
 
 
 
 
 

MODELLING THE   
DAILY BANKNOTES IN 
CIRCULATION IN THE  

CONTEXT OF THE  
LIQUIDITY MANAGEMENT 

OF THE EUROPEAN 
CENTRAL BANK 

 
Alberto Cabrero, Gonzalo Camba-Mendez, 

Astrid Hirsch and Fernando Nieto 
 
 
 
 

Banco de España 

 
 
 
 
 
 
 

Banco de España — Servicio de Estudios 
Documento de Trabajo n.º 0211 

 



Modelling the Daily Banknotes in Circulation in the

Context of the Liquidity Management of the European

Central Bank

Alberto Cabrero, Gonzalo Camba-Mendez, Astrid Hirsch and Fernando Nieto�

May 17, 2002

�The �rst author is at the Banco de Espa~na, Alcala 50, Madrid, 28014 Spain, email: cabrero@bde.es, the
second and third authors are at the European Central Bank, Kaiserstrasse 29, D-60311, Frankfurt am Main,
Germany, email: gonzalo.camba-mendez@ecb.int and astrid.hirsch@ecb.int respectively, the fourth author
is at the Banco de Espa~na, email: fnieto@bde.es. The opinions expressed in this paper are those of the
authors and do not necessarily reect the views of the Banco de Espa~na or the European Central Bank. We
are thankful to Nikolaus Bartzsch, Ulrich Bindseil, Denis Blenck, Bj�orn Fischer, Francesco Papadia, Gabriel
Perez-Quiros, Juan Luis Vega, Ben Weller and Flemming W�urtz for their advice and comments on numerous
issues related to this project. Remaining errors are our own.

1



Abstract

The main focus of this paper is to model the daily series of banknotes in circulation
in the context of the liquidity management of the Eurosystem. The series of banknotes
in circulation displays very marked seasonal patterns. T o the best of our knowledge the
empirical performance of tw o competing approaches to model seasonality in daily time
series, namely the ARIMA-based approach and the Structural Time Series approach,
has never been put to the test. The application presented in this paper provides valid
intuition on the merits of eac happroach. The forecasting performance of the models
is also assessed in the context of their impact on the liquidity management of the Eu-
rosystem.

Keywords: Daily Forecast, Liquidity Management, ARIMA modelling, State Spac e

modelling, Se asonality,Cubic Splines.

JEL: C22, C51, C53 and C59.
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Non-Technical Summary

The Eurosystem has at its disposal a collection of instruments and procedures to inuence

in terest rates and manage liquidity in the money markets. Money market liquidity refers

to the balances held b y banks on settlement accounts with the central bank. Generally

speaking the objective of steering in terest rates is ac hieved b y managing the conditions

that equilibrate supply and demand in the market for bank reserves. When assessing the

liquidity needs of the banking system, it is necessary to take into account the expected value

of the so-called `autonomous liquidity factors' that a�ect the supply of bank reserves. These

factors are called autonomous because they are beyond the control of the central bank or

counterparties. Banknotes in circulation is one of the largest autonomous factors. It is a

liquidity absorbing factor: cash withdrawals from banks, that translate in an increase in the

lev el of banknotes in circulation, induce additional re�nancing needs of banks which have to

meet their reserve requirements with the Eurosystem.

The series of banknotes in circulation displays very marked seasonality, comprising weekly,

monthly and annual patterns plus some calendar e�ects. The modelling of daily series that

display seasonal patterns is not simple. Two major approaches for modelling seasonality in

daily series hav e been suggested in the literature: the ARIMA-based approach of Bell and

Hillmer (1983), and the structural time series (STS) model suggested b yHarvey, Koopman

and Riani (1997). T othe best of our knowledge the empirical performance of the ARIMA-

based approach and the STS model has never been compared. The application presented in

this paper provides a valid comparative empirical assessment of their performance. This is

particularly relevant as the nature of the STS model suggested b y Harvey, Koopman and

Riani (1997) incorporates the nonlinear structure of periodic cubic splines, while the ARIMA

is linear in structure. F orecastcombination models will also be built. These should serve to

illustrate whether the models are encompassing or not.

The analysis of the performance of the models is done on the basis of their forecasting

accuracy. Rather than focusing exclusively on standard statistical tests, the performance is

assessed in the context of the liquidity management of the Eurosystem. The performance of

the models is also compared to the performance of the current practice in the Eurosystem

(referred to as AGF model in the paper). T o date the forecasting of banknotes in circulation

has been computed at a national lev el, i.e. the National Central Banks (NCBs) of the

Eurosystem forecast their own respective balance sheet position and the European Central

Bank (ECB) aggregates the NCBs forecasts. The quality of NCBs forecasts has been good

so far. But there are two major reasons for also forecasting the volume of banknotes in

circulation in the euro area directly. First, this forecast can be used to complement and
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improv e the national forecasts. Second, the in troduction of euro banknotes in 2002 and

the free mov ement of banknotes within the euro area may make the national forecasts less

reliable.

Results presented suggest that the two major approaches, i.e. the ARIMA-based ap-

proach, and the STS approach are powerful and display a performance which is up to

the standards of the current aggregated forecast approach employ ed b y the Eurosystem.

Nonetheless, the expert knowledge incorporated in the AGF model is key over certain hol-

iday periods. The ARIMA model has the best forecasting performance ov erhorizons of 5

days and abov e, while the STS is best ov erhorizons of 1 to 4 days. The best forecasting

model is a combination of the ARIMA and STS models. This may point to the fact that

certain seasonal patterns may not be completely captured b ya linear structure.

The assessment of the performance of the models has also been conducted in the context

of the liquidity management of the Eurosystem. The error in anticipating the liquidity

needs due to forecasting banknotes in circulation never exceeds �1 billion of euro for any

of the models. A total of eight corrections to a benchnmark allotment strategy for main

re�nancing operations resulted from the forecasting errors of the ARIMA model, nine from

the STS model and eight from the AGF model. The combination of forecasts from both

the ARIMA and the STS resulted in only two corrections and clearly outperform the other

models.

These econometric models hav e been used in `real time' b y the ECB from July 2001.

The role played by the models was mainly that of checking the quality of the AGF forecast,

and under some circumstances, to adjust it. The `real time' testing of the models b y the

liquidity management unit of the ECB showed that the models had diÆculties incapturing

`exceptional' e�ects, such as the patterns associated with the cash-changeov er process. These

patterns were v ery pronounced towards the end of the y ear 2001 and �rst weeks of 2002.

This meant that expert knowledge from NCBs play ed a prominent role during that phase.

It seems sensible to expect the performance of the models to become better again once the

cash changeov er process is completed. Nevertehless, from a practitioner's viewpoint, it is

necessary to undertake a thorough assessment of the quality of the model's forecasts ov era

period of time which also includes the cash-changeov er process.
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1 Introduction

The Eurosystem has at its disposal a collection of instruments and procedures to inuence

in terest rates and manage liquidity in the money markets. Money market liquidity refers

to the balances held b y banks on settlement accounts with the central bank. Generally

speaking the objective of steering interest rates is achieved by managing the conditions that

equilibrate supply and demand in the market for bank reserves. The Eurosystem has at its

disposal three di�erent types of instruments which determine the market for bank reserves:

minimum reserves, standing facilities and op en market operations1. Credit institutions in the

euro area are required to hold minimum reserves on accounts in the NCBs. The ful�llment

of minimum reserve requirements is measured on the basis of the institutions' av eragedaily

reserve holdings over a one-month maintenance period. The standing facilities provide and

absorb ov ernight liquidity. There are two standing facilities: the marginal lending facility

and the deposit facility. These facilities are available to eligible counterparties. Counterpar-

ties can obtain on their own initiative unlimited ov ernight liquidity from the NCBs at the

pre-speci�ed in terest rate of the marginal lending facilit y,in so far as suÆcient underlying

eligible assets are presented as collateral. The deposit facility allows counterparties to make

`unlimited' ov ernight deposits with NCBs at a pre-speci�ed in terest rate. The pre-speci�ed

in terest rate on the marginal lending facilit yand the deposit facilit yde�ne a corridor for

the market ov ernight in terest rate. The Eurosystem has at its disposal di�erent categories

of open market operations. The main re�nancing op er ationsare the most important open

market operations conducted b y the Eurosystem. Main re�nancing operations are rev erse

transactions whereby the Eurosystem conducts credit operations with a maturity of two

weeks against eligible assets that serve as collateral. These operations are executed ev ery

week in the form of tender procedures.

When making a decision on the amount alloted, or in other words when assessing the

liquidity needs of the banking system, it is necessary to take into account the expected value

of the so-called `autonomous liquidity factors' that a�ect the supply of bank reserves. These

factors are called autonomous because they are beyond the control of the central bank or

counterparties. Banknotes in circulation is one of the largest autonomous factors. It is a

liquidity absorbing factor: cash withdrawals from banks, that translate in an increase in the

lev el of banknotes in circulation, induce additional re�nancing needs of banks which have to

meet their reserve requirements with the Eurosystem.

The series of banknotes in circulation displays very marked seasonality, comprising weekly,

1A detailed account of the Eurosystem's monetary policy instruments and procedures can be found in
ECB (2002b). See also Borio (1997) for a survey on the implementation of monetary policy in industrial
countries.
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monthly and annual patterns plus some calendar e�ects. The modelling of daily series that

display seasonal patterns is not simple. Two major approaches for modelling seasonality in

daily series hav e been suggested in the literature: the ARIMA-based approach of Bell and

Hillmer (1983), and the structural time series (STS) model suggested by Harvey, Koopman,

and Riani (1997). T othe best of our knowledge the empirical performance of the ARIMA-

based approach and the STS model has never been compared. The application presented in

this paper provides a valid comparative empirical assessment of their performance. This is

particularly relevant as the nature of the STS model suggested b yHarvey ,Koopman, and

Riani (1997) incorporates the nonlinear structure of periodic cubic splines, while the ARIMA

is linear in structure. F orecastcombination models will also be built. These should serve to

illustrate whether the models are encompassing or not.

The analysis of the performance of the models is done on the basis of their forecasting

accuracy. Rather than focusing exclusively on standard statistical tests, the performance is

assessed in the context of the liquidity management of the Eurosystem. The performance of

the models is also compared to the performance of the current practice in the Eurosystem.

T odate the forecasting of banknotes in circulation has been computed at a national level,

i.e. the National Central Banks (NCBs) of the Eurosystem forecast their own respective

balance sheet position and the European Central Bank (ECB) aggregates the NCBs forecasts.

The quality of NCBs forecasts has been good so far. But there are two major reasons for

also forecasting the v olume of banknotes in circulation in the euro area directly. First,

this forecast can be used to complement and improv e the national forecasts. Second, the

in troduction of euro banknotes in 2002 and the free mov ement of banknotes within the euro

area may make the national forecasts less reliable. The empirical results presented in this

paper refer to the period January 1994 to F ebruary2001. This means that the impact of

the cash changeov er process (the conv ersion of national coins and notes in toeuro coins and

notes) is excluded completely from the analysis presented in this paper.

The paper is organized as follows. Section 2 provides a brief description of the Liquidity

Management of the Eurosystem. Section 3 describes the series of banknotes in circulation in

the euro area. The ARIMA model is described in section 4, the Structural Time Series Model

in section 5, and the model-judgement approach currently employ ed in the Eurosystem is

described in section 6. The combination of models is described in section 7. Section 8

presents standard predictive accuracy tests of the models, and also an assessment on their

performancein the context of the liquidity management of the Eurosystem. Finally section

9 concludes.
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2 The Liquidity Management of the Eurosystem

By de�nition, only transactions between a bank and the central bank can change money mar-

ket liquidity. T ransactionsbetween banks can only change the individual liquidity position

of those banks involved in the transaction. This means that the balance sheet of the central

bank provides a daily picture of the liquidity position, i.e. the imbalance between supply

and demand of reserves, see, Borio (1997) and Bindseil and Seitz(2001). T able 1 displays a

v ery simpli�ed balance sheet of the central bank. F rom a liquidity management perspective,

a distinction should be made between the follo wing threecategories of balance sheet items:

autonomous factors, net lending to banks and bank reserves. Autonomous factors are re-

lated to central bank activities or services neither determined by the central bank's liquidity

management nor b y counterparties. In our simple balance sheet in table 1, autonomous

factors refer to: banknotes in cir culation, net for eignassets, government deposits and other

autonomous factors. Banknotes in circulation are one of the major autonomous factors inu-

encing liquidity. A central bank usually has the exclusive right to issue banknotes and coins,

but is not able to control the outstanding amount. The users of banknotes determine the

amount they want to hold. The development of banknotes is mainly driven by demand, and

therefore the volume of banknotes should be considered as an `autonomous liquidity factor'.

T able1: St ylized BalanceSheet of a Central Bank.

Assets Liabilities

� Net lending to banks � Banknotes in circulation
� Net foreign assets � Bank reserves
� Other autonomous factors � Government deposits

The item net lending to banks refers to the net liquidity created through central bank

monetary policy operations, and is therefore, directly controlled b y the central bank. The

main components of net lending to banks are the open market operations and the standing

facilities.

The bank reserves of counterparties with the Eurosystem can be considered a residual

position which balances the balance sheet.

The main re�nancing operations of the Eurosystem are geared to wards the objective

of steering in terest rates. The amount of liquidity injected b y these operations should be

enough for banks to ful�ll their reserve requirements without making use of the standing

facilities. Otherwise, this would translate in upward pressure on the ov ernight in terest rate.

F ollo wingBindseil and Seitz (2001) and ECB (2002a), a benchmark allotment strategy for
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main re�nancing operations could be well described b ythe follo wing equation:

Lt = RR� +
1

p

t+p�1X
i=t

Et�2fAig+
1

p

t�1X
i=1

(RR� � RBi) (1)

where Lt denotes the amount of liquidity alloted b ymain re�nancing operations on day t;

RR� denotes reserve requirements adjusted to take also into account the excess reserves held

as a safety margin; Ai is the value of the autonomous factors on day i and Et�2 denotes

expectations made at period t � 2; RBi are the reserve balances held b y banks at day i;

and p is an in teger that equals the `relevant' forecasting horizon as explained below. F or

the purposes of this paper the liquidity provided b ymeans of past open market operations,

including past main re�nancing operations, together with the use of the standing facilities

will be treated as an autonomous factor2. In the Eurosystem the period over which the

reserve requirements are computed precedes the period ov erwhich they must be ful�lled.

Under these circumstances the central bank knows the exact demand for reserves. Applying

equation 1 requires an accurate forecast of the autonomous factors that a�ectthe supply of

bank reserves, the term Et�2fAig. The amount alloted to the main re�nancing operations

will be computed on the basis of these forecasts. Central banks devote large resources to

maintaining and improving the quality of liquidity forecasts. Accurate liquidity forecasts

are of special importance for the Eurosystem due to the relatively low frequency of its main

re�nancing operations. Expectations are formed with information available at time t � 2.

This follo ws fromthe fact that the main re�nancing operations are settled on Wednesdays,

but the allotment decisions are made on T uesdays b y the ECB based on the last available

information from Monday afternoon. The `relevant' forecasting horizon should cover all days

before the settlement of the next main re�nancing operation. Main re�nancing operations

are conducted on a weekly basis, implying a need for forecasts for the autonomous factors

from 1 to 7 days ahead, i.e. p = 7 in equation 1. The value of p is only di�erent from

7 when the next main re�nancing operation is beyond the end of the current maintenance

period. The value of p is then either equal to i) the n umber of days remaining until the

end of the maintenance period (if this occurs after the day of the settlement of the main

re�nancing operation), or ii) the n umber of days in the period that goes from the end of

the maintenance period to the settlement of the next main re�nancing operation (if the end

of the maintenance period occurs prior to the settlement of the current main re�nancing

operation).

Note that in order to conduct the weekly main re�nancing operations, weekly observations

(rather than daily observations) of banknotes in circulation would be suÆcient. This would

2See ECB (2002a) for a more detailed analysis on the benchmark alltment rule normally applied by the
ECB in its main re�nincing operations.

8

BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO Nº 0211



reduce the computational burden on the models. Notwithstanding, the daily modelling

allows a closer monitoring of the liquidity situation. F orexample, the central bank may

decide to conduct a `�ne' tuning operation if the daily monitoring warns of an extraordinary

liquidity shock.

3 The Series of Banknotes in Circulation

Banknotes in circulation is the most important autonomous factors in the context of the

Eurosystem liquidity management, both in terms of absolute size and in terms of volatility. It

represents approximately 35% of the root mean square of total weekly changes in autonomous

factors. It is a liquidity absorbing factor. Cash withdrawals from banks, that translate in an

increase in the level of banknotes in circulation, induce banks to re�nance those withdrawals

to meet their reserve requirements with the ECB.

The log of the series of banknotes in circulation in the euro area is shown in �gure 1.

This series adds up the lev el in eurosof the banknotes in circulation denominated in the 12

national currencies of the countries of the euro area. This series displays very marked seasonal

patterns, which reect certain regularities in payments and receipts as well as patterns in the

consumption behavior associated with holiday periods. Weekly, monthly and annual seasonal

patterns clearly appear. The amount of banknotes in circulation increases just before the

weekend and decreases after the weekend (trading day e�ect). It also decreases before the

middle of the month and increases towards the end as a result of the payment of salaries. The

amount of banknotes in circulation rises during the summer holidays and to wards the end

of the y ear, particularly around Christmas. Public holidays other than Christmas (Easter,

Ascension day,P en tecost)also hav e a strong impact.

The series of banknotes in circulation displays a clear trend. This trend component

is not always upward. The trend mainly reects the expansion of economic activity in

nominal terms. The development of means of payment alternative to currency b y�nancial

institutions can also a�ect the trend pattern of the series of banknotes in circulation. This

may be so insofar as they become increasingly accepted b y the public. For example, the

in troduction of electronic means of payment tends to reduce the amount of banknotes in

circulation demanded b y the public. In addition, the development of an extensive network

of automated teller machines (ATMs) also reduces the use of banknotes. The impact of ATMs

may also be reected in the seasonal patterns of banknotes in circulation. In particular it

may change patterns associated with the trading day.

But mov ements in the trend component are not exclusively associated with economic

activity and developments in means of payments. These could not explain the two periods
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over which the trend displays a negative slope coeÆcient: the second half of 1998 and from

the 4th quarter of 2000 to the �nal date in the sample under study. This last negative trend

pattern is associated with the preparations for the change ov erfrom national currencies to

euros in January 2002. Both euro area and non-euro area residents are likely to reduce their

holdings of the legacy currencies of the euro well ahead of the cash changeover. This is par-

ticularly true for those economic agents that hav e accumulated largeamoun ts of banknotes

in the past, e.g. through idle savings. In addition, non-euro area residents may not always be

well informed about the possibilities of changing national currencies in toeuro. The change

in behaviour in 2001, compared with preceding y ears, can clearly be seen in Figure 1. The

models presented in this paperwill be speci�ed on the basis of their in sample performance

ov er the period 3-Jan-1994 to 20-Feb-2000. Banknotes in circulation ov er the period Decem-

ber 1999 to January 2000 increased drastically in anticipation of potential problems related

to the Y2K computer bug. The �nal date chosen for the in sample period (20th of February)

is suÆciently distant from the 1-Jan-2000 to �t an intervention dummy variable to deal with

the y ear 2000 e�ect. The remaining sample, i.e. from 21-Feb-2000 to 20-Feb-2001, will be

used to assess the forecasting performance of the models.

4 ARIMA Model

The ARIMA model presented in this paper is in the spirit of that proposed b y Bell and

Hillmer (1983) and Box and Tiao (1975). Their model is a sum of a regression model and

an ARIMA model, and can be written as:

yt = Dt +
�(B)

�(B)Æ(B)
"t (2)

The regression component is de�ned as Dt =
Pk

i=1 dt;i, for k equal to the n umber of cal-

endar variation e�ects, and where dt;i, is a function of a �xed vector of independent `time

dependent' variables, de�ned below. The second summand in the equation abov e provides

the ARIMA component, B is the backshift operator, �(B) and �(B) are polynomial lag

operators with all their zeros outside the unit circle, and with no common zeros, and Æ(B)

is a di�erencing operator like for example (1�B). Finally, "t is an iid stochastic process of

zero mean and variance�2.

The regression component Dt is used to model several deterministic e�ects, like calendar

variation e�ects, i.e. the impact that changes in the positioning ofholida ys in the calendar

from year to year has on the series under study, yt. A typical example is the Easter holidays,

which may occur either in March or in April. The de�nition of calendar variation e�ects

applies also to `�xed holidays' such as the 1st of May. This is so because it is relevant
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whether the 1st of May falls on a particular day of the week, and therefore, strictly speaking

its position changes also from y ear to y ear. The ARIMA component serves to model auto-

correlation patterns, seasonality patters and trend patterns. F or our purposes,the vector of

time dependent variablesdt;i are modelled as follows:

dt;i =
wi(B)

1� �iB
h(�i; t) (3)

where as before, B denotes the backshift operator, wi(B) is a polynomial lag operator and

�i is a parameter, both associated with the i-th calendar variation e�ect, �nally h(�i; t), is

an indicator function that takes the value of 1 when t = �i and a value of zero otherwise,

where �i is a date associated with a particular calendar variation e�ect, for example Easter

F riday. In order to make this seasonal dummy fully compliant with a seasonal speci�cation

the values adopted b y the indicator function would be 1 � f and �f , where the value of

f depends on the frequency over which the dummy is de�ned. An alternative speci�cation

for dt;i, could be that used b y Pierce, Grupe, and Cleveland (1984) in the context of the

seasonal adjustment of weekly monetary aggregates. This takes the form of a trigonometric

function which �ts deterministic seasonal patterns well. This alternative functional form is

as follows:

dt;i =

pX
k=1

�
ajsin

2�kmt

Mt

+ bjcos
2�kmt

Mt

�
(4)

where mk is an in tegerwhich giv esthe position at time t of a particular observation ov era

de�ned frequency Mt. F orexample, for monthly seasonal patterns mt gives the day of the

month, while Mt giv esthe n umber of days in that particular month. The value of p should

be large enough for this variable to account for all the seasonality.

Bell and Hillmer (1983) provided also a model building procedure for this type of ARIMA

model which follows closely the three stage strategy (identi�cation, estimation and diagnostic

checking) proposed b yBox and Jenkins (1976). Under the assumption of normality of the

observations, the lik elihood function can be expressed in terms of the prediction errors and

their corresponding variances, how to do this is well documented in Brockwell and Davis

(1991). A common approach to compute the exact likelihood function is to write the ARIMA

model in its state space form, then the Kalman �lter recursions would provide the prediction

errors, see Bell and Hillmer (1991).

4.1 An ARIMA model of banknotes in circulation

4.1.1 The deterministic structure

T able 2 shows the structure of the di�erent deterministic components for the ARIMA model

of banknotes in circulation. A similar identi�cation strategy to that proposed b yBell and

11

BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO Nº 0211



Hillmer (1983) and Box and Tiao (1975) was follo wed to search for the structure of these

deterministic components. The notation used in the tables is in line with that used in

equation (3), and follows the explanations given abov e.

Fixed F estivals and Moving F estivals. The Christmas e�ect is the most complicated

pattern to capture in this model. The Christmas and New Year e�ects are estimated using

the same reference date, namely a dummy that takes a value of one on Christmas day, or the

day before if it falls on Saturday or Sunday. The e�ect of increased banknote withdrawal is

only signi�cant between six and four working days before Christmas day (see table 2). This

e�ect has also been estimated as signi�cant in the three days follo wingChristmas, which

captures in some measure the New Year e�ect. The corresponding post Christmas decrease

in banknotes (or end-of-year e�ect) lasting till mid-January, cannot be explicitly estimated

b ydeterministic dummies. It is reasonable to suggest that this e�ect must be incorporated

within the stochastic structure and/or the trigonometric variables. F or this reason, the

genuine New Year e�ect is incorporated in the variable reecting the end-of-month e�ect.

Any attempt to capture this end-of-year e�ect runs in to multicollinearity problems.

Dummies associated with euro-area national public holidays have been tested. As it is to

be expected, only those holidays common to most member countries are signi�cant. These

refer to the following: 1st May (95% of the euro area), 1st Nov ember (90%), Corpus Christi

(65%), Whit Monday (65%), and Ascension (60%). Public holidays that fall on a F riday

hav e been found to hav e a di�erent e�ect from those associated with other days of the week.

P eoplewithdraw banknotes from the system on F ridays to co v ertheir weekend expenses.

This withdrawal shifts to Thursdays whenever Friday is a public holiday. There are �ve such

days in the period under study. Therefore, the model includes two rather than one dummy

to deal with the e�ect of �xed holidays. Both hav e the structure display ed in table 2, but are

estimated with di�erent parameters. This variable is estimated to be signi�cant and without

correlations with other potentially `conicting' variables.

Intramonthly e�ect. Monthly patterns in the series of banknotes in circulation are asso-

ciated with the payment of salaries in the middle and at the end of the month. This e�ect is

captured b ymeans of a trigonometric function lik e the one described in equation (4). The

parameter p was �xed to 8. Figure 2 shows the in tramonthly e�ect as a percentage of the

lev el of the series of banknotesin circulation. The intramonthly e�ect uctuates in between

+1% and -1% of the lev elof the series.

Trading day e�ect. The trading day e�ect in which a zero-sum e�ect is estimated is

highly signi�cant. This shows the presence of a very robust weekly seasonal cycle. The level
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T able 2:Fixed and moving holidays in models.a

ARIMA Model STS Model

Holiday (�i) wi(B) �i wi(B) �i

Easter Frida y
�
w0 + w1B + : : :+ w8B

8
�
B�6 6= 0

�
w0 + w1B + : : : +w12B

12
�
B�4 0

Ascension
�
w0 + w1B + w2B

2
�
B�3 6= 0

�
w0 + w1B + : : : +w5B

5
�
B�2 0

Whit Monday
�
w0 + w1B + : : :+ w3B

3
�
B�2 6= 0

�
w0 + w1B + : : : +w5B

5
�
B�2 0

Corpus Christi
�
w0 + w1B + : : :+ w3B

3
�
B�3 6= 0 No -

Christmas
�
w0 + w1B + w2B

2
�
B�6 0

�
w0 + w1B + : : : +w4B

4
�
B�2 0

New year See Text -
�
w0 + w1B + : : : +w5B

5
�
B�2 0

Fixed Holiday (w0 + w1B)B
�1 0

�
w0 + w1B + : : : +w6B

6
�
B�2 0

Year 2K
�
w0 + w1B + : : :+ w4B

4
�
B�4 6= 0 See Text -

aThe polynomial backshift operators wi(B), ha ve di�erent coeÆcients for the di�erent holidays
displayed in the rows of the table; and the same applies to the di�erent adjustment factors ai. Fixed
holidays correspond to the dates January 1st, August 15th and November 1st. The ARIMA model
�nds only a signi�cant e�ect for those �xed holidays whenever they fall on a Friday.

of banknotes in circulation declines toward the middle of the week (Tuesday and Wednesday),

and increases from Thursday to Friday when it peaks (when ATMs are �lled for the weekend).

The level of banknotes is also high on Mondays compared with T uesdays and Wednesdays,

as a result of a further withdrawal of banknotes b ycommercial banks.

Other deterministic v ariables. Other irregular phenomena hav e had an impact on the

series of banknotes in circulation. In particular, the Y2K e�ect associated with the potential

problems related to the Y2K computer bug led to a very strong increase in demand in the last

four days of 1999 and a subsequent relatively fast run-down e�ect in January 2001. Figure

2 shows the estimated pro�le for this e�ect. The impact of the Y2K in volved an increase

of about 2.7% in the level of the series on 30th December 1999. This impact was mostly

absorbedin the �rst few da ys of January and completely neutralized by mid-F ebruary. The

inclusion of this variable prov ed to be crucial for the forecasting results presented in this

paper for the period F ebruary2000 - F ebruary2001. If it had been left out, it would hav e

resulted in bias in the estimation.

Finally, the model contains sev eraloutliers detected in the modellingprocess and iden-
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ti�ed and estimated follo wingChang, Tiao, and Chen (1988). The criterion adopted is to

intervene only when the outliers are particularly striking. In fact, only two outliers hav e

been considered, and both were estimated as impulse variables: December 6th 1995 and

April 30th 1999. The only explanation for the negative impulse detected on 30th April (the

day before the public holiday of 1st May) is that in 1999 this holiday was on a Saturday, i.e.

not on a working day.

4.1.2 The stochastic structure

The parameters associated with the regular moving av erage structure are low in value. Those

associated with seasonal frequencies are larger and therefore highlight the presence of v ery

marked seasonality. The autoregressive structure shows a moderately signi�cant seasonal-

ity in combination with a complex in tra-year structure (month-on-month and quarterly).

Likewise, the weekly and bi-weekly stochastic structure complements the trading day and

in tramonthly e�ects. The presence of correlation at a quarterly frequency is lik ely to be

related to the payments of the Value Added T ax. The stochastic structure is described b y

the follo wing equations:

�(B) =
�
1� �2B

2 � �11B
11 � �12B

12 � �17B
17
� �

1� �261B
261
�

�(B) =
�
1� �1B � �3B

3 � �5B
5 � �6B

6
� �

1� �45B
45
� �

1� �65B
65 � �66B

66
�

Æ(B) = (1�B)(1� B261)

F oranalytical purposes it is also sensible to disentangle the `stochastic' subcomponent into

two components. First a non-stationary component, given by the structure of the di�erencing

operator, Æ(B), and the remaining parts of the stochastic structure. This results in three

major subcomponents for the ARIMA model of banknotes in circulation: the non-stationary

stochastic process, the stationary stochastic component and the deterministic component.

F orthe series under inv estigation, the non-stationary component accounts for ov er35% of

the variance of the logarithm of the series, the stationary stochastic component for 27%, and

the deterministic term approximately 30%.

The total n umber of parameters is 76. This �gure is large, but is nonetheless necessary

in order to accommodate the e�ect of the �xed and moving holidays. Otherwise the struc-

ture is fairly parsimonious. The speci�cation of the model was done on the basis of the

signi�cance of the parameters and diagnostic tests on the structure of the residuals. Diag-

nostic tests for the �nal speci�cation are reported in table 3. The tests reported are for

skewness and kurtosis, for normality and the Ljung-Box statistic of serial correlation. The

skewness and kurtosis statistics are normalized and therefore their probability values com-

puted from a normal distribution. The normality test is the standard Bowman-Shenton test
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distributed as a chi-squared distribution with 2 degrees of freedom. The Lung-Box statistics

are computed based on the �rst p autocorrelations, and are denoted as is standard as Q(p),

where the values of p chosen are related to weekly, biweekly, monthly and annual frequencies.

Additionally the residual correlogram plotted in �gure 4, is fairly satisfactory. The values

for all autocorrelation coeÆcients are smaller than 0.1. There only remain a few problems,

i.e. some signi�cant (for a critical value of 5%) serial correlation coeÆcients at an annual

frequency and bi-monthly frequency. The Ljung-Box statistics con�rm this result, only for

Q(261) we can reject the null of no serial correlation for a critical value of 5%. Normality

tests are not as good. F urtherimprov ements on the residual correlogram could come only

b y increasing very much the size of the deterministic component of the ARIMA model. This

was decided against as it would deteriorate the forecasting performance of the model.

5 The STS Model

The STS model presented in this paper follo wsthose proposed b yHarvey ,Koopman, and

Riani (1997) and Groot, Koopman, and Ooms (1999). An observed univariate time series yt

is formulated in terms of components as:

yt = �t + t + "t (5)

where �t is an stochastic trend component de�ned below as a local linear trend, t is an

stochastic seasonal component, and the irregular component "t is an iid process with standard

deviation �". The trend component �t has the follo wing structure:

�t = �t�1 + �t�1 + �t

�t = �t�1 + �t

where �t and �t are iid processes normally distributed with mean zero and standard deviation

�� and �� respectively. The seasonal component is de�ned as the sum of k subcomponents

which reect alternative seasonality patterns, i.e. t =
Pk

i=1 
i
t. Every seasonal subcompo-

nent has the structure:

it = zitÆ
i
t (6)

where zit is a �xed v ector of `time dependent' variables, of dimension gi � 1. The values of

zit are de�ned ov era limited range of the total sample T . For example, zit is de�ned ov er

the range [1; 365] for annual seasonality patterns, and its values repeated periodically ov er

the rest of the sample. T oenforce that the seasonal e�ect adds to zero, and guarantee that

it is a truly seasonal component, the sum of zit ov erthe range it is de�ned should add to a
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v ector of zeroes, i.e. when de�ned over an annual range
P365

k=1 z
i
k = 0. Finally, Æit is a time

varying parameter which follo ws arandom walk, i.e.

Æit = Æit�1 + �i
t (7)

where �i
t is a gi� 1 vector of zero mean serially uncorrelated error processes with covariance

matrix equal to E (�i
t�

i0
t ) = �2i I. Not all seasonal components will be stochastic, when they

are deterministic it will be assumed that �2i = 0.

F ollo wing Harvey and Koopman (1993), Harvey , Koopman, and Riani (1997) and Groot,

Koopman, and Ooms (1999), some of the seasonal components it will be modelled as periodic

se asonal cubic splines. The use of trigonometric functions lik e those shown in equation (4)

would hav e required a less parsimonious structure to accomodate the annual and monthly

seasonal patterns. The cubic splines are a succession of polynomial functions of order three

de�ned ov er a time range [0; Ts] to approximate the seasonal pattern. F or example,TS = 365

for annual seasonal patterns and TS = 30 for monthly seasonal patterns. The n umber and

length of the subintervals in that range where the successive polynomial functions are de�ned,

should be such that the seasonal pattern observed is well approximated. In the cubic spline

terminology, the length and number of intervals is de�ned by the positioning of the knots. The

knots provide the subintervals in which the range is divided. The cubic spline functions hav e

certain properties imposed upon them: i) �rst, that the value of two consecutive polynomial

functions must be the same at the coinciding knots, and ii) second, that the value of the �rst

derivative of two consecutive polynomial functions must be the same at the coinciding knots.

F urther to these restrictions, and in order to make the cubic spline periodic, the value of the

function at 0 and at Ts must be the same. Cubic spline functions admit a representation as a

linear function of a vector of parameters Æt; namely it = zitÆ
i
t where z

i
t is a vector of known

values of dimensiong�1 (with corresponding dimensions for Æit). Setting up the cubic spline

requires to �x g, the number of knots, and the positioning of the knots in the range [0; Ts].

The values taken b y the v ectorzit depend on the n umber and positioning of the knots, and

the length of the range ov er which the spline is de�ned. Once more, this type of component

is made stochastic b y allowing the v ector of parameters Æit to follo wrandom walks. For a

more detailed analysis on cubic splines see P oirier (1976) andHarvey ,Koopman, and Riani

(1997).

The model can be written in State Space form and the Kalman �lter implemented to

extract the state component. Given that there are parameters to be estimated, Maximum

Likelihood estimation in combination with the Kalman �lter must be used. See Harvey

(1989) for further details.
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5.1 An STS Model of banknotes in circulation

The seasonal component is de�ned as the sum of �ve seasonal subcomponents which model

�ve di�erent patterns present in the daily data, i.e. t =
P

5

i=1 
i
t. These subcomponents

correspond to: i) intr a-yearly e�ects, 1t , ii) intra-monthly e�ects, 2t , iii) day of the week

e�ect, 3t , iv) moving festivals, 4t , v) �xed festivals, 5t . The �rst three, intra-yearly, in tra-

monthly and day of the week e�ects are stochastic, while the last two are modelled as

deterministic.

Years of 276 days are de�ned to accommodate leap years, and months of 23 days are used

to accommodated all months. The fact that not all y ears are leap is not a problem, when

this is the case the 29th of F ebruaryis considered to be a missing value. The treatment

of these days as missing values is easily handled b y the Kalman �lter iterations. The same

applies to days such as 31st April.

Intra-yearly and in tra-monthly e�ects The annual seasonal pattern display ed in the

series will be modelled with time-varying cubic splines. The intra-monthly seasonal com-

ponent will also hav e a similar structure. The main di�erence between the two is that z1t

will enforce periodicity at an annual frequency, while z2t will do so at a monthly frequency.

Selection of the number of knots and positioning of the splines was based on visual observa-

tion of the residual correlograms, goodness of �t performance and forecasting performance.

The larger the n umber of knots the better the �t, but this comes at the cost of a deterio-

rating forecasting performance. In building the cubic splines two further issues hav e to be

addressed. First, the model makes use of periodic cubic splines. This means that the value

of the spline at the �rst knot and the value of the spline at the �nal knot should be the same

(obviously this is only strictly true for deterministic rather than stochastic splines). This

raises the issue of choosing the starting knot and �nal knot as two consecutive days of similar

characteristics. Placing the �rst knot on 1st January and the last on 31st December prov ed

to be a bad choice. The annual seasonal pattern of the banknotes series displays a sharp

trend around Christmas, making 1st January and 31st December days with very di�erent

seasonal weights. The dates chosen as the �rst and �nal knot were the last two days of

F ebruaryfor the annual spline. F ollo wingthe same reasoning the �rst and last day in the

month are less alike than two consecutive days in the third week of themon th. Second, not

all months hav e 23 working days, some hav e less, therefore there is a need to insert missing

days in certain months to accommodate the splines. Therefore the issue of where to place

the missing days needs to be addressed. The choice of end of month is not good because of

the sharp trend of the monthly seasonal pattern towards the end of the month.

The �nal speci�cation adopted for the intra-yearly spline was one of 16 knots, with knots
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placed at 1,23,99,121,140,166,202,207,213,220,226,231,234,239,246 and 276. But note that

the knot 1 corresponds to the last day of F ebruaryrather than to 1st January. F orthe

in tra-monthly spline 6 knots were suÆcient with positioning at 1,6,10,14,17 and 23, and

with periodicity imposed for the 17th and 18th day of the month (meaning that knot 1

corresponds to the 18th day of the month). After some experimentation, it was found best

to place the missing days after the 17th day of the month. As stated above, the time varying

parameters associated with these splines, Æ1t and Æ
2

t , are modelled as random walks.

Day of the week e�ects Demand for banknotes displays also a day of the week pattern,

there is higher demand of banknotes on F ridays in anticipation of purchases done over the

weekend. T otake this in toaccount, we de�ne 3t = z3tÆ
3

t where z
3
t is a v ector of zeros and

ones of dimension 4�1, the �rst element of this vector takes a value of 1 if t falls on a Monday,

a value of �1 if on a Friday and 0 otherwise. Elements 2, 3 and 4 will hav e a similar pattern

but matching T uesday, Wednesday and Thursday respectively . This structure guarantees

that the sum of the e�ect 3t adds to zero ov erone week. As abov e, the day of the week

e�ect is made stochastic b ymodelling the 4� 1 vector of parameters Æ3t as a random walk.

Fixed festivals and moving festivals The impact of moving festivals is modelled with

deterministic dummy variables. This component of the STS model is de�ned as 5t = z5tÆ
5,

where the dummy elements in zt are built according to equation (3) abov e, with the par-

ticularity that the parameter ai is set to zero. F ulldetails on the structure of the �xed

and moving holiday seasonal dummies are giv enin table 2. Note that the parameter ai in

equation (3) plays the role of a discount factor. It would be very expensive computationally

to use this discount factor in the setting of the STS model for all dummy variables. To av oid

this computational burden the use of this discount factor is limited to the Y2K dummy, for

all other dummies longer lags will be used. Note that according to the structures of the

dummies described in table 2, this is the main only di�erence between the holiday dummies

in the STS model and in the ARIMA model. The impact of the Y2K goes well beyond

the beginning of the y ear and would require the use of a large number of leads. The �nal

speci�cationof the Y2K dummy is as follo ws:

dY 2K;t = a0h1(Y 2K � t)�Y 2K�t
1 + dY 2K;t�1h2(t� Y 2K)�t�Y 2K2

where a0, �1 and �2 are parameters to be estimated, and h1(x) is an indicator function which

takes the value of 1 for x � 1 and h2(x) is also an indicator function which takes the value

of 1 for x > 1.

The total number of parameters of the STS model is 75. Once more this is a large �gure,

but necessary to deal with all holiday e�ects. Diagnostics test for the �nal speci�cation of

18

BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO Nº 0211



the STS model are reported in table 3, and the residual correlogram display ed in �gure 4.

Results for the normality tests on the residuals are in line with those of the ARIMA model,

and therefore not entirely satisfactory. The shape of the residual correlogram is not as at

as that of the ARIMA. The main serial correlation problems for the STS are for frequencies

shorter than one week, and for annual frequencies. This implies that the Ljung-box test

always rejects the n ull of no serial correlation. The size of the correlation coeÆcients are

nonetheless small, of 0.15 for serial correlation of order one and 0.13 for annual correlation.

F ollo wingsuggestions in Harvey, Koopman, and Riani (1997) we hav e experimented with

a model that allo wed for a double-variance for the knots associated with the Christmas

period. This did not improv e the results v ery muc h. Much more relevant for reducing the

serial correlation in the residuals was the choice of the periodicity point for the speci�cation

of the splines. Improv ements on the residual correlogram beyond what is reported in the

tables could only be obtained by making the model much larger. This was ruled out to av oid

damaging its forecasting performance.

6 The Aggregated NCBs Forecast Model (AGF)

T odate the forecasting of banknotes in circulation is mainly computed at a national level,

i.e. the National Central Banks (NCBs) of the Eurosystem forecast their own respective

balance sheet position and the ECB aggregates the NCBs forecasts. Some NCBs are using

econometric techniques while others are applying heuristic methods.

The Research Department at Banco de Espa~na has traditionally run and maintained an

ARIMA model. The prediction results obtained from this model are not the �nal forecast

but rather are used as a reference b y the experts of the `Liquidity Management Unit' of

the Banco de Espa~na. The model chosen b yBanque de F rance is a Structural Time Series

Model. This model is similar to that described in this paper but with two major di�erences.

First, trigonometric functions are used to model annual and monthly seasonal patterns.

Second, additional structure is added to handle serial correlation and ARCH e�ects in the

residuals. The National Bank of Belgium is applying an error correction model (ECM)

with in terven tiondummies. The error correction term includes the di�erence between the

past lev el of banknotesin circulation and its corresponding `trend' component. This `trend'

component is the monthly series of banknotes in circulation interpolated to extend the series

to a daily frequency. The monthly series is forecasted by expert knowledge. the interven tion

dummies are based on estimates for the cash transaction levels and for the distribution

of withdrawals and deposits aroun transaction dates. Deutsche Bundesbank is applying a

heuristic approach. In producing a forecast, information from three major di�erent sources is
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assembled. First, the growth rates of the monthly seasonally adjusted series of banknotes in

circulation. Second, expert knowledge of the impact of Easter, Christmas and other holiday

periods, as well as monthly and weekly patterns as observed in the previous y ears. Third,

the latest available data for the daily series. The other seven NCBs are mainly using expert

knowledge in producing their forecast.

7 Combination of Model Forecasts

T raditionalmodel selection methods search for an optimal model out of a set of candidate

models. Optimality is de�ned in terms of certain statistical criteria, i.e. adjusted R2, min-

imum mean forecasting square error, etc. Model selection methods rely on a n umber of

statistical assumptions on the candidate models, i.e. linear structure, exogenous variables,

endogenous variables, and so on.

But adopting one particular model and discarding the rest might not be an optimal

strategy. In this paper's modelling scenario, alternative strategies are followed by the di�er-

en tmodels to specify certain seasonal patterns. Also, ov ercertain periods, ev en tssuch as

the huge increase in the volume of banknotes in circulation in the weeks before 1st January

2000, are very diÆcult to model ex-ante, and it is sensible to say that forecasts from `experts'

should be preferred. This suggests that useful information, in addition to that in a chosen

model, may be available in thediscarded models.

An alternative strategy could be to combine the alternative forecasts rather than selecting

an optimal model; see Clemens (1989) for a review on forecast combination methods. If our

aim is to minimize the mean forecasting square error, then there are gains in combining

the forecast from two models whenever their corresponding forecast errors are negatively

correlated.

The forecast combination method used in this paper is the regression method suggested

b yGranger and Ramanathan (1984). This method is equivalent to the variance-covariance

method of Bates and Granger (1969) under the speci�cation followed in this section. F or an

observed series of banknotes in circulation yt for t = 1 to T and two alternative forecasts fat

and f bt also for t = 1 to T , the optimal weights in the Mean square error sense are giv enb y

the OLS regression parameters from the equation:

yt = �fat + (1� �)f bt + "t

where "t is an iid noise component. F orthe case under study in this note, the forecasted

series displays v erymarked seasonality patterns. It is sensible to think that certain model

might perform better ov er certain time periods. F or example, the uctuations around Christ-

mas might be more diÆcult to forecast with the STS or ARIMA model than with the AGF
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model. But for `standard' months, such as F ebruary, the STS or ARIMA might be best.

The forecast combination strategy adopted in this paper attempts to incorporate this ar-

gument b y computing di�erent weights (di�erent � values) for the di�erent months, i.e.

�jan; �feb; : : : ; �dec. Di�erent weights are also estimated for the di�erent forecast horizons.

The empirical analysis builds upon three alternative forecasts: the ARIMA model fore-

cast, the STS model forecast, and the AGF forecast. The results for three alternative

combinations will be presented: i) combination of AGF with ARIMA and denoted as Carima
dmj

in the tables below, ii) combination of AGF with STS denoted Csts
dmj, and iii) combination

of ARIMA with STS denoted Csts
arima. The weight parameter � for the di�erent months has

been computed with the t + 1; t + 2; : : : t + 10 `in sample' errors for the ARIMA and STS

model. Only t+1, t+5 and t+10 forecasting residuals ov er the period Feb-1999 to Feb-2000

are available forthe AGF forecasts. The weights computed for t + 1 are used for t + 2 and

t+3 step ahead forecasts, the weights for t+5 used in 4, 5, 6 and 7 step ahead forecast and

the weights estimated from the t+10 residuals used in the 8, 9 and 10 steps ahead forecasts.

8 Forecasting performance

The models were recursively estimated ov erthe forecasting period and forecasts from 1 to

10 periods ahead were computed. F orecastingperformance will be assessed on the basis of

the root mean square forecast error (RMSE), and the predictive accuracy test proposed b y

Diebold and Mariano (1995). This test is an extension of the Central Limit Theorem to

dependent processes. The test is designed to test the null of equal predictive ability between

two models. Assuming a quadratic loss function for ev aluatingforecasting performance we

consider the mean of the di�erences of squared prediction errors of the two competing models.

This mean, suitably normalized, has a standard normal distribution under the null. The test

statistic is given by

SDM =
�dp

2�hd(0)

d
! N(0; 1)

where �d = 1

N

PN

i=1 d̂i, d̂i = �̂2
A ;i � �̂2

B ;i, i = 1; : : : ; N , �̂A ;i are the prediction errors from

model A and �̂B ;i are the prediction errors from model B; N is the n umber of prediction

errors used; and hd(0) is the spectral density of d̂i at frequency zero. The spectral density

hd(0) is computed using a quadratic spectral k ernel and the bandwidth is selected using

the automatic criteria suggested b yAndrews (1991). Strictly speaking this does not follo w

Diebold and Mariano (1995) formulation (they suggested the use of a bandwidth parameter

equal to the forecasting horizon and weights set to unity for the sum of the autocovariances).

This choice of estimate for the spectral density function is justi�ed on the basis of the presence

of some residual serial correlation in the in sample errors, and the nonlinear nature of the

21

BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO Nº 0211



models. The tables below report the probability values. A probability value smaller than

0.05 allows rejection of the null of equal predictive accuracy of models A and B in fav our of

modelA. F orecasting resultsare reported for the whole forecasting period and subsamples.

This serves to assess the performance of a certain model over a certain period of time,

particularly ov ercritical periods such as beginning and end of y ear and around the Easter

holidays.

T ables 4 presents the RMSE, standard deviation and Theil statistic of all the models ov er

the whole forecasting sample. Both the ARIMA and STS model display a better forecasting

performance than the AGF model. The STS model is better than the ARIMA over short run

horizons, but worse ov erlonger horizons. Disparities between the RMSE and the standard

deviation point to a systematic bias in the forecasts. The AGF forecast appears unbiased,

but this is not the case for the ARIMA or STS forecasts. An explanation of this bias could

be found in the series of banknotes. The trend of the series of banknotes has been upwards

for most of the `in sample' period, with a minor period of negative trend for part of 1998.

The slope of the trend was less pronounced b y the end of 2000 and turned negative b y

the beginning of 2001. This is related to the preparations in anticipation of the change

over of national currencies for euros at the beginning of 2002. Most of the bias occurs for

the fourth subsample, clearly there is not enough information availablein the `in sample'

period to forecast optimally the new pattern of the series during the y ear 2001. The best

model is the Csts
arima model. The other two model combinations perform also better than

their individual counterparts, but gains are larger for the combination of the AGF and STS

models. This result suggests that the models used in the AGF forecast being linear add little

to the information already provided b ythe ARIMA model.

T ables 5 to 8 present the RMSE, standard deviation and Theil statistic of all the models

over the four subsamples of the forecasting period. Results resemble those obtained for

the full sample. The worst performance is obtained for the subsample Nov ember 2000 to

F ebruary2001. This is hardly surprising as this includes the Christmas period. It is worth

noting, that while the combination model Carima
agf is usually not a big improv ement ov erthe

ARIMA for the �rst three subsamples, it is certainly muc h betterfor the fourthsubsample,

i.e. that which includes Christmas. This could be explained by the fact that the AGF model

relies less on linear models over this period and, subjective (non-model based) adjustments

weigh more heavily in the �nalforecast. This would explain why the information contained

in the AGF now adds muc hmore to the ARIMA that in other periods.

The results of the Diebold Mariano test are presented in table 9 for the whole sample

and in tables 10 to 13 for the four subsamples. Results show that at a level of signi�cance of

5% model Csts
arima is better than all other models for all forecasting horizons, with the only
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exception of model Csts
agf for 1 step ahead forecasts. Although not as clear cut, results point

in the same direction when check ed ov ersubsamples.

8.1 Liquidity Forecasting

Equation (1) abov e described a benchmark allotment strategy for main re�nancing opera-

tions. In order to assess the forecasting performance of the models presented in this paper it

is fair to ask how good they can be in the context of anticipating correctly the liquidity needs

of the euro area banking system. In June 2000 the ECB agreed to make publicly available

its projections of the expected liquidity needs in the euro area ov erthe frequency of the

main re�nancing operations. The ECB provides information on reserve requirements, RR,

reserve balances, RB, the recourse to the two standing facilities, and the expected value of

the autonomous factors, i.e. the second summand in equation (1). F orthe purposes of this

paper the liquidity provided b ymeans of past open market operations, including past main

re�nancing operations, together with the use of the standing facilities willbe treated as an

autonomous factor. Bindseil (2001) has argued that the publication of the forecasts leads to

better control on steering ov ernight interest rates. This result is obviously dependent on the

quality of the forecasts.

T able 14 presents the size of the error in anticipating the liquidity needs due to banknote

forecasting errors. In order to understand those �gures a few issues should be clari�ed. i)

The amount alloted in the main re�nancing operations is usually rounded to the billion by

the nearest in teger, sa y if the �gure for Lt, as de�ned in equation (1) abov e, was 85.3 the

allotment would be 85, and if the �gure was 85.6 the allotment would be 86. ii) The �gure

for reserve requirements is taken as giv enat the time of all main re�nancing operations,

i.e. updates are ignored. iii) Values of forecast for all other autonomous factors are taken

as their true values. iv) F urthermore,the �gures of the liquidity needs, Lt, are corrected

b y the liquidity e�ects resulting from the credit institution's use of the standing facilities.

As explained in section 2 abov e, the ECB provides liquidity on the basis of its forecast of

autonomous factors and reserve requirements. If these are incorrect, counterparties hav e at

their disposal the use of the standing facilities to adjust for the excess or lack of liquidity.

Therefore, the use of the standing facilities has also a liquidity providing or absorbing e�ect.

F orthe calculation of the liquidity need error, we are only in terested in the e�ect of the

autonomous factor error (in our case only the error in forecasting banknotes). Therefore the

e�ect of the use of the standing facility has to be eliminated.

T able14 displays details on: i) the forecasting period (usually a week), ii) the amount

in billions of euro alloted in the main re�nancing operations, and iii) the size of the error

in billions of euro when the forecast of banknotes is computed from the alternative models,
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i.e. the amount b ywhich the allotment decision deviated ex post from the correct amount

as a result of forecasting errors in banknotes. The one week horizon is the relevant time

period from the liquidity management perspective, because the liquidity in the money market

is adjusted b y the weekly main re�nancing op er ations, see section 2. In total, 29 tender

operations are presented.

The correct tender amount is obtained b y adjusting the actual tender amount b y the

daily error for banknotes (liquidity change / n umber of days from one allotment decision

day to the next one). The error in anticipating the liquidity needs never exceeds �1 billion

of euro for any of the models. With the forecast computed from the ARIMA model there is

a total of 8 corrections, 9 for the STS model, 8 for the AGF and Carima
agf models, 3 for the

Csts
agf model and 2 for the Csts

arima model. Most of the corrections for the ARIMA and AGF

hav e a negative sign, i.e. ov erestimationof liquidity need, while most of the corrections for

the STS model hav e a positive sign. These results con�rm the good forecasting performance

of the Csts
arima model.

9 Conclusion

The daily series of banknotes in circulation is one of the main autonomous factors that af-

fect the supply of bank reserves in the euro area. The objective of steering in terest rates

is achieved b ymanaging the conditions that equilibrate supply and demand in the market

for bank reserves. In order to do so eÆciently , the Eurosystem needs accurate forecast of

certain `autonomous factors'. Banknotes in circulation is the largest of those `autonomous

factors'. The daily series of banknotes in circulation displays very marked seasonal patterns,

which reect certain regularities in payments and receipts as well as patterns in the con-

sumption behavior associated withholida y periods. This paper has assessed the forecasting

performanceof alternativ e approaches for modelling seasonality in daily series.

Results presented suggest that the two major approaches, i.e. the ARIMA-based ap-

proach, and the STS approach are powerful and display a performance which is up to

the standards of the current aggregated forecast approach employ ed b y the Eurosystem.

Nonetheless, the expert knowledge incorporated in the AGF model is key over certain hol-

iday periods. The ARIMA model has the best forecasting performance ov erhorizons of 5

days and abov e, while the STS is best ov erhorizons of 1 to 4 days. The best forecasting

model is a combination of the ARIMA and STS models. This may point to the fact that

certain seasonal patterns may not be completely captured b ya linear structure.

The assessment of the performance of the models has also been conducted in the context

of the liquidity management of the Eurosystem. The error in anticipating the liquidity needs

24

BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO Nº 0211



due to forecasting banknotes in circulation never exceeds �1 billion of euro for any of the

models. A total of eight corrections to an allotment decision strategy described in section 2

resulted from the forecasting errors of the ARIMA model; nine from the STS model, eight

from the AGF and Carima
agf models, three for the Csts

agf model and two for the Csts
arima model.

The combination Csts
arima outperforms the other models.

Results presented in this paper show that the econometric models can explain a large

part of the variation of banknotes in circulation. So far, forecasts of banknotes in circulation

in the euro area hav e been computed b y NCBs, i.e. each NCB computed the forecast for

banknotes in circulation in its own country .The ECB would then aggregate those individual

forecasts and, together with the forecasts for the remaining autonomous factors, would use

this information to calculate the amount to be alloted in its weekly main re�nancing opera-

tion. The in troduction of the euro banknotes and the free movement of banknotes through

the euro area may make the AGF forecasts less reliable. Therefore, the Eurosystem may

hav e to rely more and more on models of the type presented in this paper.

These econometric models hav e been used in `real time' b y the ECB from July 2001.

The role played by the models was mainly that of checking the quality of the AGF forecast,

and under some circumstances, to adjust it. The `real time' testing of the models b y the

liquidity management unit of the ECB showed that the models had diÆculties incapturing

`exceptional' e�ects, such as the patterns associated with the cash-changeov er process. These

patterns were v ery pronounced towards the end of the y ear 2001 and �rst weeks of 2002.

This meant that expert knowledge from NCBs play ed a prominent role during that phase.

It seems sensible to expect the performance of the models to become better again once the

cash changeov er process is completed. Nevertehless, from a practitioner's viewpoint, it is

necessary to undertake a thorough assessment of the quality of the model's forecasts ov era

period of time which also includes the cash-changeov er process.
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A Appendix

A.1 State Space Representation of STS Model

The State space representation of the STS model is as follows:

yt = Ctst + "t

st = Ast�1 + et (A-1)

where Ct and A are matrices of parameters, and "t and et are two independent zero mean

processes with positive de�nite and �nite variancematrices �"" and �ee respectively . The

dependance of matrix C t on time is due to the presence of seasonal components. Matrices

Ct, A and �ee of the state space representation are de�ned as follows:

C t =
�
1 0 z1t z2t z3t z4t z5t

�
(A-2)

A =

2
4
�
1 1
0 1

�
0

0 I

3
5

diag (�ee) =
�
�2�; �

2

� ; �
2

1; : : : ; �
2

1; �
2

2; : : : ; �
2

2; �
2

3; : : : ; �
2

3; 0; : : : ; 0
�

A.2 Kalman Filter Equations

When all parameters in the state space model (A-1) are known, and for known starting

values for the unobserved component, i.e. s0 and its co variancematrix, P 0, the Kalman

�lter equations provide and optimal estimator, in the mean square error sense, of the state

st conditional on information up to time t, this estimator is denoted as stjt = Efstjy1; : : : ; ytg

and its corresponding covariance matrix is denoted asP tjt = Ef(stjt�st)(stjt�st)
0jy1; : : : ; ytg.

The Kalman �lterequations are given b y:

st+1jt = Astjt

P t+1jt = AP tjtA
0 +�ee

�t+1 = yt+1 �Ct+1st+1jt

ft+1 = Ct+1P t+1jtC
0
t+1 +�""

st+1jt+1 = st+1jt +Kt+1�t+1

Kt+1 = P t+1jtC
0
t+1f

�1
t+1

P t+1jt+1 = P t+1jt �Kt+1Ct+1P t+1jt
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A.3 Estimation of parameters of STS Model

When the starting values of the state, s0, P 0 and the parameters in C t, A, �ee and �"",

which we denote as 	 are unknown, they can be estimating by maximum likelihood estima-

tion. Then the log lik elihoodbased on the prediction error decomposition and assuming a

Gaussian model is given b y

logL(s0;P 0;	; y1; : : : ; yT ) = const�
1

2

TX
t=1

log ft �
1

2

TX
t=1

�
0

tf
�1
t �t

F ollo wingde Jong (1988), for P 0 = 0, v ector s0 can be concentrated from the lik elihood

function abov e, the concentrated lik elihood is then:

logL�(	; y1; : : : ; yT ) = const�
1

2

TX
t=1

log dt �
1

2

TX
t=1

u
0

td
�1
t ut + q0Q�1q

where ut and dt are the prediction error and mean square error computed from the Kalman

�lter equations abov e for starting values s0 = 0 and P 0 = 0, and the vector q and matrix

Q are computed in parallel with these Kalman �lter recursions as:

q = q +Z 0
t�1C

0
td

�1
t ut

Q = Q+Z 0
t�1C

0
td

�1
t CtZt�1

Zt = A(I �KtCt)Zt�1

with v ector q and matrix Q initialize at zero and Z0 initialize as an identity matrix. The

estimated value for s0 is equal to Q
�1q.
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T able 3:Speci�cation Tests on in-sample residuals.

ARIMA Model STS Model
stat. p.v. stat. p.v.

Skewness 2.345 0.990 1.757 0.960
Kurtosis -4.085 0.000 -2.735 0.003
Normality 22.191 0.000 10.570 0.005

Ljung-Box on residuals
Q(5) 1.89 0.86 73.80 0.00
Q(10) 8.38 0.59 98.30 0.00
Q(22) 17.95 0.71 124.97 0.00
Q(261) 318.37 0.01 595.06 0.00

Ljung-Box on squared residuals
Q(5) 208.73 0.00 229.22 0.00
Q(10) 163.06 0.00 266.03 0.00
Q(22) 187.46 0.00 275.42 0.00
Q(261) 579.68 0.00 729.53 0.00
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T able4: F orecasting Performance. All sample.

F orecasthorizon
Model Stat. 1 2 3 4 5 6 7 8 9 10

RMSE 0.318 0.487 0.627 0.739 0.828 0.928 1.003 1.071 1.137 1.200
ARIMA St. Dev. 0.314 0.474 0.601 0.699 0.772 0.853 0.907 0.953 0.996 1.033

Theil 0.300 0.261 0.251 0.245 0.234 0.224 0.214 0.209 0.208 0.208

RMSE 0.281 0.461 0.605 0.735 0.847 0.955 1.050 1.140 1.230 1.319
STS St. Dev. 0.276 0.448 0.583 0.703 0.802 0.896 0.976 1.050 1.122 1.193

Theil 0.265 0.247 0.242 0.244 0.239 0.231 0.224 0.222 0.225 0.229

RMSE 0.337 - - - 0.999 - - - - 1.521
AGF St. Dev. 0.334 - - - 0.985 - - - - 1.515

Theil 0.316 - - - 0.284 - - - - 0.268

RMSE 0.263 - - - 0.702 - - - - 1.015
Carima
agf St. Dev. 0.259 - - - 0.663 - - - - 0.916

Theil 0.247 - - - 0.198 - - - - 0.176

RMSE 0.212 - - - 0.673 - - - - 1.076
Csts
agf St. Dev. 0.212 - - - 0.672 - - - - 1.058

Theil 0.200 - - - 0.190 - - - - 0.186

RMSE 0.197 0.379 0.388 0.443 0.494 0.569 0.633 0.681 0.727 0.703
Csts
arima St. Dev. 0.197 0.372 0.387 0.442 0.491 0.566 0.629 0.674 0.717 0.689

Theil 0.185 0.203 0.155 0.147 0.139 0.137 0.135 0.133 0.133 0.122
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T able 5:F orecasting Performance. Subsample February - April 2000.

F orecasthorizon
Model Stat. 1 2 3 4 5 6 7 8 9 10

RMSE 0.282 0.466 0.616 0.764 0.889 1.005 1.117 1.231 1.329 1.410
ARIMA St. Dev. 0.282 0.465 0.615 0.762 0.886 1.002 1.112 1.224 1.318 1.391

Theil 0.292 0.277 0.284 0.305 0.314 0.305 0.297 0.300 0.309 0.317

RMSE 0.269 0.469 0.647 0.823 0.957 1.086 1.206 1.313 1.402 1.480
STS St. Dev. 0.269 0.469 0.646 0.820 0.952 1.078 1.198 1.305 1.397 1.478

Theil 0.278 0.278 0.298 0.328 0.339 0.329 0.320 0.320 0.326 0.333

RMSE 0.347 - - - 0.908 - - - - 1.728
AGF St. Dev. 0.347 - - - 0.894 - - - - 1.705

Theil 0.356 - - - 0.336 - - - - 0.431

RMSE 0.271 - - - 0.841 - - - - 1.359
Carima
agf St. Dev. 0.273 - - - 0.854 - - - - 1.347

Theil 0.281 - - - 0.297 - - - - 0.306

RMSE 0.181 - - - 0.610 - - - - 0.884
Csts
agf St. Dev. 0.180 - - - 0.576 - - - - 0.857

Theil 0.188 - - - 0.216 - - - - 0.199

RMSE 0.130 0.348 0.269 0.307 0.337 0.397 0.423 0.405 0.397 0.381
Csts
arima St. Dev. 0.130 0.348 0.262 0.297 0.317 0.366 0.398 0.387 0.383 0.373

Theil 0.135 0.207 0.124 0.122 0.119 0.120 0.112 0.098 0.092 0.085
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T able6: F orecasting Performance. Subsample May - July 2000.

F orecasthorizon
Model Stat. 1 2 3 4 5 6 7 8 9 10

RMSE 0.305 0.426 0.505 0.525 0.568 0.634 0.693 0.732 0.770 0.816
ARIMA St. Dev. 0.302 0.414 0.480 0.487 0.515 0.567 0.609 0.636 0.664 0.707

Theil 0.369 0.304 0.284 0.263 0.253 0.242 0.234 0.230 0.232 0.236

RMSE 0.301 0.427 0.469 0.478 0.504 0.541 0.590 0.638 0.703 0.791
STS St. Dev. 0.300 0.424 0.460 0.461 0.478 0.505 0.550 0.597 0.665 0.759

Theil 0.363 0.304 0.263 0.240 0.224 0.206 0.200 0.200 0.212 0.229

RMSE 0.343 - - - 0.820 - - - - 1.206
AGF St. Dev. 0.338 - - - 0.792 - - - - 1.111

Theil 0.415 - - - 0.365 - - - - 0.350

RMSE 0.238 - - - 0.513 - - - - 0.770
Carima
agf St. Dev. 0.233 - - - 0.462 - - - - 0.632

Theil 0.287 - - - 0.228 - - - - 0.223

RMSE 0.220 - - - 0.485 - - - - 0.727
Csts
agf St. Dev. 0.220 - - - 0.484 - - - - 0.715

Theil 0.266 - - - 0.216 - - - - 0.211

RMSE 0.202 0.339 0.317 0.304 0.298 0.332 0.380 0.383 0.387 0.399
Csts
arima St. Dev. 0.201 0.338 0.314 0.302 0.295 0.328 0.371 0.371 0.374 0.383

Theil 0.244 0.241 0.178 0.153 0.132 0.127 0.128 0.120 0.117 0.116
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T able 7:F orecasting Performance. Subsample August - October 2000.

F orecasthorizon
Model Stat. 1 2 3 4 5 6 7 8 9 10

RMSE 0.235 0.368 0.440 0.484 0.525 0.583 0.618 0.637 0.650 0.652
ARIMA St. Dev. 0.233 0.365 0.440 0.494 0.538 0.592 0.614 0.628 0.641 0.638

Theil 0.257 0.232 0.215 0.204 0.193 0.183 0.170 0.163 0.161 0.157

RMSE 0.194 0.309 0.380 0.447 0.512 0.567 0.597 0.622 0.646 0.655
STS St. Dev. 0.197 0.303 0.368 0.429 0.483 0.530 0.545 0.555 0.564 0.553

Theil 0.219 0.196 0.184 0.182 0.180 0.172 0.161 0.156 0.156 0.154

RMSE 0.276 - - - 0.706 - - - - 1.020
AGF St. Dev. 0.263 - - - 0.593 - - - - 0.811

Theil 0.565 - - - 0.471 - - - - 0.506

RMSE 0.195 - - - 0.535 - - - - 0.716
Carima
agf St. Dev. 0.192 - - - 0.500 - - - - 0.642

Theil 0.410 - - - 0.359 - - - - 0.353

RMSE 0.156 - - - 0.313 - - - - 0.344
Csts
agf St. Dev. 0.153 - - - 0.285 - - - - 0.312

Theil 0.335 - - - 0.269 - - - - 0.251

RMSE 0.102 0.251 0.182 0.215 0.225 0.247 0.264 0.271 0.279 0.304
Csts
arima St. Dev. 0.107 0.246 0.185 0.221 0.231 0.255 0.270 0.275 0.282 0.305

Theil 0.119 0.159 0.092 0.092 0.083 0.078 0.074 0.070 0.069 0.073
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T able 8:F orecasting Performance. Subsample Nov ember 2000 - F ebruary2001.

F orecasthorizon
Model Stat. 1 2 3 4 5 6 7 8 9 10

RMSE 0.398 0.615 0.819 0.992 1.112 1.248 1.342 1.432 1.522 1.616
ARIMA St. Dev. 0.381 0.559 0.718 0.839 0.895 0.956 0.964 0.963 0.956 0.948

Theil 0.294 0.253 0.245 0.238 0.223 0.214 0.203 0.197 0.195 0.194

RMSE 0.326 0.572 0.796 0.998 1.165 1.323 1.463 1.597 1.733 1.868
STS St. Dev. 0.299 0.509 0.690 0.844 0.956 1.053 1.128 1.191 1.256 1.323

Theil 0.240 0.235 0.238 0.239 0.234 0.227 0.222 0.220 0.222 0.224

RMSE 0.368 - - - 1.328 - - - - 1.906
AGF St. Dev. 0.366 - - - 1.327 - - - - 1.806

Theil 0.271 - - - 0.266 - - - - 0.228

RMSE 0.318 - - - 0.855 - - - - 1.187
Carima
agf St. Dev. 0.310 - - - 0.758 - - - - 0.993

Theil 0.234 - - - 0.171 - - - - 0.142

RMSE 0.257 - - - 0.978 - - - - 1.637
Csts
agf St. Dev. 0.247 - - - 0.904 - - - - 1.343

Theil 0.189 - - - 0.196 - - - - 0.196

RMSE 0.267 0.495 0.572 0.674 0.769 0.890 0.992 1.087 1.172 1.119
Csts
arima St. Dev. 0.267 0.457 0.567 0.658 0.729 0.840 0.926 1.000 1.058 0.983

Theil 0.197 0.204 0.171 0.162 0.154 0.153 0.150 0.150 0.150 0.134
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T able 9:Diebold Mariano Tests: All sample.

1 2 3 4 5 6 7 8 9 10

ARIMA vs STS 0.890 0.757 0.655 0.518 0.424 0.420 0.388 0.365 0.342 0.316
AGF 0.241 - - - 0.079 - - - - 0.057
Carima
agf 1.000 - - - 0.988 - - - - 0.937

Csts
agf 1.000 - - - 0.904 - - - - 0.680

Csts
arima 1.000 0.997 1.000 1.000 0.997 0.995 0.985 0.983 0.985 0.990

STS vs AGF 0.041 - - - 0.096 - - - - 0.150
Carima
agf 0.757 - - - 0.816 - - - - 0.810

Csts
agf 1.000 - - - 0.998 - - - - 0.984

Csts
arima 1.000 0.999 0.998 0.996 0.991 0.990 0.983 0.978 0.966 0.949

AGF vs Carima
agf 1.000 - - - 0.988 - - - - 0.985

Csts
agf 1.000 - - - 0.997 - - - - 0.985

Csts
arima 1.000 - - - 1.000 - - - - 0.998

Carima
agf vs Csts

agf 0.987 - - - 0.587 - - - - 0.425

Csts
arima 0.997 - - - 0.937 - - - - 0.901

Csts
agf vs Csts

arima 0.842 - - - 0.993 - - - - 0.905
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T able 10:Diebold Mariano Tests: F ebruary2000 to April 2000.

1 2 3 4 5 6 7 8 9 10

ARIMA vs STS 0.611 0.488 0.396 0.348 0.358 0.366 0.369 0.387 0.409 0.420
AGF 0.033 - - - 0.403 - - - - 0.180
Carima
agf 0.892 - - - 0.767 - - - - 0.726

Csts
agf 0.982 - - - 0.886 - - - - 0.844

Csts
arima 0.989 0.913 0.944 0.938 0.936 0.929 0.904 0.923 0.860 0.870

STS vs AGF 0.005 - - - 0.518 - - - - 0.168
Carima
agf 0.475 - - - 0.736 - - - - 0.651

Csts
agf 0.976 - - - 0.918 - - - - 0.859

Csts
arima 0.963 0.950 0.924 0.929 0.915 0.896 0.880 0.873 0.870 0.859

AGF vs Carima
agf 0.984 - - - 0.683 - - - - 0.859

Csts
agf 0.998 - - - 0.837 - - - - 0.888

Csts
arima 0.992 - - - 0.893 - - - - 0.876

Carima
agf vs Csts

agf 0.979 - - - 0.918 - - - - 0.847

Csts
arima 0.991 - - - 0.949 - - - - 0.865

Csts
agf vs Csts

arima 0.925 - - - 0.846 - - - - 0.866

T able11: Diebold Mariano Tests: May 2000 to July 2000.

1 2 3 4 5 6 7 8 9 10

ARIMA vs STS 0.525 0.496 0.656 0.709 0.776 0.815 0.782 0.742 0.668 0.557
AGF 0.331 - - - 0.078 - - - - 0.163
Carima
agf 0.944 - - - 0.765 - - - - 0.604

Csts
agf 0.953 - - - 0.837 - - - - 0.723

Csts
arima 0.999 0.886 0.991 0.986 0.987 0.983 0.970 0.971 0.963 0.939

STS vs AGF 0.358 - - - 0.043 - - - - 0.194
Carima
agf 0.798 - - - 0.450 - - - - 0.531

Csts
agf 0.928 - - - 0.599 - - - - 0.630

Csts
arima 0.903 0.962 0.941 0.966 0.976 0.935 0.880 0.883 0.899 0.917

AGF vs Carima
agf 0.987 - - - 0.958 - - - - 0.898

Csts
agf 0.993 - - - 0.960 - - - - 0.866

Csts
arima 0.983 - - - 0.963 - - - - 0.888

Carima
agf vs Csts

agf 0.714 - - - 0.694 - - - - 0.637

Csts
arima 0.866 - - - 0.995 - - - - 0.900

Csts
agf vs Csts

arima 0.674 - - - 0.979 - - - - 0.960
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T able 12:Diebold Mariano Tests: August 2000 to October 2000.

1 2 3 4 5 6 7 8 9 10

ARIMA vs STS 0.918 0.832 0.760 0.702 0.633 0.624 0.602 0.582 0.558 0.542
AGF 0.184 - - - 0.115 - - - - 0.098
Carima
agf 0.929 - - - 0.535 - - - - 0.319

Csts
agf 0.984 - - - 0.942 - - - - 0.961

Csts
arima 0.997 0.936 0.948 0.953 0.965 0.969 0.972 0.974 0.964 0.971

STS vs AGF 0.061 - - - 0.026 - - - - 0.053
Carima
agf 0.554 - - - 0.332 - - - - 0.246

Csts
agf 0.957 - - - 0.916 - - - - 0.934

Csts
arima 0.999 0.998 0.984 0.953 0.941 0.932 0.918 0.919 0.925 0.932

AGF vs Carima
agf 0.984 - - - 0.963 - - - - 0.921

Csts
agf 0.996 - - - 0.949 - - - - 0.912

Csts
arima 0.996 - - - 0.969 - - - - 0.918

Carima
agf vs Csts

agf 0.967 - - - 0.926 - - - - 0.920

Csts
arima 0.999 - - - 0.958 - - - - 0.926

Csts
agf vs Csts

arima 0.982 - - - 0.973 - - - - 0.764

T able 13:Diebold Mariano Tests: Nov ember 2000 to February 2001.

1 2 3 4 5 6 7 8 9 10

ARIMA vs STS 0.874 0.740 0.591 0.482 0.402 0.388 0.369 0.352 0.334 0.319
AGF 0.743 - - - 0.209 - - - - 0.246
Carima
agf 0.995 - - - 0.989 - - - - 0.942

Csts
agf 0.978 - - - 0.722 - - - - 0.484

Csts
arima 0.969 0.949 0.992 0.983 0.955 0.943 0.890 0.873 0.884 0.941

STS vs AGF 0.260 - - - 0.264 - - - - 0.461
Carima
agf 0.563 - - - 0.795 - - - - 0.805

Csts
agf 0.993 - - - 0.988 - - - - 0.935

Csts
arima 0.977 0.962 0.972 0.969 0.947 0.947 0.928 0.914 0.892 0.866

AGF vs Carima
agf 0.892 - - - 0.938 - - - - 0.916

Csts
agf 0.966 - - - 0.923 - - - - 0.791

Csts
arima 0.946 - - - 0.969 - - - - 0.960

Carima
agf vs Csts

agf 0.881 - - - 0.347 - - - - 0.266

Csts
arima 0.854 - - - 0.629 - - - - 0.564

Csts
agf Csts

arima 0.336 - - - 0.972 - - - - 0.831
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T able 14:Correction of the T enderdue to banknote forecasting errors.

Maintenance F orecasting MP No of Actual Correction
P eriod P eriod w eek da ys T ender ARIMA STS AGF Carima

agf Csts
agf Csts

arima

MP 07 20/06/00 to 27/06/00 1 7
27/06/00 to 04/07/00 2 7 98 0 0 0 0 0 0
04/07/00 to 11/07/00 3 7 56 0 1 -1 0 0 0
11/07/00 to 18/07/00 4 7 100 0 0 -1 -1 -1 0
18/07/00 to 25/07/00 5 7 52 0 0 0 0 0 0

MP 08 25/07/00 to 01/08/00 1 7 116 0 0 0 0 0 0
01/08/00 to 08/08/00 2 7 45 0 0 0 0 0 0
08/08/00 to 14/08/00 3 6 113 -1 0 -1 -1 0 0
14/08/00 to 22/08/00 4 8 53 0 0 0 0 0 0
22/08/00 to 29/08/00 5 7 115 1 0 0 0 0 0

MP 09 29/08/00 to 05/09/00 1 7 68 0 0 0 0 0 0
05/09/00 to 12/09/00 2 7 108 0 1 -1 -1 0 0
12/09/00 to 19/09/00 3 7 65 0 0 0 0 0 0
19/09/00 to 26/09/00 4 7 106 0 0 0 0 0 0

MP 10 26/09/00 to 02/10/00 1 6 81 0 0 0 0 0 0
02/10/00 to 10/10/00 2 8 99 0 0 0 0 0 0
10/10/00 to 17/10/00 3 7 76 0 -1 0 0 0 0
17/10/00 to 24/10/00 4 7 94 0 0 0 0 0 0

MP 11 24/10/00 to 31/10/00 1 7
31/10/00to 07/11/00 2 7 90 0 0 0 0 0 0
07/11/00 to 14/11/00 3 7 96 0 0 0 0 0 0
14/11/00 to 21/11/00 4 7 91 -1 1 0 0 0 0
21/11/00 to 28/11/00 5 7 107 -1 0 -1 -1 0 0

MP 12 28/11/00 to 05/12/00 1 7 92 0 0 0 0 0 0
05/12/00 to 12/12/00 2 7 127 -1 1 -1 -1 0 0
12/12/00 to 19/12/00 3 7 90 1 -1 0 1 0 0
19/12/00 to 22/12/00 4 3 121 -1 1 0 -1 1 -1

MP 01 22/12/00 to 02/01/01 1 11 102 0 0 0 0 0 0
02/01/01 to 09/01/01 2 7 101 -1 0 0 -1 0 0
09/01/00 to 16/01/01 3 7 95 0 -1 1 0 0 -1
16/01/01 to 23/01/01 4 7 101 0 1 1 0 1 0
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Figure 1: Euro Area Banknotes in Circulation (logs).
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Figure 2: Calendar Variation E�ects. ARIMA Model. (Values are in % of level of series).
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Figure 3: Calendar Variation E�ects. STS Model.
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Figure 4: Residual Correlogram of Models.

Lag

A
C

F

0 50 100 150 200 250

-0
.0

5
0.

0
0.

05
0.

10

Lag

A
C

F

0 50 100 150 200 250

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

ARIMA model

STS model

43

BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO Nº 0211


	Abstract
	Non-Technical Summary
	1 Introduction
	2 The Liquidity Management of the Eurosystem
	3 The Series of Banknotes in Circulation
	4 ARIMA Model
	4.1 An ARIMA model of banknotes in circulation
	4.1.1 The deterministic structure
	4.1.2 The stochastic structure


	5 The STS Model
	5.1 An STS Model of banknotes in circulation

	6 The Aggregated NCBs Forecast Model (AGF)
	7 Combination of Model Forecasts
	8 Forecasting performance
	8.1 Liquidity Forecasting

	9 Conclusion
	References
	A Appendix
	A.1 State Space Representation of STS Model
	A.2 Kalman Filter Equations
	A.3 Estimation of parameters of STS Model




