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Abstract 

Programs TRAMO and SEATS, that contain an ARIMA-model-based methodology, are 

applied for seasonal adjustment and trend-cycle estimation of the exports, imports, and 

balance of trade Japanese series. The programs are used in an automatic mode, and 

the results are found satisfactory. It is shown how the SEATS output can be used to 

discriminate among competing models. Finally, using the balance of trade series, direct 

and indirect estimation are analyzed and discussed. 

 

 

Keywords: Applied Time Series Analysis;  regression - ARIMA models; Seasonal 
Adjustment;  Trend-cycle estimation;  Direct / Indirect Adjustment. 
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1. INTRODUCTION 
In the early eighties, the work of Bell, Box, Burman, Cleveland, Hillmer, Pierce and Tiao 

set up the basis of an alternative methodology for seasonal adjustment of time series 

[see, for example, Burman (1980) or Hillmer and Tiao (1982) ]. In essence, the 

methodology consists of minimum mean square error (MMSE) estimation of 

unobserved components (“signal extraction”) hidden in an observed time series, for 

which an ARIMA model has been identified. This methodology has been termed the 

“ARIMA-model-based” (AMB) approach, and an important precedent is the work 

contained in Nerlove, Grether and Carvalho (1979). Typically, the components (or 

signals) are the seasonal, trend-cycle, and irregular components, the latter two 

comprising the seasonally adjusted (SA) series. The three components are assumed 

mutually orthogonal, and follow linear stochastic processes, usually non-stationary for 

the case of the trend-cycle and seasonal component, with niid (“white noise”) 

innovations. The models for the components accept ARIMA-type parametric 

expressions and are derived in such a way that they aggregate into the ARIMA model 

identified for the observed series [see, for example, Maravall (1995) ]. Estimators of the 

components are computed via the so-called Wiener-Kolmogorov (WK) filter, as applied 

to nonstationary series (see Bell, 1984). 

 It is often the case that, before it can be assumed the output of an ARIMA 

model, the series needs prior treatment. Important preadjustments are outlier 

correction, the removal of Calendar, intervention variable, and other possible 

regression effects, and interpolation of missing values; see, for example, Chang, Tiao, 

and Chen (1988), Box and Tiao (1975), Chen and Liu (1993), Hillmer, Bell, and Tiao 

(1983), Gómez and Maravall (1994), and Gómez, Maravall and Peña (1999). 

Awareness of the preadjustment problem has been steadily growing, and extends 

beyond model-based signal extraction methods [see, for example, Findley et al (1998)]. 

 The AMB methodology had some appealing features. On the one hand, 

compliance with the ARIMA model of the observed series would seem a good 

protection against spuriousness of results or model misspecification. On the other 

hand, the parametric model-based framework would facilitate analysis and inference 

[see, for example, Pierce (1979, 1980), Bell and Hillmer (1984), Hillmer (1985), 

Maravall (1987) and Maravall and Planas (1999) ]. Yet, despite the smart and efficient 

Burman and Wilson algorithm for finite sample implementation of the WK filter [see 

Burman (1980)], real-world application of the procedure proved elusive, in particular, 

for large-scale applications; it seemed to require heavy dosis of time-series analysts 

and computing resources, which were related, of course, to the lack of a reliable and 

efficient automatic (or quasi-automatic) procedure. As a consequence, the AMB 
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methodology remained latent for some years. The appearance of the programs 

TRAMO and SEATS [Gómez and Maravall (1996)] has somewhat changed the 

situation, and the AMB methodology is presently being used or tested intensively at 

many agencies, institutions, and companies throughout the world. 

 The next section summarizes programs TRAMO and SEATS. Next, their use is 

illustrated with an application to Japanese foreign trade series. The paper concludes 

with some comments on model selection and direct versus indirect adjustment. 

 

 

 

2. BRIEF DESCRIPTION OF PROGRAMS TRAMO AND SEATS. 
TRAMO (“Time series Regression with ARIMA noise, Missing values, and Outliers”) 

is a program for estimation and forecasting of regression models with errors that follow 

in general nonstationary ARIMA processes, when there may be missing observations 

in the series, as well as contamination by outliers and other special (deterministic) 

effects. An important group of the latter is the Calendar effect, composed of the Trading 

Day (TD) effect, caused by the different distribution of week-days in different months, 

Easter effect (EE), due to the changing date of Easter, Leap Year (LY) effect, and 

holidays effect.  

 If  B  denotes the lag operator, such that    B x (t) = x (t-1)   , and  f  the number 

of observations per year, given the observations   y = ( y (t1), y (t2), …, y (tm) )  where   

0 < t1 < … < tm  , TRAMO fits the general model 

 

∑ ∑∑
= ==

+β+α+λω=
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regn
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iii ,)t(x)t(reg)t(cal)t(d)B()t(y  (2.1) 

 

where  )t(di   is a dummy variable that indicates the position of the i-th outlier, )B(iλ   is 

a polynomial in B reflecting the outlier dynamic pattern, ical denotes a calendar-type 

variable, ireg a regression or intervention variable, and  x  is the ARIMA error. The 

parameter  iω is the instant i-th outlier effect, iα and  iβ are the coefficients of the 

calendar and regression-intervention variables, respectively, and cout n,n  and regn  

denote the total number of variables entering each summation term in (2.1). In compact 

notation, (2.1) can be rewritten as 

 

)t(xb)t('z)t(y +=  ,       (2.2) 
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where  b  is the vector with the  ω, α  and  β   coefficients, and  z’ (t)  denotes a matrix 

with columns the variables 

 

[ cal1 (t), …, cn cal (t),  λ1 (B)  d1 (t), …, outnλ (B) outnd (t), reg1 (t), …, regnreg (t) ]. 

 

The first term of the addition in (2.2) represents the effects that should be removed in 

order to transform the observed series into a series that can be assumed to follow an 

ARIMA model; it contains thus the preadjustment component. 

 

In compact form, the ARIMA model for  x (t)  can be written as 

 

)t(a)B()t(x)B()B( θ=δφ        ,      (2.3) 

 

where a (t)  denotes the  N (0, Va )  white-noise innovation, and  )B(and),B(),B( θδφ  

are finite polynomials in  B. The first one contains the stationary autoregressive (AR) 

roots, )B(δ contains the nonstationary AR roots, and )B(θ is an invertible moving 

average (MA) polynomial. Often they assume the multiplicative form 
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where  B1−=∇   and  f
f B1−=∇  are the regular and seasonal difference operators. 

We shall refer to a model consisting of (2.2) and (2.3) as a regression(reg)-ARIMA 

model. 

 When used automatically, TRAMO tests for the log/level transformation, for the 

possible presence of calendar-type effects, detects and corrects for three types of 

outliers [namely, additive outliers (AO), transitory changes (TC), and level shifts (LS)], 

identifies and estimates by maximum likelihood the reg-ARIMA model, interpolates 

missing values, and computes forecasts of the series. It also yields estimates and 

forecasts of the preadjustment component   z’ (t) b   and of the series  x (t)  in (2.2), that 

is, the series that can be assumed to be the output of a linear stochastic process. This 

“linearized” series is equal thus to the interpolated and preadjusted series. 
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 Program SEATS (“Signal Extraction in ARIMA Time Series”) estimates 

unobserved components in series that follow ARIMA models using the AMB 

methodology, and originated from the 1982 version of a program that Burman was 

developing for the Bank of England. In SEATS, the unobserved components are the 

trend-cycle, seasonal, transitory, and irregular components. Broadly, the trend-cycle 

captures the peak around zero present in the series (pseudo)spectrum, the seasonal 

component captures the spectral peaks around the seasonal frequencies, the irregular 

component picks up white-noise variation, and the transitory component captures 

highly transitory variation different from white noise. From the ARIMA model for the 

series, SEATS derives the models for the components, which often display the 

following structure: 

For the trend-cycle component (p), 

sp
D ddD,)t(w)t(p +==∇      , 

where   )t(wp   is a stationary ARMA process. 

For the seasonal component (s), 

,)t(w)t(sS s=  

where  1fB...B1S −+++=   denotes the annual aggregation operator, and )t(ws   is a 

stationary ARMA process. 

The transitory component (c) is a stationary ARMA process, and the irregular 

component (u) is white noise. 

The processes )t(w),t(w sp , c (t), and u (t) are assumed Normally distributed 

and mutually uncorrelated. Aggregation of the models for p, s, c, and u yields the 

ARIMA model for the series  x (t). 

The model for the SA series (n) is obtained from the aggregation of the models 

for p (t),  c (t),  and  u (t). Its basic structure is also of the type 

,)t(w)t(n n
D =∇  

with  )t(wn   a stationary ARMA process. 

 The component estimator and forecast are obtained by means of the WK filter 

as the MMSE estimators of the signal given the observed series, and, under the 

normality assumption, are equal to the corresponding conditional expectation. The WK 

filter is a two-sided, centered, symmetric, and convergent filter; within the AMB 

framework, it can be given a simple analytical representation. Consider the 

decomposition of the series  x (t), that follows the ARIMA model 
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 )t(a)B()t(x)B( θ=φ      , )V,0(wn)t(a a∼   , 

 

where  )B(φ also contains the possible unit roots, into “signal plus non-signal” 

components as in   x (t) = s (t) + n (t).  Let the model for the signal be 

 

 )t(a)B()t(s)B( sss θ=φ      , )V,0(wn)t(a ss ∼   , 

 

where  )B(sφ also contains possible unit roots. Denote by )B(nφ the polynomial in  B  

that contains the roots of  )B(φ that are not in )B(sφ . Then, if F = B -1 denotes the 

forward operator (such that  F x (t) = x (t+1) ), for a doubly infinite series, the WK filter 

to estimate the signal is given by 

 

 
)F(

)F()F(
)B(

)B()B(
V
V)F,B( nsns

a
s

s θ
φθ

θ
φθ

=ν    , 

 

or, equivalently, by the ACF of the stationary ARMA model 

 

 [ ] )t(a)B()B()t(z)B( zns φθ=θ      , )V/V,0(wn)t(a asz ∼ . 

 

The estimator of the signal is obtained through 

 

 )t(x)F,B()t(ŝ sν=   . 

 

In practice, one deals with a finite series, say, [ x(1), x(2), … , x(T) ]. Because 

the WK filter converges, for long-enough series,  the estimator of the signal for the mid-

years of the sample can be considered to be equal to the final estimator (that is, the 

one that would be obtained with the doubly infinite series). More generally, given the 

series [ x(1), … , x(T) ], the MMSE estimators and forecasts of the components (or 

signals) are obtained applying the WK filter to the series extended at both ends with 

forecasts and backcasts. The Burman-Wilson algorithm permits us to obtain the effect 

of the doubly infinite filter with just a small number of forecasts and backcasts. The 

model-based framework is exploited by SEATS to provide standard errors (SE) of the 

estimators and forecasts (the SE are exact if the ARIMA model is correct). Being 

obtained with a two-sided filter, the component estimators at the end of the series are 

preliminary, and will be subject to future revisions. The model-based framework is also 
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exploited to analyze revisions (size, speed of convergence, etc.) and to provide further 

elements of interest to short-term monitoring. 

 TRAMO and SEATS are structured so as to be used together. TRAMO 

preadjusts the series, and SEATS decomposes the linearized series into its stochastic 

components. The complete final component is equal to the stochastic one, plus the 

deterministic effect associated with that component, that has been removed in the 

preadjustment by TRAMO (for example, an AO outlier will be added to the irregular 

component, a LS outlier will be added to the trend-cycle, EE will go to the seasonal 

component, and so on). TRAMO, SEATS, and program TSW, a Windows version that 

integrates both programs, are freely available at  http://www.bde.es, together with 

documentation. 

 

 

 

3. AN APPLICATION TO THE JAPANESE FOREIGN TRADE SERIES. 
The Japanese exports, imports, and balance of trade monthly series are used to 

illustrate the (mostly) automatic functioning of TRAMO-SEATS, as enforced in program 

TSW. The series span the period September 1989 – August 2001 (144 observations) 

and are displayed in figures 1.1, 1.2 and 1.3. I shall adjust the series one by one, in a 

“blind univariate” manner, ignoring in each case the results obtained for the others. 

 
3.1 Automatic Procedure 
 The automatic procedure of TRAMO-SEATS requires the prior decision of 

whether or not a test for the presence of calendar effects should be included, and if so 

which specification for the TD should be used. The different options are controlled by 

the parameter RSA (see the TSW Reference Manual). The most general case 

corresponds to the value 

* RSA = 8,   in which case, the following tests are performed: 

    -     log / level specification, 

    -     Easter effect, 

    -     Leap Year effect, 

-     Trading Day effect using a 6-variable specification  

(one for each day of week). 

 Then, automatic model identification (AMI), joint with automatic outlier detection 

and correction (AODC), is performed. In the latter, three types of outliers are 

considered: AO, TC, and LS outliers. 
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* RSA = 6,     as 8, without the LY effect test 

* RSA = 5,     as 8, with the TD specification changed to a one-variable  

specification (working / non-working day). 

* RSA = 4,     as 5, without the LY-effect test. 

* RSA = 3,     as 8, without tests for EE, TD, and LY effects. 

* RSA = 1,     as 3, without AMI . The default (“Airline model”) is always  

used. This model is given by 

 

    )t(a)B1()B1()t(x 12
12112 θ+θ+=∇∇    , 

 

and provides an excellent “benchmark” model, and a good protection in cases of 

unstable AMI results. [For the empirical relevance of this model, see Fischer and 

Planas (2000)]. 

 

3.2 Exports Series (E) 
 Starting with the most general case RSA = 8, the model obtained is 

 

  E (t) = OUT e (t) + CAL e (t) + x e (t) ,    (3.1) 

 

where the first term in the right-hand-side (rhs) of (3.1) is the total outlier effect, which 

is the sum of three outliers, as in 

 

  )t(d
B1

13667)t(d2626)t(d2716)t(OUT 321e −
−+=  

  (t-values):   (3.4)     (3.3)              (-3.8) 

 

with  1d (53) =1  (1/94),  2d (66) =1  (2/95),  and  3d (111) =1 (11/98), and zero 

otherwise. The first two are AO outliers, the third is a LS one. The second term in the 

r.h.s. of (3.1) is the calendar effect, given by 

 
  −++−= )t(TD366)t(TD29)t(TD609)t(CAL 321e  

  (t-values):   (-3.7)       (.2)      (2.3) 

+++− )t(TD242)t(TD420)t(TD82 654  

          (-.5)       (2.6)     (1.5) 
)t(LY1609+  

             (3.1) 
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where TD i  ,  i = 1,…, 6  , represents the 6-variable specification, and LY the Leap 

Year variable. Finally, the linearized series  x e (t) in (3.1) follows the ARIMA model 

 

)t(a)B742.1()t(x)B323.1( e
12

e12 −=∇∇+  , 

 (t-values):   (3.8)         (-8.5) 

 

 

with 1040e
a =σ  .  (On average, the series is forecasted one-month-ahead with a 

standard error between 2 and 3 % of the series level.) 

 Summary diagnostics are presented in the first row of Table1 (all tables are 

given at the end of the paper). The residuals can be comfortably accepted as zero-

mean, uncorrelated, Normally distributed, with zero skewness and kurtosis equal to 3; 

they do not contain residual seasonality, nor nonlinearity (of the ARCH-type), and their 

signs are randomly distributed. Figure 2.1 displays the residuals; Figure 2.2, the 

residual ACF; Figure 2.3, the 2-year-ahead forecast function with the associated 95% 

confidence intervals, and Figure 2.4, the linearized series and the preadjustment 

component. 

SEATS decomposes the linearized series and its ARIMA model into 

components, which also follow ARIMA-type models, namely, 

 

.n.w)t(u
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 The trend-cycle follows thus an  IMA (2,2) process, and factorization of the MA 

polynomial reveals the factor (1+B), associated with a spectral zero at the π-radians 

frequency. Figure 3.1 shows the monotonically decreasing trend-cycle spectrum, and 

the zero is implied by the so-called “canonical property”, used for identification of the 

trend-cycle and seasonal components in the AMB decomposition [see, for example, 

Maravall (1995)]. 

 The seasonal component is a nonstationary ARMA (11,11) process, with the AR 

polynomial given by the annual aggregation operator ( 11B...B1S +++= ); its spectrum 

is given in Figure 3.2, and the spectral zero is located between the last two harmonics. 

The transitory component picks up the AR factor (1+.323 B), which would otherwise 

contaminate the trend-cycle with undesirable short-term variation, and follows a 

stationary ARMA (1,1) model, with the spectral zero for the π-frequency (this transitory 

component is also included in the SA series). The irregular component is simply white 

noise. The distinction between a transitory and an irregular component is due to the 

fact that isolating a white-noise irregular facilitates testing (see Maravall, 1987). Their 
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behavior, however, is very similar, and for the rest of the discussion, both components 

will be added. The resulting component follows an ARMA (1,1) model, and its variance 

is the sum of the variances of c (t) and u (t). 
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 The squared gains of the two WK filters for the historical estimators of the SA 

series and trend-cycle are given in figures 4.1 and 4.2, and the estimators of the 

different series components in figures 5.1 – 5.6.  Figure 5.1 reveals the relative 

importance of the seasonal variations. The SA series, nevertheless, contains some 

noise and, after its removal the trend-cycle (Figure 5.2) still exhibits important short-

term variation. The seasonal component (Figure 5.3) is considerably stable, and the 

irregular and transitory components (Figures 5.4 and 5.6) are seen to contain highly 

erratic and transitory noise. Figures 6.1, 6.2 and 6.3 present the forecasts of the 

original series and trend-cycle, and the forecasts of the seasonal and calendar 

components. 
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Fig. 6.3 Exports: Forecast of Calendar Effect

-1500

-1000

-500

0

500

1000

1500

1 11 21 31 41

Forecast Calendar Effect

119                                                        144                                                      168

Fig. 6.1 Exports: Forecast of series and of trend

0

10000

20000

30000

40000

50000

60000

1 11 21 31 41119                                                        144                                                     168

Forecast linear series

Forecast trend-cycle

Fig. 6.2 Exports: Forecast of Seasonal 

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

1 11 21 31 41119                                                        144                                                      168

95 % C.I.



 17

 Some properties of the decomposition achieved are presented in the first row of 

tables 2 to 5. Table 2 shows that the seasonal component is relatively stable, while the 

trend-cycle is subject to a larger stochastic shock every period. As seen in Table 3, the 

estimation error of the concurrent SA series estimator is smaller than that of the trend-

cycle, and the revision the estimator will suffer is also smaller. On the other hand, 

Table 4 shows that the SA series estimator will converge much slower to the final 

estimator. Table 5 indicates that the series contains highly significant seasonality, 

which shows up not only for historical estimation, but also in preliminary estimation and 

forecasting. Finally, Figures 7.1 and 7.2 exhibit the original series y (t), the final 

seasonally adjusted series (with the stochastic seasonal estimator in SEATS and the 

calendar effect estimated by TRAMO removed from the observed series), and the final 

trend-cycle component, which includes the SEATS stochastic trend-cycle and the LS 

outlier estimated by TRAMO. 

Fig. 7.1 Exports: Final SA Series

20000

30000

40000

50000

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Original Series Final SA Series

Fig. 7.2 Exports: Final Trend-Cycle

20000

30000

40000

50000

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Final SA series Final Trend Cycle



 18

3.3 Import Series (I) 
 Starting with RSA = 8, the LY effect is clearly not significant. Moreover, the 6-

variable TD specification is less significant than for the exports series, and the one-

variable specification provides a better fit. The option RSA = 4, that yields the Airline 

model, seems rather satisfactory, except for a marginally significant EE, which is 

judged spurious. Further, an AO outlier is detected towards the end of the series, with a 

t-value equal to the threshold level set by default by the program (for 144 observations, 

equal to  t = 3.235). This borderline significance of an outlier near the end of the series 

often causes model instability in AMI; in the present case, the instability concerns 

mostly the choice of a (1,0,1) or a (0,1,1) structure for the seasonal part in the 

multiplicative ARIMA model. It seem thus a good case for applying the value RSA = 1, 

adding the test for the one-variable TD specification (ITRAD = -1), and modelling the 

level. The model obtained can be expressed as 

 

  I (t) = OUT i (t) + CAL i (t) + x i (t) ,  

 

where, using similar notation as in the exports series case, 

  )t(d3067)t(d
B1

14485)t(d4121)t(OUT 321i +
−

−−=  

  (t-values):   (-4.5)    (-4.3)         (3.2) 

 

with  )20(d1 =1  (4/91),  )102(d2 =1  (2/98), )136(d3 =1  (12/00), and )t(d1 = )t(d2 = 

= )t(d3 =0  otherwise. The first and third outliers are AO’s; the second is a negative LS. 

The calendar effect is given by 

 

  )t(TD218)t(CALi =   , 

  (t-value):   (9.4)  

 

with TD denoting the one-variable specification, and the ARIMA model for the 

linearized series is equal to 

 

  )t(a)B790.1()B330.1()t(x i
12

i12 −−=∇∇    ,   (3.2) 

  (t-values):       (-3.9)     (-8.2) 
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with 1140i
a =σ , which implies that the SE of the 1-period-ahead forecast is in the 

order of 3 - 4% of the level of the series. The summary diagnostics are contained in the 

second row of Table1; again, all tests are comfortably passed. Figures 8.1 to 8.4 

display the residuals, residual ACF, the series forecast function and the linearized 

series and preadjustment component. 

 

 

 

 

Fig.8.1 Residuals
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SEATS decomposes model (3.2) into trend-cycle, seasonal and irregular 

components; no transitory component is now present. The models for the trend-cycle 

and seasonal components are 

 

.)t(a)B346.B038.B113.B348.B594.B88.

B16.1B409.1B592.1B63.1B5.11()t(sS

;)t(a)B1()B980.1(

)t(a)B980.B020.1()t(p

s
11109876

5432

p

p
22

−−++++

++++++=

+−=

=−+=∇

 

 

The irregular component is white noise, and the model for the SA series is given by 

 

.)t(a)B980.1()B332.1(
)t(a)B325.B312.11()t(n

n
n

22

−−=
=+−=∇  

 

The trend-cycle and SA series follow IMA (2,2) models; the first one displays a spectral 

zero for the π-frequency, while the spectral zero for the seasonal component occurs for 

a frequency between the last two harmonics. The spectra of the components and the 

squared gains of the WK filters are also shown in the set of figures 3 and 4. Some 

characteristics of the decomposition (SD of the components innovation, SE of the 

estimation error, size and convergence of revisions in the concurrent estimator, and 

significance of seasonality) are given in the second row of Tables 2 to 5. Figures 9.1 to 

9.5 present the stochastic decomposition of the linearized series; figures 10.1 to 10.3, 

the forecasts of the trend-cycle, seasonal and calendar components, and figures 11.1 

and 11.2 the trend-cycle component and SA series in the final decomposition of the 

original series  y (t) . 
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Fig. 9.1 Imports: SA series
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Fig. 10.1 Imports: Forecast of series and of 
trend
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Fig.11.1 Imports: Final SA Series
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3.4 Balance of Trade Series (BT) 
 Using RSA = 8, the LY effect is not significant; using next RSA = 6, the results 

are satisfactory. The model obtained is given by 

 

  BT (t) = OUT b (t) + CAL b (t) + x b (t) ,  

 

 

where 

 ,(t) d4022(t) d
B1

13499)t(OUT 21b −
−

=  

  (t-values):   (3.5)  (-4.3)  

with  (92) d1 =1  (4/97),  (114) d2 =1  (2/99), and (t) d1 = (t) d2 = 0  otherwise, 

 

  +−+−−= )t(TD242)t(TD197)t(TD302)t(TD777)t(CAL 4321b    

  (t-value):    (-4.1)       (-1.7)        (1.1)        (-1.3) 

,)t(TD874)t(TD126 65 ++  

             (.7)       (4.8) 

  )t(a)B533.1()B452.1()t(x b
12

b12 −−=∇∇    ,  (3.3) 

  (t-values):       (-5.4)     (-5.5) 

 

with 1250b
a =σ  (which represents, on average, a SE of the 1-period ahead forecast of 

about 12% of the level of the series). The third row of Table1 contains the summary 

diagnostics of the fitting, and Figures 12.1 to 12.4 exhibit the residuals, the residual 

ACF, the linearized series, the preadjustment component, and the series forecasts. 

 

Model (3.3) decomposes into 

 

;)t(a)B472.B202.B079.B11.B315.B562.

B819.B065.1B273.1B373.1B346.11()t(sS

;)t(a)B1()B949.1(

)t(a)B949.B051.1()t(p

s
11109876

5432

p

p
22

−−−+++

++++++=

+−=

=−+=∇
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with  u (t)  a white noise variable, and the SA series follows the model 

 

.)t(a)B949.1()B464.1(
)t(a)B441.B413.11()t(n

n
n

22

−−=
=+−=∇  

 

The spectral decomposition and the squared gains of the WK filters are given in the set 

of figures 3 and 4. As in the previous cases, some features of the decomposition are 

given in Tables 2 to 5 (third column). Figures 13.1 to 13.5 present the estimators of the 

stochastic components, figures 14.1 to 14.3, the forecasts of the components, and 

figures 15.1 and 15.2 the final adjustment, once the TRAMO and SEATS results are 

put together.  

 

Fig. 12.1 Residuals
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Fig. 13.1 Balance of Trade: SA series
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Fig. 14.1 Balance of Trade: Forecast of series and of trend
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Fig. 15.1 Balance of Trade: Final SA Series
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3.5 Some Remarks on the Models 
 Concerning preadjustment, the models for exports and imports contain 3 

outliers (two AO and one LS outlier each) and the model for the balance of trade series 

contains only two (one AO, one LS outlier). The number of outlier is not excessive, and 

none of them is exceedingly large. The 8 outliers are displayed in Figure 16; it is 

noteworthy that none of the outlier dates is shared by two of the series. For the 

calendar effect, three different specifications are used. The effect is highly significant in 

all three cases. 

 As for the stochastic series, rewriting the ARIMA model for the export series as 

 

 
,)t(a)B742.1()...B037.B104.B323.1(

)t(a)B742.1()B323.1()t(x

e
1232

e
121

e12

−+−+−=

−+=∇∇ −
    

 

it is seen to be relatively close to an Airline-type model. Thus the models for the three 

series are similar and the diagnostics, for the three cases, are excellent. 

 The model for the SA export series is an ARIMA (1,2,3) model that, after simple 

manipulation, is seem to be close to the IMA (2,2) model 

 

 .)t(a)B978.1()B323.1()t(n n
2 −−=∇     

 

Therefore, the three models for the SA series contain an MA root very close to B = 1. 

Canceling this root with one of the differences, the three models become an “IMA (1,1) 

plus drift” model. Given that the remaining MA parameter is relatively small, the three 

SA series are not far from the popular “random-walk plus drift” model. 

 Comparing the standard deviation of the component innovations, Table 2 shows 

that the balance of trade series contains the most stable trend and the most unstable 

seasonal component, while the imports series presents the most stable seasonal 

component. As for the size of the estimation and revision errors for the SA series and 

trend-cycle, both errors are largest for the balance of trade series, and smallest for the 

exports series, although convergence of the preliminary estimator for the exports and 

imports series is relatively slow. Finally, seasonality is clearly significant for the three 

series, in particular for the exports series (followed by the imports one). 

 It is often the case that identification of the ARIMA model does not yield a clear-

cut unique solution, and that more than one model may seem appropriate. When the 

decomposition of the series is a relevant concern, comparison of the SEATS results 

may help in the selection. As an example, it was already mentioned that the (1,1,0) 
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(0,1,1) 12   model identified for the exports series is close to a (0,1,1) (0,1,1) 12   

alternative model. The results of the latter model (with the same outliers and calendar 

effect) are given in the fourth row of the tables. Table 2 shows that the trend-cycle is 

equally stable for the two models, and that the seasonal component is more stable for 

the case of the first model. Table 3 indicates that the alternative model implies larger 

estimation errors and larger revisions for, both, the SA series and the trend-cycle. 

Although the differences are not drastic, they all point to the same conclusion: the  

(1,1,0) (0,1,1) 12   model obtained with RSA = 8 outperforms the alternative model. 

(Adding the transitory component improves the performance of the trend-cycle and SA 

series). 

 

 

 

 

 
 

4. DIRECT VERSUS INDIRECT ADJUSTMENT. 
Direct adjustment of the three series with TRAMO-SEATS run in a (quasi) 

automatic mode yields sensible decompositions in the three cases. Not having any a 

priori information on the series (i.e., knowing only the numerical values), one could feel 

comfortable accepting the results. But there is, of course, a very important relationship 

between the series: by definition,  

 

 BT (t) = E (t) – I (t) . 

Fig. 16 Total Outlier Effects
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 Thus another obvious way to obtain the SA series for BT is an indirect 

adjustment, whereby the SA imports series are subtracted from the SA exports series. 

If the models for the series were “true”, Geweke (1978) could provide a rationale for 

indirect adjustment. Indirect adjustment has also the important virtue of preserving 

identities. On the other hand, it is a delicate question to decide at what measurement 

level disaggregation starts. Perhaps more relevantly, it is a well-known empirical fact 

that often aggregate series display a more regular behavior (ultimately, in accordance 

with the Central Limit Theorem). Further, ad-hoc enforcement of the constraints may 

affect revisions, to the point of inducing non-convergence. 

 The SA series and trend-cycle obtained with direct and indirect adjustment of 

the balance of trade series are displayed in Figures 17.1 and 17.2. For both 

components, the difference between direct and indirect adjustment is large. In both 

cases, the mean of the difference can be assumed zero, and the two standard 

deviations are very close, in the order of 4% of the average series level. The direct 

estimators, most notably for the trend-cycle case, are considerably smoother.  

 The discrepancy between direct and indirect estimator can be due to 

differences in the filters applied to the stochastic series, and to differences in the 

preadjustment components. Concerning the difference in filters, if the series are 

adjusted without preadjustment, using in the three cases the Airline model, estimating 

the 1θ  and 2θ  parameters, direct and indirect adjustment yield the results of Figures 

18.1 and 18.2. The differences between direct and indirect adjustment are now seen to 

be much smaller. As before, for the SA series and trend-cycle, the differences can be 

assumed zero-mean and equal variance, with the standard error representing about 

1% of the average level of the series. As could be expected, however, the diagnostics 

of the “pure” Airline-model fit are, for the three series, unacceptable. 

 Preadjustment has consisted, for the three series, of two types of corrections: 

one, for trading day effect; the other, for outliers. As seen in Figure 19, outlier 

correction is the source of the major discrepancies. Keeping in mind the relationship 

between the three variables, the model-based procedure could be modified in order to 

present better aggregation properties. For example, the 6-variable TD specification 

could be used for the three variables; the December 2000 outlier in the imports series, 

that causes model instability and is borderline significant, could be ignored; further, it is 

easily seen that, for the imports series, another borderline outlier is a LS for 10/98, 

close to the 11/98 LS in the import series, so that a ramp outlier for the two months in 

both series is highly significant and improves results. Be that as it may, it is 

nevertheless the case that, in general terms, the better we adjust a series within a 

univariate framework, the more likely it is that the aggregation properties of the 
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decomposition deteriorate (i.e., that the difference between direct and indirect 

adjustment increases). 
 In particular, preadjustment is based on tests for the significance of several 

variables (for example, Easter, trading day, outliers, regression or intervention 

variables, …). In so far as these tests are necessareally 0-1 decisions (i.e., if some 

statistics is smaller than a critical value, the variable is droped, otherwise, included,) 

they introduce a nonlinear element in model building that may strongly affect 

aggregation. 

 

 
 

 

Fig. 17.1 Direct and indirect adjustment: Reg 
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Fig. 18.1  Direct and Indirect Adjustment: Airline  
Model + TD
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model + TD

0 
2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 
20000 

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

direct indirect



 34

  The aggregation problem, however, is not simply the product of an imperfect 

methodology. It is also the result of a definitional ambiguity. If the series )t(X  is the 

aggregate of )t(x1  and )t(x2  , as in  )t(x)t(x)t(X 21 +=  , what is meant by 

“seasonally adjusted )t(X ”? Is it the sum of the SA components? Is it the best direct 

adjustment of the aggregate series? We have seen how, under a “best-univariate-

model” strategy, direct and indirect adjustment may produce relatively important 

differences. There are more fundamental reasons, even at the most basic conceptual 

level, that may imply different results. I proceed to illustrate the conceptual difficulty 

with some very simple examples. 

 Assume  )t(x1  and )t(x2  are two series observed every semester, that follow 

the models 

 
,)1t(b)t(b)t(x
,)1t(a)t(a)t(x

2
1

−−=
−+=

 

with )t(band)t(a  denoting two uncorrelated series of w.n. innovations, with variances 

1VV ba == . The spectra of the two series are equal to 

 

 
,)cos1(1)(g

,)cos1(1)(g

2

1

ω−
π

=ω

ω+
π

=ω
 

 

for ω measured in radians and  π≤ω≤π−  . The first spectrum presents a peak for 

0=ω , and decreases monotonically until it becomes zero for π=ω  . Thus 1x  can be 

seen as a pure trend. The second spectrum presents a peak for π=ω  (the once-a-

year seasonal frequency) and, moving to the left, decreases monotonically until it 

becomes zero for 0=ω . Thus 2x  can be seen as a pure seasonal component. As a 

consequence, it is evident that the SA 1x  series is )t(x1  itself (there is no seasonality 

to remove). On the other hand, the SA 2x  series is always zero, given that )t(x2  is a 

pure seasonal component. Therefore, the sum of the two SA series is equal to )t(x1 . 

 Moving to the aggregate series )t(X , we just concluded that correct indirect 

adjustment would yield )t(x1  as the SA series. Does this make sense? Given that  

=ω+ω )(g)(g 21 constant, )t(X  is a white-noise series. As such, it contains no 

seasonality, and the SA )t(X  series should simply be the series itself ( )t(x)t(x 21 += ). 

Thus direct adjustment would seem to be the proper answer and, by construction, 

indirect adjustment would give a different one. 
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 The second example is even simpler. Assume that a country, divided in 55 

regions, hold an important fair every April, and that this fair has a significant impact in 

the economy of the country, mostly concentrated in the region where it is held. Further, 

assume the regions alternate hosting the fair (in an alphabetical, random, or whatever 

manner). The SA regional series would not remove the peaks due to the fair, because 

they are not seasonal. The national-level series would show a peak every April, that 

should be removed when seasonally adjusting. As before, direct adjustment would 

seem to provide the correctly adjusted aggregate, which would be different from the 

one obtained with an indirect procedure. 

 In summary, it is not clear to me that seasonal adjustment (or trend-cycle 

estimation) should preserve aggregation or balancing constraints among the original 

series: there are conceptual and methodological reasons that could justify departures. 

As a consequence, given the present state of the art, my preferred solution (possibly, 

Politically Uncorrect) would be the following:   

1) Do as best as we can at each level of aggregation. 

2) Insert a footnote in the table that says: “Because the component seasonalities 

may interact, and because seasonal adjustment is a non-linear transformation of the 

original series, aggregation constraints may not be preserved.” 

 Clearly, interaction between series should be better handled in a multivariate 

framework. But reliable and efficient multivariate models, that capture series 

interactions properly, including seasonal ones, are not in the horizon of real-world 

applications. Besides, because full disaggregation is, in general, impossible, the 

aggregation problem will always be present, at one or another level. 
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Table 1. ARIMA fit: Summary diagnostics 
 

 )(t aµ  )24(Qa  aN  )skew(ta )kur(ta )2(Qas
 

)24(Q 2a  )runs(ta
 

Exports -.13 11.93   .90 -.26   -.92 1.92 20.18    .91 

Imports   .45 27.76   .22  .35   -.31 3.89 22.26  -.53 

Balance -.83 21.86   .07  .02    .26 2.04 20.00   .36 

Exports 
(alternative) 

-.19 14.86 1.23 -.09 -1.12 2.13 21.65 1.64 

CV  (95%) 2t <  34<  6<  2t <  2t <  6<  34<  2t <  
 

1) )(t aµ  is the t-value associated with H 0 : the mean of the residuals is zero. 
2) Qa(24) is the “portmanteau” Ljung-Box test for residual autocorrelation, 

computed with 24 autocorrelations (in all cases, asymptotically distributed 
(a.d.) as  .)f.d22(2χ ).    

3) Na  is the Bowman-Shenton test for Normality of the residuals (a.d. as 
.)f.d2(2χ ). 

4) t a (skew) is the t-value associated with  H 0 : skewness (residuals) = 0. 
5) t a (kur) is the t-value associated with  H 0 : kurtosis (residuals) = 3. 
6) Qas (2) is the Pierce test for the presence of seasonality in the residual 

autocorrelation, ( a.d. as  .)f.d2(2χ ).    
7) Qa2 (24) is the McLeod and Li, (1983) test on linearity of the process versus 

bilinear or ARCH-type structures ( a.d. as .)f.d22(2χ ).    
8) ta (runs) is the t-value associated to  H 0 : signs of the residuals are random.  
The 95% critical value for each test is given in the last row. 
 

 

Table 2. Standard Deviation of Component Innovation 
 

 Trend-cycle Seasonal 
Component 

Irregular 
Component 

SA series 

Exports 336 146            623   (*)   893 

Imports 343 129 678 1028 

Balance 254 291 674   945 

Exports 
(alternative) 

336 152 554   897 

 

(*)   Includes the variance of the transitory component 
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Table 3. Estimation Standard Errors: Concurrent Estimator 
 

 Total Estimation Error Revision 

 Trend-cycle SA series Trend-cycle SA series 

Exports 516 410 374 292 

Imports 597 416 418 295 

Balance 609 561 464 399 

Exports 
(alternative) 

557 428 395 305 

 

 

Table 4. Convergence of Estimators: Percentage Reduction in  
   Revision Error Variance 

 
 After 1 year of additional data After 5 more years of additional data 

 Trend-cycle SA series Trend-cycle SA series 

Exports 60.3 25.3 88.0 77.3 

Imports 68.4 20.7 87.7 69.2 

Balance 79.3 44.8 98.3 95.5 

Exports 
(alternative) 

63.7 26.3 89.6 78.9 

 

 

Table 5. Significance of Seasonality: Number of Months per year  
   with significant seasonality (95% level) 

 

 Historical Estimator Preliminary Estimator  
(last year) 

Forecasts (next year) 

Exports 11 11 11 

Imports 6 6 6 

Balance 9 9 9 

Exports 
(alternative) 

11 11 11 
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