months is zero. The SA series may be further 
decomposed into a deterministic function of time (the trend) and a noise 0 irregular 
component. The trend (p,) may be some polynomial in time, in its simple;t 
form p, = a + b t ,  which would imply 

p, - P,_. = b ,  or (2.2) 

(2.3) 
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The performance of these deterministic model proved unsatisfactory. The 
estimatl rs of the �-parameters were typically unstable and did not seem to converge 
as obse vations increased. Residual seasonality could often be detected, and the out­
of-sample forecasting performance of the overall model was poor. Although some 
extensicns of deterministic regression model have been developed (see, for example, 
Stepher son and Farr, 1 972; Nourney, 1 986; and Statistisches Bundesampt, 1 997) 
attentior moved in a different direction. Fixed deterministic components seemed to be 
inadequ lte because components "move" in time (an obvious example of a moving 
seasonc I component is the weather, precisely one of the major causes of seasonality.) 
Attentioll shifted to MA filters, which seemed capable of capturing some of the moving 
features of the components. MA filters could be rationalized in several ways. First, as 
"local" approximations to deterministic functions of time (see, for example, Kendall, 
1 976). � econd, since the moving features can be seen as the result of randomness, 
a natural way to think about the components is in the frequency domain. Obviously, 
the spe otrum (by this term we also refer to the pseudo-spectrum when unit 
autoregressive roots are present; see Harvey, 1 989) of a seasonal component would 
basicall) consist of peaks for the seasonal frequencies. The trend component, in turn, 
would bo a peak around the zero frequency and, in general, a peak in the spectrum 
of the series for a cyclical frequency would indicate the presence of a periodic cyclical 
componont. It follows that one could design "band-pass" filters in the frequency 
domain hat would only capture the variation of the series within a specific frequency 
band. M .. filters are also obtained as the time domain representation of band-pass 
filters (s ,e, for example, Oppenheim and Schaffer, 1 989). Since proper timing ·of 
events, and in particular of turning points requires that the complete filter induces a 
zero-phc se effect in the adjusted series, and this, in turn, implies symmetric and 
centereo filters, for now, we shall restrict our attention to this type of filters. 
Additionally, symmetric MA filters are also derived from optimizing some criterion that 

. 
attempts to balance a trade-off between fitting and smoothness (see, for example, 
Gourieroux and Monfort, 1 990). 

Ail we shall see later, the three rationalizations of MA filters are closely linked, 
and the jesign of the filter requires, in all cases, "a priori" decisions. For example: 
what funl:tion should be used as local approximation? Which width should be selected 
for the fr 'quency band? Which should be the penalty function? Once these "a priori" 
decision,; have been taken, a so-called "ad-hoc" MA filter can be derived. The filter will 
have a fi (ed structure, independent of the structure of the series to which it is being 
applied. 

In the field of seasonal adjustment, the most important filter designed has been 
unquestionably the one in the program X1 1 (Shiskin, Young and Musgrave, 1 967). 
X1 1 con!ists of basically a linear filter, to which some additional features (for example, 
possible trimming of presumed outliers) and options (mostly, the selection of a few 
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alternatives concerning the length of the filters) had been added. XI I has generated 
a family of programs (XI I  ARIMA and XI2 ARIMA; see Oagum, 1 980, and Bureau of 
the Census, 1 997) where the basic seasonal adjustment filter still is the line lr filter in 
XII; we shall refer to the default value of this filter as the XI I filter. Figure I a and I b 
display the gain of the XII  filter, i.e., the way XI I filters the frequencies of tne series 
spectrum, for a quarterly and monthly series, respectively. When the gain is I ,  the 
frequency is fully transmitted; when the gain is zero, the frequency is if nored. If 
applied to a series with the spectrum of Figure I c, the filter removes the variation 
around the seasonal frequencies, and provides a SA series with the sp'lctrum of 
Figure Id.  

The empirical fact that many economic series have a similar dynamic structure 
and that this structure is broadly adequate for the XI I filter, evidences the ingenuity 
of the XI I designers and explains the success of the XI I program. But as th e number 
of series treated increased and experience accumulated, the limitations 0 I the filter 
became more apparent. The main limitation, in essence, is the rigidity imp ied by its 
fixed character. For some series, spurious results will be obtained, in partic Jlar those 
associated with under and overadjustment. 

For a series containing a highly stochastic seasonal component, as ovidenced 
by the width of the seasonal peaks in the series spectrum of Figure 2a, th 3 width of 
the dips in the squared gain of the XI I filter seem too narrow. Application of the filter 
to the series yields a SA series with the spectrum of Figure 2b. The underadjustment 
causes the ackwards peaks for frequencies that are in the neighbourhc cd of the 
seasonal ones. On the other hand, for a series containing a close tei de ,erministic 
seasonal component, as evidenced by the narrow peaks in the spectrum of Figure 2c, 
the width of the dips in the filter gain are too wide and, as seen in Figur 3 2d, XI I 
removes variance that is not a associated with the seasonal peaks of the series. In 
this case the result is overadjustment. 

Clearly, the filter to seasonally adjust white-noise should simply b3 I ,  since 
there is no seasonality. Alternatively, the filter to seasonally adjust a purell' seasonal 
series (perhaps a seasonal component produced by XI I )  should simply be zero. The 
conclusion that the filter should depend on the structure of the series seerr s obvious. 
The MBSE approach solves this problem by tailoring the filter according to the model 
fit to the series. 

3. THE NEED FOR PREADJUSTMENT 

The model used, as already mentioned, is that of linear stochastic process. 
Before this assumption can be made, some modifications to the serie, often are 
needed, i.e., the series needs preadjustment. Some of these modifications are: 
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Interpolation of missing values. 
Outlier correction. 
Removal of special effects, such as trading day and easter effects. The 
first refers to the difference in the number of weekdays per month; the 
second to the location of the easter period in different years. 
Correction for special events known a-priori. These effects will be 
referred to as "intervention variable" effects (Box and Tiao, 1 975). 
Correction for the effect of other variables (examples can be national 
and regional festivities, or some indicator whose effect one wishes to 
remove). 

Those types of effects (including missing values), traditionally neglected or dealt 
with by some empirical procedure, can all be expressed as regression variables. In the 
MBSE approach, a convenient tool is the regression-ARIMA model 

Yt = Wt P+X11 (3.1 ) 

where Y, is the observed series, W, is the matrix with rows the regression 
variables � is a vector of coefficients, and x, follows a possibly nonstationary (NS) 
ARIMA model. (For the case of missing observations, an equivalent procedure is to 
leave them out of the likelihood, and estimate them with a fixed-point smoother; see 
Gomez, Vlaravall and PeM, 1 997). The series x, = Y, - W, � is the "linearized" 
series, in the sense that it can be assumed to be generated by a linear process. 

For the general case of possible missing observations and possibly 
NS x, s�ries, estimation of model (3.1) has been discussed in previous chapters (see 
also Gomez and Maravall, 1994). For this type of preadjustment to be operational in 
large-scale use, it requires an automatic model identification and outlier correction 
procedure. At present, these requirements can be met in a straightforward manner 
(see Chapter 8). Two programs that perform preadjustment based on models of the 
type (3.1 \ are the program REGARIMA, that together with a modified XII forms the 
new program X12 ARIMA -see Findley et ai, 1 997- and program TRAMO -see Gomez 
and Marc vall, 1996. 

In presenting the MBSE method we shall assume that the ARIMA model is 
known and that the observed series is a linear series. 

4. MODEL SPECIFICATION 

We consider the additive decomposition (perhaps for the log of the series) 

(4.1 ) 
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where Sl denotes the SA series (the "signal" ,) and n, the seasonal component (the 
"noise"). Often. the SA series is expressed as 

where PI is denoted the trend (or trend-cycle), and u, is the irregular component. 
This last component is supposed to absorb highly erratic variation, often, simply white 
noise. In so far as the main purpose of removing seasonality is to obtain a better 
signal of the underlying evolution of the series, and since the addition of white noise 
will hardly improve the signal, for the rest of the paper, we assume that the irregular 
component u, is white noise. Proceeding in this way, the trend is defined as the 
residual after removal of the seasonal and the white-noise components. It follows that 
an AR(2) factor associated, for example, with a two-year cycle would be part of the 
trend, as would be an AR factor with a relatively small modulus. These factors that 
induce short-term and transitory movements can be separated from the trend, as in 

where c, represents a stationary transitory component and m, the smoother trend. 
What should enter ci and how smooth the trend should be depends on the analyst 
horizon. Until Section 1 1 ,  our perspective will be a short-term use and hence we 
consider short-term trends, also called trend-cycle components. We shall refer to them 
simply as trends; their aim is to provide a smoothed SA series; the smoothing removes 
the noise and perhaps some few, relatively small, autocorrelation. 

In the MBSE approach, the components are modelled as parametric linear 
stochastic processes, chosen so as to capture the spectral peaks associated with each 
component. Denote by B the backwards operator (such that B j x, = X'_j ' ) and 
let V = 1 - B and S = 1 + S + ... + S'-' denote the differencing and the annual­
aggregation operators, respectively ( , = number of periods per year). The parametric 
model expressions can be rationalized as follows. 

A stochastic trend can be seen as the equilibrium relationships (2.2) or (2.3) 
that characterize a deterministic trend, perturbated every period by some random 
disturbance with zero mean and moderate variance. Thus (2.2) may become the 
random-walk-pi us-drift trend model 

while (2.3) could become the model 
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or, more generally, the IMA (2,1) model 

all of them well-known models for the trend (see, for example, Stock and Watson, 
1988; Gersch and Kitagawa, 1 983; and Harvey and Todd, 1 983). More generally, one 
can think of models for the trend of the type 

(4.2) 

where cl>p(B) and 6p(B) are low-order polynomials, with all roots of cl>p (EI) real, 
positive and stable, and d • I ,  2 ,  or, very occasionally, 3 (see Maravall, 1 993). 

Concerning the seasonal component, n" condition (2.1 ), satisfied by a 
deterministic seasonal component, can be restated as S n, = O. Perturbating every 
period this equilibrium with zero-mean random shocks of moderate variance, a 
stochastic component is obtained, with model 

S nt = wt• (4.3) 

where w, is a stationary process, ofter- a finite MA. Examples can be found, in 
Harvey and Todd, 1 983, Burridge and WalliS, 1 984, Gersch and Kitagawa, 1 983, Aoki, 
1 990, and Kohn and Ansley, 1 987. More generally one can think of models of the type 

cl>n(B) S n, • 6n(B) an,.' (4.4) 

where the roots of cl>n(B) are associated with seasonal frequencies (see Maravall, 
1 989). 

The irregular component is assumed white-noise. When a separate stationary 
transitory component is included, we shall simply assume an ARMA expression 

On some relatively rare occasions, the polynomial cl>c (B) has roots associated with 
a fixed-period cyclical component (examples are found in Crafts, Leybourne and Mills, 
1 989, and in Jenkins, 1 979). In economiCS, however, the term cycle is often used to 
denote the seasonally adjusted and detrended series (see, for example, Stock and 
Watson, 1 988). What is relevant to our purpose is that, while the very concepts of 
trend and seasonality imply a persistence or a regularity associated with 
nonstationarity, the transitory and irregular components are associated with stationary 
behaviour. 
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In general. if k components are present. the model will consist of the set of 
equations 

<I>, (B)x" = 6, (B) a,, , i = t  • ...• k 

(4.5) 

(4.6) 

where <1>, (B) and 6, (B) are finite polynomials in B of orders p, and 
q,. respectively. with no root in common and with all roots on or outside the unit 

circle. and the variable alt is a (O.V,) white noise. The following assumptions are 
made: 

ASSu01ption A. 

Assumption B. 
Assumption C. 

The variables a" and aJf' 
values of (t.n. 
The <1>, - polynomials are prime. 

• j .  are uncorrelated for all 

The 6, - polynomials do not share unit roots in common. 

Assumption A is based on the "a priori" belief that what causes. for example. 
seasonal fluctuations (weather. holidays) has little to do with what causes the evolution 
of the trend (productivity. technology). Of course. the assumption may be questioned 
on some applications (as an example. Ghysels. 1994. finds possible correlation 
between seasonality and cycle for US GNP). Assumption B seems sensible given that 
different components are associated with different spectral peaks (violation of the 
assumption. besides. would produce estimators with unbounded MSE; see Piercej 
1 979). Finally. assumption C guarantees invertibility of the model for x,. This la

);\ 
assumption could be relaxed. but it is rather innocuous and simplifies considerably 
notation. 

Since aggregation of ARIMA models yields ARIMA models. the series x, will 
also follow an ARIMA model. say 

<I> (B)x, = 6 (B) a" (4.7) 

where a, is white noise with variance Va. and <I> (B) - but not 6 (B) - may 
contain unit roots. From (4.5). (4.6) and (4.7). it is straightforward to show that the AR 
polynomial in the model for x, satisfies 

<I> (B) = <I>, (B)<I>2 (B) ... <I>. (B). (4.8) 

and the MA one can be obtained from the relationship 
• 

6 (B) a, = L <l>n, (B) 6, (B) a". (4.9) 
i -, 
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where <P,, (B) is the product of all <PI (B) , j = 1 , ... ,k,  not including <P, (B) . 
[Thus, for example, <1>" (B) = <1>2 (B) ... <P.<B) .] 

The model consisting of equations (4.5) and (4.6), together with assumptions 
A, B and C will be referred to as an Unobserved Component ARIMA (UCARIMA) 
model. It will prove convenient to express the UCARIMA model also in a more 
compact way, as the signal-plus-noise model (4.1), where s, is the signal of interest 
and n, groups all other components. 

The specification of the UCARIMA model has followed two main directions. One 
starts by directly specifying the models for the components, and has been referred to 
as the Structural Time Series (STS) approach (see Engle, 1 978, and Harvey and 
Todd, 1 983). By specifying directly the models for the components, the STS approach 
avoids identification problems; as a counterpart, it assumes a particular structure for 
the time series at hand. (Identification of a component is typically ensured by 
restricting the order of its MA polynomial, q" to be smaller than that of its AR 
polynomial, p, . )  

To avoid possible misspecification problems, the second approach starts by 
identifying the ARIMA model for the observed x,, and derives the components from 
the structure of that model; it has been referred to as the ARIMA-model-based (AMB) 
approach (see Box, Hillmer and Tiao, 1 978, Burman, 1 980, and Hillmer and Tiao, 
1 982.) For the "trend + seasonal + irregular" components case, the AMB approach, 
in essence, does the following. Given the ARIMA model for the observed data (4.7), 
factorization of the AR polynomial yields the AR polynomials for the component 
models, which are of the type (4.2) and (4.4). Most often, the model for the seasonal 
component is given by (4.3) with w, an MA process of order ( T - 1 ) ,  exactly the 
structure a seasonal component should have according to Roberts and Harrison 
(1984). If the spectra of all components are nonnegative the decomposition is called 
admissible. For a given observed ARIMA model (4.7), in general there is not a unique 
UCARIMA representation that can generate it. The AR polynomials can be obtained 
from the factorization of <I> (B) , but the 6, (B) - polynomials and the innovation 
variances (V,) are not identified. The AMB solves this underidentification problem by, 
first, assuming q, < p, . Then it can be seen that the different (admissible) 
decompositions differ in the way white noise is allocated among the components (see 
Hillmer and Tiao, 1 982, and Bell and Hillmer, 1 984). By adding all additive white noise 
to the irregular component, a unique decomposition is achieved. This decomposition 
is termed canonical and, in it, all components except the irregular have a spectral 
minimum of zero, and are thus noninvertible. Hillmer and Tiao (1 982) show that the 
canonical decomposition maximizes the variance of the irregular and minimizes the 
variance of the other component innovations, providing thus components as stable as 
possible given the model for the series. 
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Although the specifications vary, the models in the STS and the AMB 
approaches are both UCARIMA-type models and are closely related (see Maravall, 
1985). Table 1 contains some examples of model specification for monthly series. 
While in the STS approach the models for the components are parsimonious and the 
ARIMA model for the observed model is not, the inverse is true for the AMB approach. 
For the rest of the paper only the UCARIMA structure is of relevance; the additional 
assumptions made to identify the particular models used for the components play no 
role. 
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5. ESTIMATION OF THE COMPONENTS 

Using the two·component representation of the UCARIMA model, let s, be 
the signal of interest and n, the rest of the series ("the noise"). The model is 
given by equation (4.1), the models 

4>,(6) s, = 6,(6)  a" (5.1 ) 

(5.2) 

where a" and a" are white noises with variances V, and V" plus 
assumptions A, B, and C of the previous section. 

The model for the observed series is given by (4.7) and the aggregation 
relationships (4.8) and (4.9) become 

4> (B) = 4>,(B)  4>, ( B) 

6 ( B) a, = 4>,(6) 6,(B) a" + 4>,(6)  6, (6)  a" • 

Our purpose is. given XT• a particular realization of the time series x,, to 
obtain the estimator 5, such that E ( s, - 5, I XT)2 is minimized, i.e., the 
MMSE estimator of s, . Under the joint normality assumption, 5, is also equal 
to the conditional expectation E (s, I XT) ,  and hence, a linear function of the 
elements in XTo 

The Model Based Signal Extraction (MBSE) procedure consists of 
estimating the signal by its MMSE estimator within the UCARIMA framework 
described above. Since nonnormality should have been dealt with at the 
preadjustment level, in the paper we shall stick to the normality assumption. 
(When the series is not normal, the estimators remain the best linear 
projections.) 

5.1. Stationary Case 

Rewrite the models in their MA expression as s, = tJi,(B) a" , 
n, = tJi, (6) a", and x, = tJi (B) a" where tJi,(6) = 6, ( B}/4>,(6) , and 

similarly for tJi, (6) and tJi ( B) . 

a) PrOjection on a complete realization X = [x_ .... x, ... x-J. 
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Denote by F the "forward" operator, F = 8"', such that F I x, = x"i' As shown 
in Whitle (1963), 5, is obtained with the symmetric filter 

5 = 

[

V

, 'II, (B) 'II, ( F) 

1 

x , 
V

. 'II (B) 'II (F) 
, 

The filter u ( B ,  F )  is the so-called Wiener-Kolmogorov (WK) filter. 

(5.3) 

Let ACGF(z) denote the autocovariance generating function of the variable 
z, and g, (w ) its associated spectrum (w is measured in radians and defined 
in the interval -1t < W < 1t ) . The filter can be expressed as 

u ( B ,  F )  = ACGF (5,) J ACGF (x,) 

or, in the frequency domain, as 

The function ii (w) is also referred to as the gain of the filter. Thus, for the 
spectrum of the estimator of the signal 

g, ( w ) = 

[ �: �:� r g, ( w ) , (5.4) 

so that the squared gain of the filter determines how the variance of the series 
contributes to the variance of the signal for the different frequencies. Notice that 
since g, ( w ) = g, (w ) + g, (w ) , the gain can also be expressed as 

ii (w ) = 1 + --( 1 ) - ' 

r(  w ) 
where r (w) = g, ( w ) J  g, (w ) is the signal-to-noise ratio. When for some 
frequency the signal dominates the noise, ii approaches 1 ;  when the noise 
dominates the signal, ii approaches zero. 

For the two-component model we consider, the WK filter can be expressed 
after simplification, as 

u (B  F) = 

V

, a, ( B) <P, ( B) a, ( F) <P, (F) 
. , 

V

. a (B)a (F) 
(5.5) 

Notice that invertibility of the model for x, guarantees convergence of the filter 
(in B and in F,) irrespectively of the <P - polynomials. 
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b) Projection on a finite realization XT = [x, ' x2 ' ... , xT]. 

Having already S" the projection of s, onto X, we can now 
project S, onto the subset [x, ' ... , xT] • One way to do it (Cleveland and 
Tiao, 1976) is by extending XT with backcasts and forecasts, and then 
applying the WK filter to the "extended series". The Burman·Wilson algorithm 
(Burman, 1 980) allows for the full projection to be efficiently computed with just 
a few forecasts and backcasts. Proceeding in that way 
yields s'IT = E ( s, I XT)· 

An alternative way of computing s'IT is by means of the Kalman Filter (KF); 
see, Harvey (1993) or Anderson and Moore (1 979). First, the model is put into 
a State Space representation (many are available,) consisting of an observation 
equation, say, x, = H'  z" and a transition equation of the type 

Z'.1 = F z, + G v, ' where the vectors z, and v" and the matrices H, F, G 
have been appropriately defined. Then the KF is run with starting conditions 
derived from the marginal distribution of the variables in the model. Finally a 
smoother is applied (fixed point or fixed interval smoother) to obtain 

E ( s, I XT ) . For stationary series, proofs of the equivalence between the WK 
filter and the KF can be found in Kailath (1 976) and in Burridge and Wallis, 
(1 988). 

5.2. Nonstationary series 

By their very nature, concepts such as a trend or seasonality imply a time· 
varying mean associated with NS series. For example, the sum of the seasonal 
component over 1 2  consecutive months should not be far from zero. The model 
based expression of this condition is given by an expression of the type (4.3), 
which implies the presence of the S operator in the AR part of the model for the 
seasonal. The type of nonstationary we consider is the one associated with Unit 
Roots (UR) in AR polynomials, such as the ones implied for example by 
a VV,2 ( = V2S) differencing. These roots will capture the NS behaviour of 
trends and of seasonal components. 

Bell (1984) shows that under standard assumptions for computing ARIMA 
. forecasts for NS series (see Brockwell and Davis, 1987), the WK filter given by 
(5.5) still provides the optimal (MMSE) estimator of the signal s, for the 00 

realization X in the NS case. For a finite realization XT, since XT is a subset 
of X, it follows that E (s, I XT) = E [E (s, IX) I XT)] = E(s, I XT), andthe 
MMSE estimator of s, for the finite realization can be obtained by projecting S, 
onto XT• This is equivalent to replacing the unknowns x, in X by their 
forecasts or backcasts (given the observations in XT). Further, the projection 
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Since g, (w ) I g, (w) < 1 ,  the estimator will always underestimate the variance 
of the component. Relatively more stochastic components will imply smaller 
underestimation, and hence the estimator displays a bias towards stability. 

The second noticeable difference between the component and estimation 
spectra is the presence of "dips" in the spectrum of the estimator. In the usual 
case of a seasonal component satisfying (4.3), from (5.2) and (6.3), 

V, 
a, ( F) = V-

a 
8, (F) S 

8 (F) 

Thus the unit roots in S will show up as unit MA roots in the model 
generating 5, and will produce spectral zeroes for the associated seasonal 
frequencies. The frequency domain derivation also explains the appearance of 
the spectral zeroes in the estimator model. Consider the case where the 
signal s, is the SA series and the noise is a NS seasonal component. 
Let "'0 denote a seasonal frequency; then g, ( "'0) is finite, while 

g, (",o) - �, and from (5.4), 

9 ( ) _ 
g' ( "'0)2 

J (,,)0 -
g, ("'0) + 9, ( "'0) 

will be zero. These spectral zeroes are the frequency counterpart of the unit 
MA roots. More generally, the spectral zeroes in the spectrum of the estimator 
of the SA series will be a feature of any method that removes a non stationary 
seasonal component. 

The difference between the models for the signal and for its estimator has 
some relevant implications. The first one has to do with the standard practice 
of building models on seasonally adjusted data. This practice is based on the 
belief that, by removing seasonality, model dimensions can be reduced. Yet this 
belief is unjustified. While the model for the SA series s, is of the type (5.2), 
the estimator of the SA series, 5" has the structure (6.3), more complicated 
than the one for s, or x, . Table 2 compares the MA expansions of (the 
stationary transformation of) the three variables x" s, ' and 5, for the model. 

VV'2 x,= ( 1  - .4B) (1 - .6B '2 )a" a relatively common model, and one 
for which AMB seasonal adjustment yields results similar to those of X1 1 
(Cleveland and Tiao, 1976). As seen in:!IJe table, coefficients for seasonal lags 
are reduced, but non·trivial coefficients may appear in their neighbourhood (as 
was actually detected in Ghysels and Perron, 1993). 
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Table 2 

LAG ORIGINAL SERIES SA SER1ES{COMPONENT) SA SEAlES (ESTIMATOR) 

1 -.4 -.63 -.63 

2 0 .13 .13 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 0 0 

8 0 0 0 

9 0 0 0 

1 0  0 0 0 

1 1  0 0 -.03 

1 2  -.6 0 . 1 3  

1 3  .24 0 -.20 

1 4  0 0 .13 

1 5  0 0 -0.3 

1 6  0 0 0 

1 7  0 0 0 

1 8  0 0 0 

19 0 0 0 

20 0 0 0 

21 0 0 0 

22 0 0 0 

23 0 0 -.02 

24 0 0 .08 

25 0 0 -.12 

26 0 0 .08 

27 0 0 -.02 

Hence no reduction in dimension can be expected from using the SA series. 
As for the second implication, consider the difference between (5.1) and 

(6.3), that is the factor ".(F) . Direct inspection shows that when n, is NS or 5, 
non invertible, "s (F) will induce unit MA roots, and hence the estimator will 
not be an non-invertible series. In particular, the estimator li, is noninvertible 
if n, is NS, and n, is non invertible if 5, is NS. Hence in a standard trend + 

seasonal + irregular decomposition, with NS trend and NS seasonality, the 
estimators of the 3 components, as well as that of the SA series, will be 
non invertible. An important consequence of the previous result is that the 
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estimators of the SA series, trend, seasonal and irregular components will not 
accept, in general, an AR (or VAR) approximation to its Wold representation. 
Thus, for example, augmented Dickey-Fuller UR tests or standard Johansen 
cOintegration tests should not be performed on SA series, nor on trends. 

The third implication is that, in the MBSE approach, knowledge of the 
theoretical model for the optimal estimator offers a natural tool for additional 
diagnostics. To illustrate the point we use as example the white-noise (0, V,) 
irregular component. Proceeding as before, the model for its MMSE 
estimator u, is found to be the "inverse" model of the ARIMA model for the 
series (see Bell and Hillmer, 1 984), that is 

e(F) u, = <I>(B) a'" (S.7) 

In practice, a, is obtained as the residual, once the other components have 
been estimated. But, if, in an application, the irregular is to be used for residual 
diagnostics, its ACF and variance should not be compared to those of the 
component u,' but to those of the theoretical estimator, given by model (S.7). 
Large departures from white noise in the ACF of u, may be acceptable. 
Significant differences, however, between the theoretical and empirical ACF 
of U, would indicate misspecification. The structure of the differences, besides, 
may provide a clue as to the type of misspecification. For example, if the 
theoretical ACF of the stationary transformation of the trend has p, = -.4., 
positive autocorrelation for low lags in the empirical ACF would clearly point 
towards underestimation of the trend (see Maravall, 1987). 

6.3 Covariance between estimators 

The models for 5, and Ii, can also be used to derive the joint distribution 
of the estimators. In particular, the Crosscovariance Generating Function 
(CCGF) for a stationary series is straightforward to obtain from (S.2) and the 
equivalent expression for <l>n (F) Ii,. It is seen that CCGF (5" Ii,) is the ACF 
of the ARIMA model 

e (B) y, = es (B)  en ( B) b" (S.8) 

with b, white noise, and Vb = V, Vn/V;. Thus the CCGF is symmetric and 
the lag-O covariance between the estimators will always be positive, despite the 
fact that the theoretical components are orthogonal. This positive covariance 
between the estimators is the time-domain explanation of the underestimation 
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of the components covariance mentioned in Section 6.2; see Maravall and 
Planas. (t997). 

Expression (6.8) does not contain the AR polynomials 4>. (B) and 4>. (B) . 
If. say. the first polynomial contains one (or more) unit root. we proceed as 
follows: First. replace this root by one with the same frequency and modulus 
m<t. and denote by s, (m) the estimator obtained after having replaced the 
root. By defining 

CCGF(s"n,) = lim CCGF (s,(m).n,). 
m-l 

expression (6.8) is once more obtained. In this sense. in the standard case of 
NS trend and seasonal components. since the two estimators cannot be 
cOintegrated (the unit AR roots are different). they will diverge in time. each one 
with a NS variance. but their covariance will remain stationary. In practice. thus. 
the crosscorrelation between the estimates of NS components will typically be 
small. Finally. as was the case with the autocovariances. comparison between 
the crosscovariances of the theoretical estimators and of the estimates actually 
obtained may provide an additional tool for diagnostics. 

7. ESTIMATORS FOR RECENT PERIODS 

The properties of the estimators have been derived for the final (or 
historical) estimators. For a finite (long enough) realization. they can be 
assumed to characterize the estimators for the central observations of the 
series. but for periods close to the beginning or the end. the filter cannot be 
completed and some preliminary estimator has to be used. Let the observed 
series be XT = [x, . . .  X, . . .  xTl. As shown by Cleveland and Tiao (1976). the 
MMSE signal estimator (given XT) can be expressed as 

S'IT = u(B.F) x,� . 

where u (B. F) is the WK filter (5.5). and x,� denotes the series extended 
with forecasts and backcasts. Seasonal adjustment of the time 
series XT = [x" ... • xTl yields theSA series [s'lT' . . . •  sTIT1. where Si lT 
denotes the estimator of sl obtained with XT. Using the finite filter 
approximation (6.1 ) .  assume that T > 2L + 1 .  so that the estimator for the 
central observations of the series can be considered final. and that the part in 
B of the filter can be completed when applied to the last observation. (Thus. for 
the. second half of the series we can ignore starting conditions and the 
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estimator of the signal can be seen as the projection onto the semi-infinite 
realization I x _. , ... , xT_" xTI  .) This projection will be represented by the 
operator ET. 

We center on preliminary estimators for recent periods. Let k = T - t ,  
o s k < L ;  applying ET to expression (6.1), 

and hence the preliminary estimator can be expressed as 
• 

�T-'IT = ". (B, F,k) xT_. = L "I.XT-. ' 
I--L 

where ".(B, F,k) is finite and .asymmetric, of degree L in B and k in F. The 
coefficients "i' depend on k, as does the length of the filter. It follows that the 
models that generate the different preliminary estimators 

(5'1" 5111_, , ... , Sq" L_' )  will all be different, different also from the model for 
the final estimator, given by (6.3), and from the model for the component, given 
by (5.1). Bell (1 995) shows, for example, that the model for the concurrent 
estimator is always of the form 

<1>, (B) �' I ' = A (B) a, 

where the order of A (B) = max(p, - 1 ,  q, ) .  It is worth noticing that 
estimators and component share the AR polynomial <1>, (B) , and hence the 
same stationary transformation. They differ in the MA part. 

As a consequence, the SA series available at a certain time, 
[ S' IT' ... , s' IT' ... , ST IT l '  are non-homogenous. The elements at the 

beginning, at the end, and in the middle of the series are generated by different 
models; the SA series has a nonlinear structure, with time-varying parameters 
(for other nonlinearities in SA series, see Ghysels, Granger, and Siklos, 1 996). 

As a simple example, consider the U CARIMA model 
with vs, = a" and n, white noise (a "random-walk plus noise" model). 
Trivially the model for x, is Vx, = ( 1  + e B) a" -1 < e < 0 ,  and the 
parameters e and V. are determined from (1 + e B) a, = a" + Vn, . 
The model for the component s, is an IMA (1 ,0); the model for the final 
estimator is, from (6.2), the ARIMA (1,1 ,0) model 
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(1  • 6 F )  Vs, 0 V, a" (7.1 ) 

while for the concurrent estimator the model is also an IMA(l,O), with the 
innovation a constant fraction of a, . 

8. REVISIONS IN THE ESTIMATOR 

8.1 The Structure of the Revision 

Starting with the concurrent estimator, s'I" as new observations become 
available the estimator of s, is revised, yielding the sequence ( 5'1" S'I'" , 
... , 5'1" "  ... ). As k - �  (in practice, k >  L ) slit., converges to 5" the final 
or historical estimator. To look at the revision the concurrent estimator will 
undergo, write expression (6.4) as 

(8.1 ) 

When x, is the last observation, the first term in (8.1) contains the effect of the 
starting conditions and of the present and past innovations in the series. The 
second term reflects the effect of future innovations. Taking conditional 
expectations at time t, 5'1' 0 �,( 8 t a. and the revision in the concurrent 
estimator (5, - Sq,) is given by 

(8.2) 

a zero·mean stationary process. Hence the distribution of r, can be derived. 
Similar derivation applies to other preliminary estimators, 5" '1" including 
forecasts; see Pierce (1980). 

For the random walk plus noise example, from the identity 

1 1 ( 1 6F ) 
V( l + 6 F )  O w  1 - 8 

-
1 + 6F ' 

we can write. considering (7.1). 

8 0 0 [ _1 
_ _  

6 F  J a , 
1 - 8 1 + 6 F " 

where 0 0 V,I (1 . 6) .  Therefore, 

�,(F)' 0 -0 6 /(1 . 6 F) 

- 3 1 -

(8.3) 



and, from (8.2), 

Hence the revision r, has the ACF of a stationary AR(t) process. 

8.2 Optimality of the Revisions 

(8.4) 

Revisions in preliminary estimators are implied by the use of a two-sided filter, 
as in 

(8.5) 

Starting with the concurrent estimator, if the observations are (x" ... , x,] , 

(8.6) 

and when the new observation (x,_,) arrives, the revised estimator is 

and so on. Two-sided filters are necessary to avoid phase effects; they are also 
implied by MMSE ("optimal") estimation of the components. Of course, to revise 
series is always disturbing and an inconvenience, and revisions can indeed be 
large (for a case study, see Maravall and Pierce, 1983). But revisions simply 
reflect the fact that knowledge of the future will help in understanding the 
present, a very basic fact of life. (Concurrent estimators are, like "first 
impressions", usually insufficient to form an accurate judgement). Thus 
revisions are necessary, and to suppress them is to ignore relevant information, 
to refuse to improve our knowledge, and to distort our timing of events. 

From (8.5) and (8.6), the revision r, = 5, - s'l' can be expressed as 

r, = ", (x,., - x"' I') + "2(X'.2 - x" 2I') + .. ' = L ", e,(j) (8.7) 
,-, 

where e,(j) is the j-th-period-ahead forecast error of the series. Expression 
(8.7) shows that the revision depends on the forecast errors and the weights 
of the WK filter. This justifies the interest in "small" forecast errors (in essence, 
the rationale behind the Xl 1ARIMA modification of Xl 1 ), but revisions still 
depends on the "I ' s .  which depend, in turn, on the stochastic structure of the 
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series (i.e., on the ARIMA model). For some series, the revisions should be 
large; for other series, they should be small. Also, for some series the revisions 
will last long; for others, they will disappear fast. Thus, for a given series, there 
is an appropriate amount of revision. The revision should not be larger than 
that, nor should it be smaller. 

In the MBSE approach, the revisions are "optimal" (both, in terms of size 
and duration) in the following way. They are implied by optimal ( MMSE ) 
forecasting, and optimal ( MMSE ) estimation of the components. Since the 
former implies minimum forecast errors, revisions will tend to be small. But the 
vague (and often made) recommendation of "small revisions" should be 
replaced by that of "optimal revisions", associated with optimal estimation of the 
components. 

9. INFERENCE 

9.1 Optimal forecasts of the components 

Similarly to the case of preliminary estimation, the k-periods-ahead forecast 
is given by 

hence, in practice, one simply needs to further extend the series with some 
additional ARIMA forecasts. The properties of the forecast error 

ST.k - ST.k IT can be obtained in exactly the same way as the error in the 
preliminary estimator which we discuss in the next section. Since, on occasion, 
one may wish to forecast the trend rather than the original series, a convenient 
feature of the MBSE method is that it provides optimal forecasts of the 
components, as well as their associated MSE. 

9.2 Estimation error 

An issue of considerable applied concern has been to obtain a measure of 
the precision of the component estimator, in particular of the SA series (see 
Bach et ai, 1976; Moore et ai, 1 981 ; Bank of England, 1 992). This need is 
specially felt for key variables that are (explicitly or implicitly) being subject to 
some type of targeting (for example, a monetary aggregate or a consumer price 
index). In these cases, intrayear monitoring and policy reaction is based on the 
SA series (for an example, see Maravall, 1 988). We consider now the precision 
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of the concurrent, successively revised, and final estimators, and of the 
forecasts. Bell and Hillmer (1 984), Burridge and Wallis (1985), and Hillmer 
(1985) have shown how to obtain standard errors for the component MMSE 
estimators in UCARIMA models of the type we consider. Here we sketch how, 
under the semi.", realization assumption, the models for the errors can be 
obtained and used in inference. 

Because of the stochastic nature of St ' its final estimation error St 
contains an error, et = St - 5t ( =  nt - nt ) ,  to be denoted "final estimation 
error". Although et is unobservable, it can be seen (Pierce, 1 979) as the 
output of the stationary ARMA model (6.8). Therefore the distribution of et is 
easily obtained. Since the ACGF of et is identical to the CCGF of the 
estimators 5t and nt , the final estimation error variance is equal to the lag-O 
covariance between the estimators. 

For the concurrent estimator, the one of most applied relevance, let 
rT = ST - �IT denote the "revision error"; we already saw how its distribution 

can be obtained. The total estimation error, ET ' is 

Since eT and rT are orthogonal (Pierce, 1 980), the model for ET is 
immediately obtained.The derivation of the model for the error in any 
preliminary estimator or forecast, Et IT = St - 5t IT can be done in an identical 
manner. From this model, the variance and ACF of the error can be obtained. 

9.3 The precision of the rates of growth 

Short-term analysis of the evolution of economic variables, as well as the 
setting of targets, is often based on rates of growth, rather than levels. Assume 
we wish to obtain the MSE of the error in the concurrent estimator of the rate 
of growth over the last m months of a SA series. Since more often than not, 
ARIMA models are appropriate for the log of macroeconomic time series, let 
St = SA series and St = log (St) . The rate of growth of the SA series over 

the last m months is given by Rt = ( St - St_m ) f  St_m . Using the linear 
approximation Rt = St - St_m ' the concurrent estimator of Rt is 
Rtlt = St lt - 5t_m lt ·  To compute the estimation error variance, consider the 

identity 
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The left hand side is the difference in two concurrent estimators. 
Let " and " -m be the associated estimation errors. We saw how to derive 
their variance and ACF. As for the right hand side, the first term is R' I" and 
the second term is the m-period revision in the concurrent estimator. 

Replacing t by t-m in (8.1 ) ,  letting � (Fr = L�.o �j F j , and applying the 
operators E'_m and E, yields, after simplification, 

m 
St-m lt - St-mlt-m = E �1-1 8t_m+ 1  • 

1 - '  

and the identity (9. 1 )  can be rewritten as 
m 

S'I' - S'-m l,-m = 
R' I' + L �,_' a,_m_1 (9.2) 

1 - '  

Denote the error of interest by 0, = R' I' - R, . Subtracting S, - s'_m from 
both sides of (9.2) yields 

m 
Et - Et_m = 

Dl + E �i-1 8t_m+ 1  . 1-' 
(9.3) 

Because 0, is a function of a'_j ' j > 0, the two terms in the right hand side of 
(9.3) are orthogonal, and hence 

m 
V (D,) = 2V, ( 1  - p� ) - L 

i -1 
2 � , _ '  Va ' (9.4) 

where p� denotes the m - lag autocorrelation of " . Expression (9.4) can be 
derived from the UCARIMA model; in the AMB approach, simply from the 
ARIMA model for the series. 

As an example, consider the random-walk plus noise model, and assume 
we are interested in V (D)  for m = 1 ,  i.e., in the variance of the error in the 
measurement of the signal rate of growth for the last period. 

To compute (9.4) we need V, ' p� and �o ' The models for the 
uncorrelated r, and e, processes are (8.4) and, from (6.8), 

( 1  + 6 F) e, = bl ' with Vb = V, V, . From these two AR(I) models one 
trivially obtains Ve ' y� I Vr I y; where y� and y; are the lag-1 
autocovariances of e, and r" respectively. Thus V, = V. + V" 

p; = ( y� + y� ) IV" and �o is the coefficient in the expansion of (8.3), that 
is, �o = - 6 V, / ( 1  + 6 ) .  
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9.4 The gain Irom concurrent adjustment 

A point 01 concern lor data-producing agencies is the Irequency at which 
seasonal adjustment should be performed. Since concurrent adjustment is 
costly and implies changing the data Irequently. seasonal adjustment is often 
performed once a year (or twice a year). and lorecasted seasonal lactors are 
used until the next seasonal adjustment is done. 

Naturally. the use of forecasted factors increases the MSE 01 the SA series. 
and the question of what would be gained in practice moving Irom a once a 
year adjustment to a concurrent one is important. The MBSE approach 
provides a simple answer to the question. From (8.1). it is seen that 

k-' 
MSE (5' _k l' - 5' 1 ') = V. L �\ 

JoO 

where �o • ... • Ck_, are thelirst k coefficients in the polynomial �. (B) . Thus 
the loss in precision due to the use 01 forecasts can be easily measured. 

9.S Innovations In the components (pseudo-Innovations) 

If the UCARIMA model parameters are known and the semi"", realization 
is considered. then a, . the l -period-ahead forecast error of 

x, ( = x, - x'I' _' ) is eventually observed. But since s, and n, are never 
observed. neither will be a" and ani ' the innovations in the components of 
the models (5. 1 )  and (5.2). We refer to them as ·pseudo-innovations· (Harvey 
and Koopman. 1 992. use the term "cuasi-residuals"). Although unobservable. 
their MMSE estimators can be obtained. Taking conditional expectations in 
(5. 1 )  yields 

<I>, (B) 5, = 8, (B)a" 

where a" = E ( a" I X ). Using (5.2). (9.5) can be expressed as 

a = v 
8
, 
(F) <1>. ( F) 

a " 
, 8 (F) , . 

(9.5) 

(9.6) 

where. without loss of generality. we have set V. = 1 .  Compared to (5.5). 
expression (9.6) shows that the filter that provides the MMSE estimator of the 
standarized pseudo-innovation a" I 0, is the one-sided WK fitter for obtaining 5, .  
In other words. ACF ( a"l o.)  = ", ( B . F ) . therelore. although a" is white 
noise. the estimator a" can be highly correlated. Care should be taken thus 
when interpreting the series a" . lor example. when testing lor randomness 
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of a" or for detecting outliers. For the semi-oo realization, applying ET to (9.6) 
yields 

where a' iT = a, when T > t , and 0 otherwise. Therefore, the concurrent 
estimators are given by aS1 11 =: V $ al l and anI II = V n 8t ' so that both are a 
fraction of the series innovation. It is worth noticing that the models for the final 
estimation error, the revision error, the irregular estimator, and the p-innovation 
estimator, all have 6 (F) as the AR polynomial. As a consequence, as a 
general rule, large MA roots in the model for the observed series are 
associated with slowly converging revisions, and highly autocorrelated irregular 
and p-innovations. 

10, AN EXAMPLE 

We consider, as an example, the quarterly series of the Spanish Industrial 
Production Index (IPI) for the period 1981/1 - 1 997/1 ; the series is displayed in 
Figure 3a. To specify the UCARIMA model following the AMB approach we 
start with the ARIMA model for the observed series. A good fit is provided by 
the model 

17174 X, = ( 1  - . 1 1  6 ) (  1 - .9664 ) at '  (0. = 2.03) . 

Direct inspection of the MA parameters indicates the presence of a fairly 
stochastic trend and a very small or very stable seasonality. In the factorization 
of the AR polynomial, 

the factors 172 and S imply the presence of a trend and a seasonal 
component, respectively. Therefore we can decompOse the series into 

where <1>. (6) = 172 , <1>, (6) = S ,  u, is wMe noise, and 6. (6) and 6, (6) are 
polynomials in B of degree 2 and 1 1 ,  respectively, which satisfy the identity 
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A simple and efficient procedure to obtain the canonical decomposition (with 
noninvertible trend and seasonal components) is given in 8urman (1 980), using 
a partial fraction expansion of the model in the frequency domain. Easy 
procedures to compute the ACGF of an ARMA model and to factorize the 
spectrum of an MA model are given in Box, Hillmer and Tiao (1 978) and in 
Maravall and Mathis (1 993), respectively. The UCARIMA model obtained is 
given by 

S nt = { 1  + .508 - .3582 - .948 3 ) ant , ( V, = .oo01V. )  

and the irregular component has variance V" = .30V. . Notice that 
e. (8  = -1 ) = 0 ,  which implies a spectral zero for the trend at the 7t radians 

(twice-a-year) frequency, while the seasonal component displays a spectral 
zero for a frequency between the two seasonal ones. Looking at the variance 
of the component innovations, it is clear that seasonality will be very stable, the 
trend fairly stochastic, and the irregular relatively important. The SA series, 
equal to (pt + ut) , follows the model 

V2 st = { I - I .108 + .1 1 82 ) a" ,  (V. = .97V.) . (10.1) 

which can be expressed as 

'12 St = ( 1  - . 1 1  8 ) ( 1 - .99 B ) a" ' 

and hence the model is seen to be very close to the random-walk-plus-drift 
process. Further, since V, is close to Va ' seasonal adjustment will not 
reduce much the stochastic nature of the series. The spectra of the series and 
components are displayed in Figures 3b, c and d. 

From (5.5), the WK filters to obtain the final estimators of the SA series and 
seasonal component are given by 

v, (8, F) = .97 11(1 - 1 .108 + .1 1 82)S I12 
1 1 (1 - .1 1 8) ( 1 - .9684) 1 1 2

' 

v , ( 8 , F) = .0001 11(1 + .508 - .3582 - .9483) '12 Ii' 
I I  ( 1  - .1 1 8) ( 1  - .9684) 1 1 2 
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where, if Q (B) denotes a polynomial in B, I I Q (B) 1 1 2 = Q (B) Q (F) . Thetwo 
filters and the associated squared gains are displayed in Figure 4. The 
narrowness of the. dip for the gain function of the SA series and of the peak for 
the gain of the seasonal component reflects the fact that the seasonality in the 
series is of a highly stable nature. 

Using expression (6.2), the process generating the estimator of the SA 
series is given by: 

( 1 - .1 1 F) ( 1 - .96F4) V2 St = ·97 (1 - 1 .10B + 
+ .1 1 B2) (1 - 1 . 10F + .1 1 F2) S (F)a , .  (1 0.2) 

Tile spectrum of the SA series (s,) and of its estimator (5,) are shown in 
Figure 5a. It is seen how estimation induces spectral zeros for the seasonal 
frequencies, and hence noninvertibility of the estimator. The associated spectral 
dips imply some underestimation of the variance of the seasonal component. 
In particular, from (10.1) and (10.2), Var (v2s,) = 2.17 V. ,  while 

Var (V25,) = 2.12 V  • . 

The same comparison for the irregular component estimator is shown in 
figure 5b. The variance underestimation is now more pronounced and Table 3 
also exhibits the value of the lag·1 and lag-4 autocorrelations ( p, and p.) for 
the irregular component, its theoretical. MMSE estimator, and the estimate 
actually obtained. (One year has been removed at both end of the series to 
decrease the distortion due to preliminary estimators). 

p, 

P4 

Variance 
(in units of V.) 

IRREGULAR COMPONENT 
Comparison of the second moments 

COMPONENT MMSE ESTIMATOR 

0 -.44 

0 .02 

.30 .16 

Table 3 

ESTIMATE 

-.52 

.07 

. 15  

MMSE estimation induces a negative and large lag-1 autocorrelation. 
Comparison of the theoretical estimator of the irregular and the estimate 
actually obtained (computed as the residual) can be used as a diagnostic tool; 
the close agreement between estimator and estimate points towards validation 
of the results. 
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Expression (6.8) can be used to derive the covariance between the 
component estimators. Table 4 displays the correlations between the (stationary 
transformations) of the estimators and of the estimates actually obtained .. 

Table 4 
CORRELATION BETWEEN ESTIMATORS 

Trend and Seasonal Seasonal and Irregular Trend and Irregular 

Component Components Component 

Estimator -.06 .03 -.04 

Estimate -.09 .08 .01 

The correlations are, in all cases, negligible, the estimator and estimate 
provide, again, similar results. 

As for the estimation errors, the variance of model (6.8), particularized for 
the three components, yields the variance of the final estimation error. To look 
at the revision errors, the weights of the filter � (B, F) given by (6.5) need to 
be computed. Table 5 presents the estimation error variances of the trend and 
SA series, for the final and concurrent estimators. 

Trend 

SA series 

ESTIMATION ERROR VARIANCE 
(in units of V.) 

Final Estimation Revision Concurrent 

Error Error Estimation 

Error 

. 13  .08 .21 

.01 .01 .02 

Table 5 

% Reduction in revision 

S.E. after one year of 

data 

91 

4 

Because of the close-to-deterministic nature of the seasonal component, the 
estimation error of the SA series, be that the final estimation error or the 
revision, is very small. The error in estimating the trend is larger due to the fact 
that a relatively important irregular component has been removed. Still, the 
revision is of a moderate size, and the variance of the error in the concurrent 
estimator is approximately 1/5 of the innovation variance of the series. 
Concerning convergence of the revision, as is typically the case, the very small 
revision in the concurrent estimator of the SA series converges very slowly, 
while in just one year the trend has practically converged to the final estimator. 
The slow convergence of the SA series estimator to the final estimator 
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suggests that very little would be gained from moving from a once-a-year 
adjustment to a concurrent one, and in fact the average decrease in Root­
MMSE would be 1 .5%. For this series, infrequent adjustment would imply little 
loss in precision for the SA series. 

Figure 6 displays the last two years of observations and estimates of the 
trend and seasonal component, as well as the next two years of forecasts with 
the associated 95% confidence intervals. Seasonality is seen to be highly 
significant and stable, and the forecast of the trend, more precise than that of 
the original series, is close to a straight line (this forecast would only be useful 
for short-term horizons.) 

Finally, analysis of the short-term evolution of the series is mostly based on 
changes, not on levels. Expressions (8.2) and (6.8) permit us to obtain the 
ACGF of the revision and final estimation errors, from which, proceeding as in 
Section 9.3, it is straightforward to find that, for example, 90% confidence 
intervals for the quarterly change implied by the last observation are equal to 
(±.47) when the trend is used, and to (±.19) when the SA series is used. 
Further, if the present rate of annual growth is measured as the rate of change 
over a year period centered at the present month (a measure that uses 2 
forecasts), the standard error of the annual rate of growth is 3.64 when 
measured with the original or the SA series, and 3.46 when measured with the 
trend. For longer spans, thus, the trend signal turns out to be more precise. 

1 1 .  RELATIONSHIP WITH FIXED FILTERS 

The MBSE approach we have outlined provides a rich procedure for the 
derivation of linear filters to estimate signals of interest and, often, fixed-type 
filters can be seen as the result of a particular MBSE application, at least to a 
reasonable approximation. A well known case is the approximation to the XI I 
filter developed by Cleveland and Tiao (1976) and Burridge and Wallis (1 984). 
The model found in these approximations for the aggregate observed series is 
broadly similar to a class of ARIMA models often found in practice, namely 
those of the type VV'2 X, = 8(B) a" where 8(B) displays moderately large 
negative values of p, and P'2 ' The spectral shape of this type of model 
presents the stylized features of the typical spectra of economic time series, as 
noticed by Granger (1 966). Other model-based interpretations of some ad-hoc 
filters can be found in Tiao (1 983), Tiao and Hillmer (1978), King and Rebelo 
(1993), and Watson (1986). 

To illustrate the relationship we consider a family of fixed filter of the low­
pass type (aimed at capturing low frequency Signals, i.e., long-term trends) 
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namely the Butterworth family of filters, popular in electrical engineering (often 
in the one-sided expression). For the 2-sided filter, the gain is defined by 

1 G ( ", )  = 

2d ' 

1 + ( sin(",/2) 1 
sin("'e/2) 

( 1 1 .1 ) 

when based on the sine function (BFS), and by the same expression ( 1 1 .1 ), 
with "sin" replaced by "tan", when based on the tangent function (BFT). The 
filter depends on two-parameters: "'e '  the frequency for which 

G ( "'e) = 1 /2 and d = 1 ,  2, 3 . . .  , where larger values of d produce sharper 
filters. 

To obtain the time domain expression of (1 1 .1 ) ,  we use the identity 
2 sin2 (",/2) = ( 1  - e -IO) (l - e lo) , and replace e -Io by B. This yields 

1 9 (B ,F) = , 

1 + k [ ( 1  - B) ( 1  - F) ]d 

where k = [ 2  sin2 ( "'e/2) ] -d .  It is easily seen that g(B,F) is the WK filter for 
estimating S, in the decomposition (4.1), with V"s, = a" and n, white 
noise (k = Vo / V,) . For the 8FT version of the filter, using 

tan2 (",/2) = (1 - e -IO) ( l - elO) l ( l  + e -IO ) ( l + elo) , the time domain 
expression becomes 

9 (B F)  = { 1 + k [ (1 - B) ( 1  - F) ]d }-' , 
(1 + B) ( l  + F) 

which is the WK filter to estimate s, in the decomposition (4.1), with 
V" s, = ( 1  + B)d a" and n, white noise. Therefore, both versions of the 

Butterworth filter accept simple MBSE interpretations. Notice that the signal 
provided by the BFT will be "canonical" in the sense of displaying a spectral 
zero for w = 1t • 

When d = 1 ,  the BFS yields the "random walk plus noise" decomposition. 
When d = 2 ,  for the appropriate value of Vo/ V" from results in King and 
Rebelo (1993), the BFS yields the HP filter. Since the HP was derived originally 
from the minimization of a function that attempts 'to balance the trade-off 
between fitting and smoothness criteria, the example also illustrates the 
relationship between MA filters derived in this way and the MBSE method. It is 
worth noticing that, although the same filter is obtained with the different 
approaches, only the MBSE one provides MSE of the estimators as well as 
forecasts, (for a more complete discussion, see G6mez, 1997b). 
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12. SHORT· VERSUS LONG·TERM TRENDS; MEASURING 
ECONOMIC CYCLES 

In the MMBE approach we have followed, the trend can be seen as a 
smoothed SA series, since it is obtained by removing additive white noise and 
perhaps some highly transitory effect as described in Section 4. As a 
consequence, the trend will, in general. have power over the range of cyclical 
frequencies (i.e .• the range between the zero and the fundamental seasonal 
frequency). Trends of this type are also called trend-cycle components or short­
term trends. 

From a long-term perspective. short-term trend are of lillie use since they 
will not separate the long-term growth from cyclical oscillations. In economics, 
the study of cycles is an important field, and a simple and standard way to 
estimate cycles has been by using some low-pass fixed filter, often the HP 
filter, to detrend an X1 1 -SA series. As mentioned in the previous section, the 
HP filter can be seen as the minimization of an ad-hoc function that allempts 
to balance filling versus smoothing. It can also be seen as an optimal signal 
extraction filter in the UCARIMA model 

(12.1 ) 

( 12 .. 2) 

where c, and b, are mutually orthogonal white-noise variables, with variances 
V, and Vb; the standard application of the filter to quarterly series sets 
V, : 1600 Vb ' Algorithms to obtain the filter based on the minimization 

approach and on the Kalman filter estimation of the signal can be found in 
Danthine and Donaldson (1 993) and in King and Rebelo (1993), respectively. 
An alternative algorithm estimates the signal through the WK filter. First, it is 
straightforward to find that (12.1)  and (12.2) imply that the observed series 
follows the model V2x, : 6H ( B) a" where 6H (B) : 1 - 1 .m1 B + .7994B2 , 
and V. : 2OOOVb • Denoting the HP filter to estimate the trend by H,(B,F) 

. 
and applying expression (5.5), it is found that 

1 1 1 Hp (B,
F) : 

2000 6H (B) 6H (F) . 
(12.3) 

Trivially, the detrended series are obtained through the filter 
H, (B,  F) : 1 - Hp (B,  F) . The squared gain of this last filter is displayed in 

Figure 7a. The numerical results obtained with the three algorithms are 
indistinguishable; the KF and WK procedure are about equally fast, and 
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considerably faster than the Danthine and Donaldson procedure. The WK 
representation (12.3) is convenient for analytical discussion. 

The HP filter to compute the cycle cannot be applied to the observed series, 
since the seasonality would be included in the cycle. It needs to be applied 
either to the SA series or to the (short-term) trend. Therefore, in general, the 
2-step estimator of the cycle can be written as 

al = Hc(B,F) v (B, F ) xl = " (B ,F) xl ' (12.4) 

where H,(B,F) denotes the HP filter, v (B ,  F) the WK filter that provides the SA 
series or the trend, and ,, (B, F) the convolution of the two. This last filter will 
be symmetric and centered and using the model for x . .  given by (4.7), one 
can proceed with model-based analysis in a straightforward manner. 

The squared gain of the ,, ( B ,  F) filter that estimates the cycle is given by 
the continuous line in Figure 7b when the SA series are used, and by the 
discontinuous line when the trend is considered. The dotted line in the figure 
displays the squared gain of the convolution of the XI I and HP filters. It is 
seen that the fi�er based on the trend is considerably more concentrated 
around the cyclical frequencies. 

As seen in expression (5.4), if the previous squared gain is applied to the 
spectrum of XI ' given in Figure 3b, the spectrum of the cycle estimator is 
obtained. Figure Sa displays the spectra obtained with the three series; the 
dotted line corresponds to the one based on the XI I -SA series, while the 
continuous and discontinuous lines correspond to the ones based on the 
model-based SA series and trend. They are seen to be similar in shape and the 
peak is associated, in the 3 cases, with a 7V2-year cycle. The spectrum of the 
difference between the two cyclical components computed with the model­
based SA series and trend is displayed in Figure 8b; it is close to a white-noise 
spectrum, and hence the cycle computed using the SA series is approximately 
equal to the cycle computed using the trend plus some additional noise. 

Figure 9a compares the cycle estimates obtained with the three methods 
(XI I  was applied, in the X1 1 ARIMA spirit, to the series extended at both ends 
with 3 years of forecasts and backcasts). The difference between using the 
X1 1 -SA series or the model-based SA one is seen to be minor. The difference 
between using a SA series or the trend-cycle is, on the contrary, remarkable. 
During the 65 quarters considered, the cycle based on the SA series crosses 
the zero ordinate line 21 times. The cycle estimator based on the short-term 
trend behaves in a more sensible manner: it crosses the zero line only -7 times 
and cyclical periods are neatly defined. Figure 9b plots the MB short-term trend 
of Section 1 0  (equal to the seasonally adjusted and noise clean series) and the 
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long-term trend obtained by applying the HP filter to the previous short-term 
trend; the figure illustrates well the difference between the two. 

The model-based structure can be useful in more ways. Even if the analyst 
using and ad-hoc filter has no model for the component in mind, and hence 
does not care about the final estimation error, he/she will still worry about 
revisions in the estimator (implied by the two-sided structure of the filter.) 
Because it considers a larger information set, the final estimator will be more 
accurate than the concurrent one, and the difference between the two 
estimators (I.e., the revision) can be considered an estimation error. Proceeding 
as in Section 8, and assuming the HP filter is applied to the short-term trend, 
from (12.3), (5.5), and (4.7), expression (12.4) can be rewritten in term of the 
series innovations, as 

C = k 
8. (B) 8. ( F) ( 1 - F4) (1 - F) 

a = 6 ( B F) a (12.5) • 
8HP (B) 8HP ( F) 8 (F) • ' . ' 

where k = V c V. I V: . It is straightforward to see that the revision in the 
preliminary estimator C._k l• can then be expressed as 

dk,t :::: ct - Ct_k 1k  = E � k ·l al.J ' 
j ••  

where invertibility of the denominator of (12.5) implies that the variance 
of dk .• can be computed using a finite number of terms. For the IPI example, 
the standard deviation of the revision error was computed for the estimator of 
the cycle based on the model-based trend. The 95% confidence intervals are 
shown in Figure 9c from which two clear facts emerge. First, historical 
estimation of the cycle is fairly precise. Second, estimation for recent periods 
is unreliable. This poor performance is mostly due to the large revisions.implied 
by the HP filter. One could exploit the model-based structure to obtain forecasts 
of the cycle (in a similar manner to that used in Section 9.1 ,) but considering 
the size of the associated standard errors, these forecasts are worthless. 
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