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Abstract 

Filters used to estimate unobserved components in time series are often designed on a 

priori grounds, so as to capture the frequencies associated with the component. A 

limitation of these filters is that they may yield spurious results. The danger can be 

avoided if the so-called ARIMA-model-based (AMB) procedure is used to derive the filter. 

However, parsimony of ARIMA models typically implies little resolution in terms of the 

detection of hidden components. It would be desirable to combine a higher resolution 

with consistency with the structure of the observed series. 

We show first that for a large class of a priori designed filters, an AMB 

interpretation is always possible. Using this result, proper convolution of AMB filters can 

produce richer decompositions of the series that incorporate a priori desired features for 

the components, and fully respect the ARIMA model for the observed series. (Hence no 

additional parameter needs to be estimated.) 

The procedure is discussed in detail in the context of business-cycle estimation 

by means of the Hodrick-Prescott filter applied to a seasonally adjusted series or a 

trend-cycle component. 

 

Keywords: Time Series; Filtering and Smoothing; ARIMA models; Trend and Cycle 

Estimation; Hodrick-Prescott Filter. 

JEL Classification:  C22,  C80,  E32,  E37. 
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1 Introduction and Summary 

Filters used to estimate unobserved components (UC) –also called “signals”– in economic 

time series are often designed on a priori grounds, so as to capture the frequencies that 

should be associated with the signal of interest. We shall refer to them as a-priory 

designed (APD) filters, and their design is independent of the particular series at hand.  It 

is well known that a limitation of APD filters is that they may produce spurious results 

(a trend, for example, could be extracted from white noise). 

The spuriousness problem can, in principle, be avoided if the filter is derived 

following a model-based approach.  The series features are captured through an ARIMA 

model, models for the components are derived, and the Wiener-Kolmogorov filter is used 

to obtain the Minimum Mean Squared Error (MMSE) estimator of the components. We 

shall refer to this approach as ARIMA-model-based (AMB) filtering. AMB filtering also 

presents some drawbacks.  First, it may provide components that display poor band-pass 

features.  Second, parsimony of the ARIMA models typically identified for economic series 

implies little resolution in terms of UC detection, so that the AMB decomposition cannot 

go much beyond the standard “trend-cycle + seasonal + irregular” decomposition.  Thus, 

it would be nice to combine a higher resolution with lack of spuriousness and consistency 

with the structure of the overall observed series. 

It is first seen that, for a fairly wide class of APD filter that are symmetric and 

linear, an AMB interpretation is always possible, whereby the signal obtained is the MMSE 

estimator of white noise in the decomposition of an ARIMA model (straightforward to 

obtain from the APD filter).  Given that the signal of interest will not be, in general, white 

noise, the previous interpretation does not provide a sensible model, but allows for a 

Wiener-Kolmogorov representation of the APD filter.  This representation permits us to 

integrate the APD filter within the AMB approach. An important case is the following. 

To avoid contamination with undesired frequencies, estimation of a signal often 

implies two steps:  the APD filter is applied to series that have already been filtered. (For 

example, the business cycle can be estimated on the seasonally adjusted series or on the 

trend-cycle component; sampling error may be estimated on the SA series or on the 

irregular component; calendar effects can be estimated with filters applied to the 

detrended series.) Thus, in the first step, a basic component is estimated and, in the 

second step, the APD is applied to this estimator. 

If the first step is performed using an AMB approach, it is seen that the two-step 

estimator of the signal is also the MMSE estimator of a component in a full UC model, 

where the models for the components are sensible and incorporate elements reflecting 

the desirable features of the components, as well as elements that guarantee consistency 

with the observed series model. The two-step procedure accepts thus a full model 

specification and the components can be estimated in a single step. In this way, it 

becomes possible to increase the resolution of AMB filters, while preserving the 

parsimony of the overall model (crucial for forecasting). 
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The result is discussed in detail in the context of business-cycle estimation with 

the Hodrick-Prescott (HP) filter applied to the trend-cycle or Seasonally Adjusted (SA) 

series. It is seen that there is an infinite number of admissible decompositions of the 

trend-cycle into a long-term trend and a (business-) cycle component, where the former 

captures the frequencies in a narrow band around zero, and the cycle is a standard 

ARMA (2,2) linear stationary stochastic cycle, with the AR roots associated with a cyclical 

frequency. Reparametrizing the HP filter in terms of the period ( 0τ ) for which the gain of 

the filter is .5 (i.e., the cutting point between periods mostly associated with the trend and 

those mostly associated with the cycle), it is seen that the choice of a particular 0τ  

identifies a unique decomposition. The models corresponding to this decomposition are 

derived and discussed. 
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2 Filter Design and Arima-Model-Based Filtering 

2.1 Unobserved Components and Linear Filters 

Consider the problem of estimating an unobserved component hidden in an observed time 

series (i.e., the problem of “signal extraction”). Obvious examples are Seasonal Adjustment, 

and Trend or Cycle estimation. The series variation that should be excluded from the signal of 

interest will be denoted “noise” (for example, the SA series could be the signal and the 

seasonal component the noise). Thus we consider the “signal plus noise” decomposition 

ttt cmx +=  , where tx  is the observed series, tc  the “signal”, tm  the non-signal (or 

“noise”), which in general will not be white, and the two UC are orthogonal. In order to avoid 

phase effects that would distort historical dating of turning points, we shall obtain the 

historical (or final) estimator of the signal with a two-sided symmetric linear filter, as in 

ktkt0ktkt x...x...xĉ +− ν++ν++ν=  (2.1) 

Let B and F denote the Backward and Forward operators, such that 1tt zzB −= , 

and 1tt zzF += , respectively. We can write (2.1) as 

tt x)F,B(ĉ ν=  (2.2) 

where 

∑
=

+ν+ν=ν
k

1j

jj
j0 )FB()F,B(  (2.3) 

The weights in  )F,B(ν   are supposed to capture the “desired” features of the 

signal. Given that the features of a trend, a seasonal, or a cyclical component are often better 

described in the frequency domain, we obtain the Fourier Transform (FT) of the filter (2.3), 

which implies replacing ( jj FB + ) in (2.3) by ( )j(cos2 ω ), where ω  denotes the frequency in 

radians ( π≤ω≤0 ). This transformation yields the gain function of the filter 

∑
=

ων+ν=ω
k

1j
j0 )j(cos2)(G  (2.4) 

The gain will determine how much the different frequencies will contribute to the 

signal. If 0)(G 0 =ω , the frequency 0ω  will be fully ignored; when 1)(G 0 =ω , the 

frequency 0ω  will be fully transmitted. 

A cyclical frequency, ω , is easily translated into the period τ  of the associated cycle 

through 

ωπ=τ /2  (2.5) 

The period τ  denotes the number of units of time needed for the completion of a full 

cycle. Hence, for example, for the two extreme values of the frequency: 

 

— ⇒∞→τ⇒=ω 0 Trend frequency 

— ⇒=τ⇒π=ω 2 2-period cycle. 

 

Figure 1 plots the gain of a filter aimed at capturing a trend, while Figure 2 that of a 

filter aimed at removing the previous trend. 
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  Figure 1: Filter for estimating a trend          Figure 2: Filter for removing a trend 

  

 

APD filters are often designed, on a-priori grounds, so as to capture (as best 

as possible) the series variation associated with certain frequencies, namely, 

those that characterize the signal of interest. The filter is applied to an observed 

series tx  that is assumed the output of an ARIMA model. Let  )(g x ω  denote the spectrum 

(or pseudo-spectrum when there are unit AR roots) of tx . In the stationary case, )(g x ω  

decomposes the variance of tx  according to frequency. For example, in Figure 3 the shaded 

area represents the variance associated with the frequency interval ( 10 , ωω ). The peaks of 

)(g x ω  are associated with trend and seasonal AR roots. 

 

 

 

We shall also use the “term “spectrum” to refer to the pseudo-spectrum because 

both will be used in a similar way in the following sense. If, for example, the peak for 0=ω  is 

very wide, there will be a lot of stochastic variability in the trend. The trend will thus be highly 

stochastic (or “moving”). On the contrary, if the peak is narrow, the trend will have little 

stochastic variability and be stable. Two (extreme) examples are illustrated in figures 4-6. 
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Allowing for unit AR roots, the FT of the (pseudo-) Autocovariance Generating 

Function (ACGF) –see Hatanaka and Suzuki (1967)– of the two sides of (2.2) yields: 

[ ] )(g)(G)(g x
2

ĉ ωω=ω  (2.6) 

where )(g x ω  is the spectrum of  tx , [ ]2)(G ω  is the Squared Gain (SG), which determines 

which parts of )(g x ω are passed on to the spectrum of the signal, and )(g ĉ ω  is the 

spectrum of the estimated signal tĉ . The SG provides information concerning the filter; 

information concerning the signal obtained is contained in its spectrum )(g ĉ ω . “A priori” 

design may produce a filter with an appealing SG. But it can be wrongly applied to a series. 

As a simple example, a trend filter (Figure 7a) applied to a white-noise series (Figure 7b) will 

produce a trend component (Figure 7c), and hence a spurious result. 

 

 
    Fig. 7a  Fig. 7b         Fig. 7c 

   SG of Trend            Spectrum of              →         Spectrum of trend 

                 Filter       white-noise series  in white-noise. 
 

ω  
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Therefore, the filter should depend on the particular series being analyzed. This 

consideration, added to the spuriousness danger, fostered an alternative approach to filtering: 

the ARIMA - Model - Based (AMB) approach. Spuriousness is avoided by decomposing the 

series in such a way that its specific features are respected. These features are summarized 

in the ARIMA model identified for the series. From this ARIMA model, the UC models are 

derived in such a way that they aggregate into the model for the observed series. The signal 

is estimated with the Wiener-Kolmogorov (WK) filter, which provides the MMSE estimator 

and, under our normality assumptions, the conditional expectation of the signal given the data 

[see Hillmer and Tiao (1982), Burman (1980), and Gómez and Maravall (2001)]. We shall 

follow the AMB approach, as enforced in programs SEATS [Gómez and Maravall (1996)] and 

TSW [Caporello and Maravall (2004)]. The programs can be freely downloaded from the Bank 

of Spain web site www.bde.es. 

Other efficient approaches to the estimation of signals in UC models are available 

[examples are Harvey (1989), García-Ferrer and del Hoyo (1992), Gersh and Kitagawa (1983), 

and Engle (1978)]. These approaches differ from the AMB one in several respects. In 

particular, no identification of an ARIMA model for the observed series is made and the 

models for the components are specified “a priori”.  

2.2 Wiener-Kolmogorov Filter 

Consider the decomposition of tx  into two uncorrelated components, as in 

ttt cmx +=  (2.7) 

where the signal tc  follows the model  

ctctc a)B(c)B( θ=φ   ,      )V,0(wn ~ a cct  (2.8) 

and the model for the observed series is given by 

tt a)B(x)B( θ=φ   ,      )V,0(wn ~ a at  (2.9) 

where “wn” denotes a white-noise (i.e., normally identically independently distributed) variable, 

cV  and aV  are the variances of cta  and ta , and )B(θ  is an invertible polynomial. We 

assume that )B(φ  can be factorized as 

)B()B()B( mc φφ=φ  (2.10) 

with )B(cφ  and )B(mφ  containing the AR roots that will be assigned to the signal and 

non-signal respectively. Suppose, first, that model (2.9) is stationary and define the MA 

expressions 

)B(/)B()B(;)B(/)B()B( ccc φθ=ψφθ=ψ  

The WK estimator of the signal for a full realization ( ∞∞− x,,x K ) is given by 

acct

t
cc

ct
t

t
t

V/Vk;x)F,B(

x
)F()B(

)F()B(
kx

)x(ACGF

)c(ACGF
ĉ

=ν=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ψψ

ψψ
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

 (2.11) 
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Considering (2.10), it is obtained that the WK filter is equal to 

)F(

)F()F(

)B(

)B()B(
k)F,B(

mcmc
c θ

φθ

θ

φθ
=ν  (2.12) 

a centered, symmetric, and convergent filter. The convergence does not depend on the roots 

of the AR polynomials, and in fact expression (2.12) can be extended to the nonstationary 

case (Bell, 1984). Notice that, writing the model for tm  (the non-signal) as 

)V,0(.n.w ~ a;a)B(m)B( mmtmtmtm θ=φ  (2.13) 

then, letting  amm V/Vk =  , (2.7) implies the following identity 

)F()B(k)F()B()F()B(

k)F()B()F()B(

cmmcc

mccmm

θθ=φφθθ+

+φφθθ
 (2.14) 

2.3 Some Limitations of Arima-Model-Based Filtering 

We mentioned some problems with APD filtering. There are also limitations and ambiguities in 

the AMB approach even in the infinite realization (in practice, historical estimation) case. 

Ambiguity is due to the fact that we do not have clear, universally accepted, definitions of the 

components. As a simple example, consider the seasonal AR (1) model: 

tt
12

12 ax)B1( =φ+  (2.15) 

with 3.12 −=φ . The model displays correlation for seasonal lags, but this correlation is very 

small. Figure 8 shows an example of a realization of (2.13): the seasonal effect is certainly not 

discernible. 

 

Figure 8. Stationary Seasonal AR(1) 

 

 

Does a series following model (2.15) contain a seasonal component? Possibly one 

should say “not really”. Seasonality is meant to capture something that reappears periodically 

in a more systematic manner. But then, what about the case 8.12 −=φ ? Seasonality now is 

longer lasting, but still considerably erratic. Where should the cutting point be? In Hillmer, Bell, 

and Tiao (1983) and Maravall (1983) it is argued that only seasonal components with seasonal 

AR unit roots should be considered. Still the seasonal root )B9.1( 12−  has a seasonal effect 

that persists for many years. 

2.4 A Basic Underidentification Problem 

Unobserved component models require, in general, identification restrictions 

[see, for example, Maravall (1985)]. The AMB approach proceeds as follows: Consider 
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the model for tx  given by (2.9), and its decomposition into model (2.8) for tc  plus 

model (2.13) for tm . Given that tx  is observed, model (2.9) can be identified in the usual 

way. The problem is then to derive models (2.8) and (2.13). The AR factorization (2.10) 

identifies the polynomials )B(cφ  and )B(mφ . What remains is identification of the MA 

polynomials )B(cθ , )B(mθ , and of the variances cV  and mV . These parameters 

should be determined from the identity (2.14), and it is straightforward to see that there 

will be an infinite number of solutions. In order to reach identification, in the two 

component case, the AMB approach assumes first that the model for the signal is 

“balanced”, that is, the order of its AR polynomial (including unit roots) is equal to the 

order of its MA polynomial. Second, within the infinite decompositions that satisfy (2.14) 

and have a balanced signal, the one with the smoothest signal is selected. This is done 

through the “canonical” assumption, which requires the signal to be free of white-noise 

[see Box, Hillmer, and Tiao (1978), and Pierce (1978)]. It can be seen that a canonical 

signal will display a spectral zero, or, equivalently, a unit MA root. Putting 

together (2.10), (2.14), and the previous two assumptions (balanced and canonical signal), 

a single decomposition of model (2.9) into models of the type (2.8) and (2.13) is obtained. 

It is a fact, however, that standard ARIMA modelling favors parsimonious models, as 

simple as possible. Yet the simple model may hide a more complex structure. A very simple 

example that illustrates the point is the following. Consider a biannual series tx  that is the 

sum of two components with models 1ttt bbp −+= , and  1ttt ccs −−= , where tb  and 

tc  are uncorrelated white-noise variables with variances 1VV cb == . The associated 

spectra are 

)cos1(
1

)(g;)cos1(
1

)(g sp ω−
π

=ωω+
π

=ω  (2.16) 

The spectrum of tp  presents a peak for ω = 0 and decreases monotonically until it 

becomes zero for π=ω . Thus tp  can be seen as a trend-cycle component. As for ts , the 

spectrum displays a zero for ω = 0 and increases monotonically reaching a peak for π=ω  

(the once-a-year seasonal frequency for biannual data). Thus ts  can be seen as a seasonal 

component. The MMSE estimators obtained with the WK filter are 

)xx(
4

1
x

2

1
p̂ 1t1ttt +− ++=  

)xx(
4

1
x

2

1
ŝ 1t1ttt +− +−=  

Given that tp  and ts  are non-invertible, the estimator of the irregular component is 

0û t = . The AMB approach applied to tx  would not provide this result. From (2.16), it is 

seen that π=ω+ω=ω /2)(g)(g)(g spx , and hence tx  turns out to be simply white 

noise. Therefore, the AMB decomposition should yield 0ŝp̂ tt == , tt xû = . 

The difficulty in detecting hidden components is particularly noticeable in the range of 

cyclical frequencies. ARIMA identification relies heavily in the use of differences as a way of 

reaching stationarity, and it is well-known that differencing often affects (sometimes very 

strongly) the cyclical frequencies. As a consequence, the AMB method will only be able to 

extract an aggregate trend-cycle component, and separate identification of the trend and 

cycle will require additional assumptions. As an example, suppose that a series tx  is known 

by analysts to be cyclical, but that standard ARIMA identification yields the IMA (2,2) structure 

t
2

21t
2 a)BB1(x θ+θ+=∇  (2.17) 
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The AMB decomposition of tx  would yield a (canonical) IMA (2,2) trend-cycle and a 

white-noise irregular component. As shall be seen in Section 4.7, this trend-cycle model can 

be split into the sum of uncorrelated longer-term trend (an ARIMA (2,2,2) model) plus an 

ARMA (2,2) cyclical component, both with sensible spectral shapes. Model (2.17) and the UC 

(“trend + cycle”) model are observationally equivalent, but in the absence of a priori 

information, ARIMA identification will always choose the parsimonious model (2.17), which 

shows no evidence of cyclical behavior. 
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3 Relationship between  APD  and  AMB  Filters 

From the previous discussion we conclude that it would be desirable to mix the virtues of the 

AMB and the APD approaches in such a way that: a)  there would be consistency with the 

observed series (no spurious results); b) filters and components would have desirable 

properties; c) the model-based structure could be preserved. 

It is well-known that some important APD filters have been given a model-based 

interpretation (at least, as an approximation). In this interpretation, the filter can be seen as the 

one that provides the MMSE estimator of a component in a particular UC model. This 

interpretation may provide insights into the type of series for which the filter might be more 

appropriate [examples are the X11 interpretations of Cleveland-Tiao (1976) and 

Burridge-Wallis (1984)]. It might simply offer an alternative algorithm to compute the signal 

with the Kalman or WK filters and can be of help in improving the filter design 

[Pollock, (2003)]. We see next that, under fairly general conditions, the mapping “symmetric 

linear filter →  AMB filter” is, feasible. This will allow us to incorporate the desired 

ad-hoc/model-based mixture. 

3.1 “Naïve” Model-Based Interpretation 

Assume the APD filter (2.2) is symmetric. Thus, if  B  is a root, B-1  is also a root, and )F,B(ν  

can be factorized as 

ck)F(A)B(A)F,B( =ν  (3.1) 

with  A(B)= 1 +  

j
k

1j
j Ba∑

= . We shall further assume that the coefficients of A(B) are real 

numbers, so that (3.1) can be interpreted as an ACGF (and the filter gain satisfies 

1)(G0 ≤ω≤ ). Symmetric linear filters that satisfy this “admissibility” condition will be denoted 

SAL filters. We shall center attention to APD filters of the SAL class. As shown by (2.12), AMB 

filters will always belong to this class. From (2.2) and (3.1), the estimator of the signal can be 

expressed as 

[ ] tct x)F(A)B(Akĉ =  (3.2) 

which always accepts the following AMB interpretation.  

 

Result 1  

The estimator (3.2) can be seen as the MMSE estimator of white noise in the 

decomposition of tx into orthogonal signal ( tm ) + noise  ( tc ), as in (2.7), when tx  

follows the model   

tt ax)B(A =  (3.3) 

with tt canda   white noises such that  cac kV/V = . 

 

More generally, if )B(A/)B(A)B(A DN= , then tĉ  is the MMSE estimator of the noise in 

a series that follows the ARIMA model 

tNtD a)B(Ax)B(A =  (3.4) 
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(The result follows from straightforward application of the WK filter to a white noise signal 

when the model for the series is (3.3) or (3.4).) 

This result gives a very simple way to find a AMB-type algorithm for SAL filters. The 

algorithm is based on the (artificial) assumption that tc  is white noise, which implies that the 

(artificial) model for the “non-signal” tm  would be of the type 

)V,0(.n.w ~ a;a)B(m)B(A mmtmtmt θ=  (3.5) 

where )B(mθ , )V/V(k amm = , and ck  are determined from the identity 

1k)F(A)B(Ak)F()B( cmmm =+θθ  (3.6) 

The algorithm is efficient, and (3.6) guarantees consistency with the overall series. 

But the models behind the algorithm do not provide a realistic interpretation, because the 

observed series will not follow in general model (3.3), nor would we expect the cycle to be 

white noise. This “signal + noise”- decomposition interpretation of a symmetric filter will be 

called the “naïve” model-based interpretation. 

3.2 Mixed Estimation 

To simplify expressions, we introduce the following notation: for a finite-order 

polynomial in B with real coefficients, say P(B), )F(P)B(P)B(P
2 =  . Suppose we wish 

to apply a symmetric APD filter, say (3.1), to estimate some signal  ( tc )  in tx , but that the 

filter should be applied to the series clean of seasonality (perhaps also of noise). Consider the 

decomposition  

ttt ŝn̂x +=  (3.7) 

where tn̂  and tŝ  are the seasonally adjusted (SA) series and seasonal component 

estimators respectively. We can follow a two-step procedure: First, AMB filtering to estimate 

the SA series. Second, APD filtering of the SA series to estimate the signal. 

In the first step, we start with an ARIMA model identified for tx , say (2.9). From this, 

we derive the models for the SA series ( tn ) and seasonal component ( ts ), say 

)V,0(.n.w ~ a,a)B(n)B( nntntntn θ=φ  (3.8) 

)V,0(.n.w ~ a,a)B(s)B( sstststs θ=φ  (3.9) 

with sta  uncorrelated with )B()B()B(,a sntn φφ=φ′ , and  ttt snx += . Finally, the 

WK estimator tn̂  is obtained: 

t

2
sn

a

n
t x

)B(

)B()B(

V

V
n̂

θ

φθ
=  

In the second step, we apply the APD filter to tn̂ , 

tc

t

2
sn

cn

tct

x)F,B(

x
)B(

)B()B()B(A
kk

n̂)F(A)B(Akĉ

ν=

θ

φθ
=

==

 (3.10) 
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The estimator of tm  is [ ] tcttt n̂)F(A)B(Ak1ĉn̂m̂ −=−= , or, using (3.6), 

[ ] tmmmt n̂)F()B(km̂ θθ=  (3.11) 

It is easily verified that the sum of the 3 WK estimators ttt ŝĉm̂ ++  yields 

the ARIMA model for tx . 

3.3 Direct Estimation 

 

Result 2 

The 2-step estimators ttt ŝand,ĉ,m̂  accept a non-naïve AMB interpretation, in 

the sense that they can be seen as the direct MMSE estimators of 

ttt sand,c,m  which follow sensible models and aggregate into the ARIMA 

model for tx . 

 

Specifically, consider the UC model given by 

tttt scmx ++=  (3.12) 

where tx  and ts  follow models (2.9) and (3.9), respectively, and the models for the cycle 

tc  and trend tm  are 

ctnt a)B()B(Ac ψ=  (3.13) 

mtnmt a)B()B(m ψθ=  (3.14) 

where )B(/)B()B( nnn φθ=ψ , )Vk,0(wn ~ a ncct , )Vk,0(wn ~ a nmmt , and 

cta  is uncorrelated with 'mta . Direct application of the WK filter to the full UC model yields 

the 2-step estimators of the mixed approach. 

Let ttt cmn += , and denote by )B(nδ , )B(mδ , and )B(cδ  the polynomials 

with the AR unit roots of the models for ttt cand,m,n . Assuming that )B(mδ  and 

)B(cδ  do not share a root in common, then )B(nδ  = )B(mδ  )B(cδ . Thus 

)B()B()B(

)B(
)B(

cmn

n
n δδϕ

θ
=ψ  

where )B(nϕ  is the stationary AR polynomial in the model for tn  . Given that the filter (3.1) 

is aimed at removing tm ,  A(B) will have zeros for the frequencies associated with the unit 

roots of )B(mφ , so that we can factorize A(B) as )B()B(a)B(A mδ= . In expression 

(3.13) there will be cancellation of unit roots, and the model for tc  can be rewritten as 

ctntcn a)B()B(ac)B()B( θ=δϕ  

The model for the cycle component contains APD filter elements [A(B), and ck  

in (3.13)] that will capture desirable features of the filter, as well as series-dependent elements 

[ )B(nψ  and nV  in (3.13)] that will impose consistency with the observed series model. (If 

the SA series tn  is replaced by the trend-cycle tp , the discussion extends trivially.) 

Remark: The approach to Result 2 is closely related to the derivation of the 

“Consistency with the Data” check of Bell and Hillmer (1984), developed in the context of 

AMB seasonal adjustment. 
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4 An application to trend and Cycle estimation with the Hodrick-Prescott filter 

ADP filters have often been used in the context of trend extraction for business-cycle analysis 

[Hodrick and Prescott (1980), Baxter and King (1999), Pollock (2000), Canova (1998)]. We 

focus on the Hodrick and Prescott (HP) filter, which has been the center of considerable 

attention [Kydland and Prescott (1990), Cogley and Nason (1995), Gómez (2001), Harvey and 

Trimbur (2003), and Kaiser and Maravall (2001)]. 

4.1 Model-Based Implementation of the Hodrick-Prescott Filter 

The so-called Hodrick-Prescott (HP) filter is an APD filter that decomposes the series, as in 

(2.7), into a relatively long-term trend ( tm ) plus a cycle ( tc ), often called “business cycle”. 

The filter is a particular case of the Butterworth family of filters [see Gómez (2001)], and can 

be derived as the solution of the minimization of the Loss Function 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇λ+= ∑∑

==

T

3t

2
t

2
T

1t

2
t

)m(cLF  

where the first term penalizes poor fit and the second term penalizes lack of smoothness. The 

parameter λ  balances the relative importance of the two and determines thus the relative 

smoothness of tm  (larger values of λ  will imply smoother trend series). 

The HP filter can also be derived from a “model based”- type algorithm [King-Rebelo 

(1993)] whereby the cycle is obtained as the estimator of the noise in an UC model 

ttt cmx += , with 

λ=

=∇

mcct

mmtmtt
2

V/V,)V,0(.n.w ~ c

)V,0(.n.w ~ a,am
 (4.1) 

This UC model implies that  

t
2

mtt
2 cax ∇+=∇  (4.2) 

which can be expressed as an IMA (2,2) model, say 

tHPt
2HP

2
HP
1t

2 b)B(b)BB1(x θ=θ+θ+=∇  (4.3) 

where b
HP
2

HP
1

Vand,, θθ  are easily obtained from λ  (see the Appendix). Accordingly, 

the HP filter can also be obtained as the WK filter that provides the estimator of tc  (assumed 

w.n.), when the series follows model (4.3). (This is simply a particular case of Result 1.) The 

WK filters to obtain tm̂  and tĉ  are: 

t
m
HPt

HPHP
mt x)F,B(x

)F()B(

1
km̂ ν=

θθ
=  (4.4a) 

t
c
HPt

HPHP

22

ct x)F,B(x
)F()B(

kĉ ν=
θθ

∇∇
=  (4.4b) 

where F1−=∇  and bccbmm V/Vk,V/Vk == . From (4.2) and (4.3), the following 

identity between ACGF has to hold 

c
22

mHPHP kk)F()B( ∇∇+=θθ  (4.5) 
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Therefore, expression (4.4a) can be rewritten as 

t22t x
1

1
m̂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∇∇λ+
=  

where we have used, from (4.1), λ== mcmc V/Vk/k . The gain of the trend filter is the 

FT of the term in brackets, which yields 

2m
)cos1(41

1
)(G

ω−λ+
=ω  (4.6) 

and )(G1)(G mc ω−=ω . Both gains are represented (for 1600=λ ) in Figure 9, for the 

range 2/0 π≤ω≤ . 

 

 

Despite this “model-based” representation, the filter is an APD filter and the danger 

of spuriousness becomes an issue [as shown in Maravall (1995)]. 

Notwithstanding academic criticism [see, for example, Harrey and Jaeger (1993)], the 

HP filter has become the most widely used procedure to estimate business cycles in applied 

work [see, for example, International Monetary Fund (1993), Giorno et al. (1995), European 

Commission (1995), and European Central Bank (2000)]. Can this be rationalized within an 

AMB perspective? To answer the question, we start by reviewing some very basic concepts 

having to do with the cycle. 

4.2 Basic Model for a Cycle 

a. Simplest case: Deterministic Model 

A standard expression for a deterministic cycle is )Bt(cosAc t
t +ω=  , where A is the 

Amplitude, B is the Phase and ω  is the Frequency (number of cycles per unit of time) 

measured in radians. An equivalent representation to the previous cosine function is given by 

the second order difference equation: 

0ccc 2t21t1t =φ+φ+ −−  (4.7) 

or 0c)B(c)BB1( tct
2

21 =φ=φ+φ+ , when the roots of 0)B(c =φ  are complex and 

associated with the frequency ω . In this deterministic case, the spectrum of tc  degenerates 

into a single spike for ω . 
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b. Linear Stochastic Cycles 

Economic cycles typically do not behave in a deterministic way. Period and amplitude, are not 

constant, and evolve with some randomness. One way to incorporate this randomness is by 

introducing every period a stochastic shock, as in, for example, 

;accc ct2t21t1t =φ+φ+ −−         cta ~  w.n. (0, cV ) (4.8) 

Thus, a) every period the “deterministic equilibrium” (4.7) is perturbed by a stochastic 

shock (with zero mean and moderate variance). b) The shocks will affect the cycle 

characteristics (for example, a sequence of positive shocks may increase the duration of an 

expansion). What is obtained now is a distribution of frequencies (or periods) around the value 

0ω  (or 0τ ) of the deterministic equation. This distribution of frequencies is precisely the 

spectrum of the AR(2) model (4.8), a typical spectrum of a stochastic cycle (Figure 10).  

 

 

 

The spectrum of the cycle provides centrality measures (mode, mean, median), 

confidence intervals around theses measures, and an idea of how stable or moving the cycle 

is. In Figure 11, the cycle with the narrower peak will produce cyclical oscillations with periods 

closer on average to the modal value. 

 

 

 

The stochastic shock perturbing equation (4.7) can be different from white noise and 

allow for some autocorrelation. A more general stochastic cycle can be represented by the 

ARMA (2, Q) model 

ctctc a)B(c)B( θ=φ  (4.9) 
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with )B(cφ  containing complex roots associated with a cyclical frequency, and often Q = 2. 

The MA part may affect the width or the minima of the cycle spectrum. For example, if 

)B1()B1(B1)B( 2
c +−=−=θ , the cycle spectrum will display zeros for 0=ω  and 

π=ω , as in Figure 12. 

 

 

 

The presence of spectral zeros will make the cycle component “canonical”, so that 

no additive white noise can be extracted from it. 

c. An Apparent Paradox 

Economists have known for a long time that many economic series are cyclical. Yet despite 

some exceptions, estimation of ARIMA models for macroeconomic series seldom evidences 

cyclical effects (complex AR roots for cyclical frequencies). Should we reject in these cases 

the presence of cycles? Or, given that differencing may strongly affect cyclical frequencies, 

does this means that when we difference we cannot identify cycles? To this issue we turn 

next. 

4.3 A Modified Hodrick-Prescott Filter 

We introduce a change in the parametrization. The filter, as presented in Section 4.1, 

depends on a parameter λ  that does not have an easy interpretation. Knowing λ , the gain 

)(G ω  of the filter is given by (4.6), and using (2.5), it can alternatively be expressed as a 

function of the period (Figures 13a and b). 

 

 

 

Consider 0ω  and 0τ , the values for which the gain equals ½, i.e., 

5.)/2(G 00 =τπ=ω  (4.10) 
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Heuristically, for )(, 00 ω<ωτ>τ , most of the series will go to the trend, and for 

)(, 00 ω>ωτ<τ , most of the series will go to the cycle. Thus 0τ  (or 0ω ) represent the 

“cutting point” for the trend-cycle partition. In fact, 0ω  is the parameter used by engineers to 

characterize the filter in its Butterworth expression. The relationship between the two 

parameters, 0λ  and 0τ , is obtained from solving (4.10), which yields, considering (4.6), 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

λ
−π=τ

0

0
2

1
1cosa/2  (4.11) 

The parameter τ  has a more direct interpretation than λ . For example, “cycles with 

periods beyond 10 years should be mostly assigned to the trend” is a more 

easy-to-understand assumption than “ 1600=λ ”. Therefore, for business-cycle analysis a 

sensible strategy to apply the HP filter could be: 

 

i. A priori choice of the cutting point 0τ  

ii. Obtain )(f 00 τ=λ  though (4.11) 

iii. Obtain bHP Vand)B(θ  as described in the Appendix 

iv. Apply the WK filter to obtain tt ĉandm̂  

 

Following Kaiser and Maravall (2001), two modifications will be made to the standard 

application of the HP filter. 

— It has often been pointed out that the behavior of the estimated cycle for the end periods 

is highly unstable. This instability is partly due to the fact that the HP is a two-sided filter, and 

hence is subject to revisions as more data become available. Preliminary estimators can be 

obtained with the WK filter applied to the available series extended with forecasts and 

backcasts. Standard application of the HP filter can be seen to be the same as the WK 

implementation, with the series extended with forecasts and backcasts generated by the 

(fixed) model (4.3), which will in general be poor. When the series is extended with an 

appropriate ARIMA model, end-point stability is significantly increased. In what follows we 

assume that the filter is always applied to appropriately extended series. 

— As with “seasonal noise”, there does not seem much point in leaving highly transitory 

noise in the series that is input to the HP filter. Thus we shall apply the filter to the trend-cycle 

component (or noise-free SA series), which shall be denoted tp . 

When these modifications are incorporated, we shall refer to the resulting filter as the 

“Modified Hodrick-Prescott” (MHP) filter. 

4.4 Two-Step Estimation of the Cycle 

Assume that the series follows the general ARIMA model 

,)V,0(.n.wa;a)B(x)B( a ~ttt
d
r

d r θ=∇∇φ  (4.12) 

where r denotes the number of observations per year,  ∇  and  r∇  denote the regular 

and seasonal differencing, d and rd  are nonnegative integers (in practice, d = 0, 1, 2,  

rd = 0, 1,) )B(φ  is a stationary autoregressive polynomial in B, and )B(θ  is an invertible 

moving average polynomial in B.  
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a. First Step 

If tu  denotes the noise contained in the series, and ts  its seasonal component, we consider 

the decomposition of tx  into orthogonal components, as in 

tttt uspx ++=  (4.13) 

where the first component tp  is the signal of interest for the posterior extraction of the cycle, 

namely the trend-cycle component. To estimate tp  we follow the AMB procedure. The AR 

polynomials of the component models are determined from the factorization of the AR 

polynomial of the ARIMA model for tx  according to the following rule. Let ω  denote the 

frequency of a root expressed in radians. If )r/2,0[ π∈ω , the root is allocated to the 

trend-cycle; if ω  is a seasonal frequency  (for example r/j2 π=ω , 6...,,1j = , for monthly 

series,) the root is allocated to the seasonal component; finally, when ),r/2( ππ∈ω  and is 

not a seasonal frequency, the root is allocated to the irregular component. Thus cycles with 

period longer than a year will be part of the trend-cycle component, while cycles with periods 

shorter than a year will go to the irregular one. Following this rule, the polynomial )B(φ  can 

be factorized as )B()B()B()B( usp φφφ=φ , and model (4.12) can be 

rewritten as ))B(()S)B(())B([( u
d

s
D

p
r φφ∇φ ] tt a)B(x θ=  , where rddD += , 

S is the annual aggregation operator 1rBB1S −+++= K , and use has been made of the 

identity  Sr ∇=∇ .  The first parenthesis groups the trend-cycle AR roots, and the second 

and third parenthesis group the seasonal and the irregular AR roots, respectively. The 

components will have models of the type 

 

)V,0(.n.wa,a)B(u)B(

)V,0(.n.wa,a)B(sS)B(

)V,0(.n.wa,a)B(p)B(

u ~utututu

s ~ststst
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p ~ptptpt
D

p

r

θ=φ

θ=φ

θ=∇φ

 

 

with the variables utstpt a  ,  a  ,  a  mutually uncorrelated. Consistency between the 

“reduced form” model (4.12) and the “structural model” (4.14a, b, c) requires that the MA 

polynomials )B(,)B(,)B( usp θθθ , and the variances usp  V,  V, V , satisfy the identity  

.a)B(S)B()B(

a)B()B()B(

a)B()B(S)B(a)B(

utu
dD

sp

stsu
D

p

ptpu
d

st

r

r

θ∇φφ+

+θφ∇φ+

+θφφ=θ

 (4.15) 

Applying (2.12), the WK estimators of the trend-cycle, seasonal and irregular 

components are given by  

t

2
d

usp
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p

t x
)B(

S)B()B()B(
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=  (4.16a) 

t

2
D

ups

a

s

t x
)B(

)B()B()B(

V

V
ŝ

θ

∇φφθ
=  (4.16b) 

(4.14a) 

(4.14b) 

(4.14c) 



BANCO DE ESPAÑA 29 DOCUMENTO DE TRABAJO N.º 0417 

 

t
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t x
)B(

S)B()B()B(

V

V
û

r

θ

∇φφθ
=  (4.16c) 

and it is straightforward to verify that  tttt ûŝp̂x ++= . 

b. Second Step 

In the MHP procedure, the trend-cycle estimator tp̂  is used as input to the HP filter. From 

(4.4b), (4.5) and (4.16a), 

,x
)B()B(

S)B()B()B(

V

V
k

p̂
)F()B(

)F1()B1(
kĉ
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 (4.16d) 
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θθ

φφθ
=  (4.16e) 

For a finite sample, extending the series tx  with backcasts and forecasts computed 

with the correct model (4.12), the above expressions provide the MHP two-step estimators of 

the cycle ( tc ) and trend ( tm ), respectively.  

4.5 A Complete Unobserved Component Model 

In the MHP two-step procedure, a full decomposition of the series is finally obtained, namely 

ttttt ûŝĉm̂x +++=  (4.17) 

where the estimators in the r.h.s. of the equation are given by the expressions (4.16b-e). The 

question is: can these estimators be the direct MMSE estimators of the UCs in a full 

decomposition of the series of the type 

ttttt uscmx +++=  (4.18) 

where tttt uand , s , c , m  are  the  (orthogonal) trend,  cycle,  seasonal,  and  irregular 

components, all with sensible models that aggregate into the ARIMA model (4.12) identified 

for the series tx ? The answer is in the affirmative, and follows from Result 2. 



BANCO DE ESPAÑA 30 DOCUMENTO DE TRABAJO N.º 0417 

Result 3 

Let tx  be an observed series that follows the general ARIMA model (4.12). Consider 

the UC model consisting of the aggregate equation (4.18), the models for the 

seasonal and irregular components (4.14b, c) (obtained from the standard AMB 

decomposition of tx , as in the first of the two-step procedure,) plus the following 

models for the trend and cycle components: 

 

;)V/Vk,0(.n.wa,a)B(c)B(

;)V/Vk,0(.n.wa,a)B(m)B(

apc 
~ctct

D2
ptHP

apm 
~mtmtpt

D
HP

−∇ψ=θ

ψ=∇θ

 

where )B(/)B()B( ppp φθ=ψ , and ctmtutst aand,a,a,a  are mutually 

uncorrelated. Then, the MMSE estimators of tm , tc , ts , and tu  in the full model 

are the MHP two-step estimators (4.16 b-e). 

 

(The result follows from direct application of the WK filter to the complete UC model.) Further, 

[ ] ,xk)F1(k)F,B(Hĉm̂ tc
22
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and, considering (4.5), it is obtained that   

t
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d
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p
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)B(

S)B()B()B(

V

V
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s

θ

φφθ
=+  

or, according to (4.16a), ttt p̂ĉm̂ =+  . Similarly, from (4.2) and (4.3), it is straightforward to 

show that the components also satisfy ttt pcm =+ , with tp  given by (4.14a). Thus 

aggregation of the four components or of the four estimators yields the ARIMA model for the 

observed series. 

Some features of the complete UC model are worth mentioning. 

 

i. The argument has been made for the historical estimators, which can be assumed 

for the central years of a long-enough series. Estimation of the signal at the end 

points of the series is equal to the application of the full filter to the series extended 

with forecasts and backcasts. End-point estimation of the trend and cycle in the 

2-step procedure requires forecasts and backcasts of the trend-cycle component, 

while the full UC model requires forecasts and backcasts of the observed series tx . 

The two extension procedures however are identical because the forecasts of tp  

are obtained by extending further the series tx  with more forecasts and backcasts. 

In both procedures, the forecasts of tx  are computed with the identified model. 

Having the same filter and the same extended series, the preliminary trend and cycle 

estimators obtained with the 2-step method will be identical to the direct estimators 

in the full UC model. (Notice that MMSE forecasts of the cycle can be obtained in 

the same way as end-point estimators. Thus the forecasts will also be identical.) 

ii. A similar result can be derived when the estimator of the SA series tn̂  is used as 

input of the HP filter. However, part of the irregular (or transitory noise) component 

will be absorbed by tm  and (mostly) tc , and the cyclical signal will be 

contaminated by noise. 

(4.19) 

(4.20) 
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iii. The model is obtained from the AMB decomposition by simply splitting the 

trend-cycle component into separate (long-term) trend and cycle components, with 

the split determined by the choice of the “cutting point” 0τ  (or 0λ ) for the HP filter. 

iv. The seasonal and irregular components are those of the standard AMB 

decomposition. What are new are the trend and cycle models. These models share 

the polynomials )B(and)B( pHP ψθ , but given that the shared AR roots are 

stationary, the estimators MSE will be bounded and converge to a finite value 

(Pierce, 1979). 

v. The models for the trend and cycle components incorporate “a priori” and 

series-dependent features. The first ones ( cmHP kand,k,)B(θ ) are determined 

by the parameter 0τ  (or 0λ ,) and reflect desirable features of the filter (broadly, 

how to split the frequencies between trend and cycle). The polynomial )B(pψ  and 

the variance pV  are series dependent, and guarantee consistency with the model 

identified for the series. 

vi. Given that tp  is obtained from the AMB decomposition of tx , both components, 

trend and cycle, have to be canonical and will display a spectral zero for π=ω . 

vii. The order of integration at the zero frequency of the trend will be equal to that of the 

observed series. 

viii. The cycle will be stationary as long as d < 3. The spectrum of the cycle will have the 

shape of a distribution skewed to the right (for quarterly or monthly series), and with 

a well-defined mode. Besides the spectral zero for π=ω , when d < 2 the spectrum 

will contain an additional zero for 0=ω  (and hence, will be doubly canonical). 

ix. We have concluded that the MHP 2-step procedure is the same as MMSE 

estimation of the components in a full UC model, and that the reduced form of this 

model is the ARIMA model identified for the observed series. The two models are 

observationally equivalent; they will fit equally well the data, and have the same 

likelihood and forecast functions. One may disagree with the specification of the 

components, but the results cannot be properly called spurious. 

4.6 First Example: The Cycle in the Airline Model 

We consider the so-called “Airline model”, popularized by Box and Jenkins (1970), which has 

been found appropriate for many economic series. For quarterly series the model is given by  

t
4

41t4 a)B1()B1(x θ+θ+=∇∇  (4.21) 

with 11 <θ  and 01 4 <θ<− . Setting 1Va = , and 4.1 −=θ , 6.4 −=θ  (the values 

used by Box and Jenkins), the AMB decomposition of tx  with program SEATS into (4.13) 

yields the following models for the components. 

.)305.V,0(.n.wu
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ut
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For the second step, in order to split the trend-cycle ( tp ) into trend ( tm ) plus cycle 

( tc ) , the polynomial  )B(HPθ , as well as ck  and mk  are needed. Setting λ  = 1600 , it is 

obtained that (see the Appendix) 

,B7994.B7771.11)B( 2
HP +−=θ           bV  = 2001.4 (4.23) 

(4.22a)

(4.22b)

(4.22c)
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so that  mk  = 1/2001.4  and  ck  = 1600/2001.4. The models for the trend and cycle can 

now be specified as 

ct
2

t
2

mt
2

t
22

a)B881.B119.1(c)B799.B777.11(

a)B881.B119.1(m)B799.B777.11(

−+=+−

−+=∇+−
 

with mV
 = .32 (10 –4)  and  cV

 = .0512 . The model for tm
 is  I(2) while the model for tc

 is 

stationary; both are noninvertible due to a spectral zero at π=ω . The AMB spectral 

decomposition of tx
 into tp

 and ts
 is presented in Figure 14 (the spectrum of tu

 is a 

constant,) and the spectral decomposition of tp
 into tm

 and tc
 is displayed in Figure 15. 

Although the spectrum of tp
 does not exhibit any peak for a cyclical frequency, it can be split 

into a smooth nonstationary peak around the zero frequency ( tm
), and a stationary spectrum 

with a well-defined peak for a cyclical frequency ( tc
). The period associated with this peak is 

approximately 13 years. Figure 16 exhibits the squared gains of the filters to estimate the 

trend-cycle, trend, and cycle, all of which display sensible shapes. 

 

 

 

 

 

 

(4.24) 

(4.25) 
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Figures 17 to 21 provide an example: the decomposition of a Spanish quarterly 

economic indicator over a 30 year period. For the cycle, the 95% confidence interval implied 

by the revision error has also been included. The standard error (SE) of the revision for the 

concurrent estimator of the cycle is about 1/3 of the SE of its one-period-ahead forecast 

error, and it takes about 3 years for the revision to become negligible. 

Forecasts of the cycle (and associated SE) can be obtained in the same way as 

end-point (preliminary) estimators. However, due to the size of the SE, and to the fact that the 

stationary model for the cycle implies a forecast function that converges to zero, these 

forecasts are of limited interest in practice. 
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It is of interest that the cycle obtained in the 2-step procedure, that mixes 

data-consistency with ad-hoc desirable features, turns out to be an ARMA (2,2) model with 

the AR roots associated with a cyclical frequency: that is, a linear stochastic process of the 

type discussed in section 4.2b. This model, given by (4.25), has )B(HPθ  as the AR 

polynomial, which is determined a priori from 0τ  (or 0λ ). This a priori choice will shape the 

eventual ACF of tc , its eventual forecast function, and strongly influence its spectrum. 

On the other hand, the MA polynomial )B(pθ  and pV  in model (4.25) are 

determined from the model for tp , obtained in the AMB decomposition of the model for the 

observed series. Factorization of )B(pθ  yields )B958.1()B1()B(p −+=θ  . The first root 

implies a spectral zero for π=ω , and the second root implies a spectral (local) minimum 

close to zero for 0=ω . 

4.7 A Remark on Identification 

Incorporation of the HP filter to the AMB procedure implies decomposing the trend-cycle 

component ( tp ) into orthogonal trend ( tm ) and a stationary cycle ( tc ). Considering (4.22a), 

(4.24), and (4.25), this decomposition is of the type 

 

 IMA (2,2)   =   ARIMA (2,2,2)   +   ARMA (2,2) 

     trend-cycle     long-term trend            cycle 

 

Given the l.h.s. of this identity (i.e.,  he IMA (2,2) model for tp ), the r.h.s. 

decomposition depends on )B(HPθ , mk , and ck , all determined from the HP-filter 

parameter λ . Therefore, for each value λ  in R +, a different “trend + cycle” decomposition of 

the same trend-cycle component will be obtained. Specifying a particular value of λ , a 

particular decomposition is obtained. For example, setting 400=λ  and applying the 

algorithm in the Appendix, yields a model similar to the one in the previous example (for which 

1600=λ ), but with the new set of parameters 

2
HP B7284.B6857.11)B( +−=θ ; (4.26) 

00182.k;7284.k mc ==  

Thus (4.22b and c) remain unchanged in the new UC model, but the AR polynomial 

in (4.24) and (4.25) will now be (4.26), and 0012.V/VkV apcc == , 

0466.V/VkV apmm == . Figure 22 compares the spectra of the two decompositions of 

tp  obtained for the two values of λ . In both cases, the sum of the trend and the cycle 

spectra yields the same aggregate spectrum: that of the IMA (2,2) model for tp  given 

by (4.22a), the dotted line in the figure. 

 

 



BANCO DE ESPAÑA 36 DOCUMENTO DE TRABAJO N.º 0417 

The basic identification problem in terms of the cycle and trend components can be 

seen as the choice of an appropriate value for λ  or τ . At this stage, desirable features can 

be introduced: for example, a priori choice of the cycle period 0τ  that is the cutting point 

between periods that belong mostly to the cycle or to the trend. Setting 0τ=τ  identifies a 

particular decomposition.  

4.8 Second Example: Stationary Series 

Although the naïve model-based derivation of the HP filter, given by (4.1), implied an I(2) trend, 

Result 3 holds for any order of integration. Consider, for example, the stationary AR(1) model  

1V,ax)B8.1( att ==− . The AMB decomposition yields ttt upx += , with the 

following models for the components 247.V,a)B1(p)B8.1( pptt =+=− ; 

.n.wu t = , 309.Vu = .  

Therefore, the complete unobserved component model is given by 

tttt ucmx ++=  , where the components follow the models 

;)V,0.(n.wu

a)B1()B1(c)B(

a)B1(m)B()B8.1(

ut

ct
2

tHP

mttHP

=

−+=θ

+=θ−

 )V,0(.n.wa

)V,0(.n.wa

c ~ct

m ~mt

 

with apccapmm V/VkVandV/VkV == . Assuming annual data and 7=λ  (the 

value approximately equivalent to the quarterly value of 1600), the associated parameters in 

)B(HPθ , plus cm kandk  are given in Table A of the Appendix. The spectral 

decomposition of the AR(1) is shown in Figure 23 and represents a sensible decomposition of 

a trend-cycle into separate trend and cycle. 

 

 

4.9 Distortion in MMSE Estimation of the Cycle Component 

MMSE (historical) estimation of tc  in the full UC model provides an expression of the type 

tt x)F,B(ĉ η= , and, from the ARIMA model for tx  , one can obtain tĉ  as a filter applied 

to ta , say tt a)F,B(ĉ ξ= . Back to the Airline model example of Section 4.6, after 

simplification, it is obtained that 

( ) t
HP

4p

HP

p

pct a
)F()F(

)F(

)B(

)B(
Vkĉ

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

θθ

∇∇θ

θ

θ
=  (4.27) 

where 
4

4 F1,F1 −=∇−=∇
 and )F6.1()F4.1()F( 4−−=θ . The spectrum of tĉ

 is 

shown in Figure 24. Comparison of the spectrum of the component (4.25) with that of its 
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estimator (4.27) illustrates a well-known feature of MMSE estimation (see, Nerlove, Grether 

and Carvalho, 1979): the estimator underestimates the variance of the component. For the 

case of the cyclical component, this loss of variance affects mostly the lower frequencies. As 

a result, the estimator inflates the relative importance of the higher frequencies and the 

spectral peak is pushed to the right, implying a shorter period. Therefore, when interpreting 

an estimated cycle in the model-based framework, one should be aware that MMSE 

estimation will bias downwards the modal period implied by the theoretical model for the 

cycle. 

 

 



BANCO DE ESPAÑA 38 DOCUMENTO DE TRABAJO N.º 0417 

APPENDIX: COMPUTATION OF b
HP
2

HP
1

VAND,, θθ  FOR HP FILTER GIVEN λ  

WK implementation of the HP filter requires the IMA(2,2) specification (4.3) for tx , namely, 

the parameters b
HP
2

HP
1

Vand,, θθ . Given λ , they can be obtained as follows. (All square 

roots are taken with their positive sign.) Compute sequentially: 

( )

2

bz
n,

2

ra
m)4(

2

bz
n,

2

ra
m)3(

z

s
r;1611

2

1
z)2(

abs,bk,
1

b,2a)1(

22

11

2

−−=−−=

−=+−=

=λ++
λ

=

=−=
λ

==

 

( 5 )   Of the two complex numbers ( 11 inm + ) and ( 22 inm + ) pick up the one with 

smallest modulus. Let this number be NiMR +=  ; then, 

( ) ( )2HP
2

2HP
1

b
22HP

2
HP
1

1

61
V,NM,M2)6(

θ+θ+

λ+=+=θ=θ  

Notice that implementation of the WK filter requires ck  and mk , computed as 

bmbc V/1kandV/k =λ= . 

The following table presents the values of bHP V),B(θ , and the period τ  

associated with a filter gain equal to .5, for several values of λ . The first three values 

comprise the standard quarterly value 1600=λ , and the monthly and annual values implied 

by temporal aggregation following the criterion of Maravall and del Río (2001), which 

preserves the period of the cycle associated with a gain of .5. [This criterion yields values that 

are close to those proposed by Ravn and Uhlig (2002).] 
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TABLE A: WK FILTER PARAMETERS FOR DIFFERENT VALUES OF λ  

 
FREQUENCY 

OF OBSERV. 
λ  1θ  2θ  bV  

τ  

(approx.) 

Approximately 

equivalent  

values  

under  

aggregation 

Monthly 

 

Quarterly 

 

Annual 

130 000 

 

1 600 

 

7 

-1.9255 

 

-1.7771 

 

-1.1706 

.9282 

 

.7994 

 

.4137 

140 050 

 

2 001.4 

 

16.92 

120 

 

40 

 

10 

E-Views 

OECD … 

Annual 

Monthly 

100 

14 400 

-1.5583 

-1.8710 

.6382 

.8788 

156.68 

16 385 

20 

69 
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