N
NN
NN
\ 4.1///
N

N

//
\
\ N
/,.,, NN

\

A\

W A
if B
A




COSTLY DECISIONS AND SEQUENTIAL BARGAINING



COSTLY DECISIONS AND SEQUENTIAL BARGAINING

James Costain

BANCO DE ESPANA

Documentos de Trabajo. N.° 1729
2017



The Working Paper Series seeks to disseminate original research in economics and finance. All papers
have been anonymously refereed. By publishing these papers, the Banco de Espafna aims to contribute
to economic analysis and, in particular, to knowledge of the Spanish economy and its international
environment.

The opinions and analyses in the Working Paper Series are the responsibility of the authors and, therefore,

do not necessarily coincide with those of the Banco de Espana or the Eurosystem.

The Banco de Espana disseminates its main reports and most of its publications via the Internet at the
following website: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is
acknowledged.
© BANCO DE ESPANA, Madrid, 2017

ISSN: 1579-8666 (on line)



Abstract

This paper models a near-rational agent who chooses from a set of feasible alternatives,
subject to a cost function for precise decision-making. Unlike previous papers in the
«control costs» tradition, here the cost of decisions is explicitly interpreted in terms of time.
That is, by choosing more slowly, the decision-maker can achieve greater accuracy. Moreover,
the timing of the choice is itself also treated as a costly decision.

A trade off between the precision and the speed of choice becomes especially
interesting in a strategic situation, where each decision maker must react to the
choices of others. Here, the model of costly choice is applied to a sequential bargaining
game. The game closely resembles that of Perry and Reny (1993), in which making
an offer, or reacting to an offer, requires a positive amount of time. But whereas Perry
and Reny treat the decision time as an exogenous fixed cost, here we allow the
decision-maker to vary precision by choosing more or less quickly, thus endogenizing
the order and timing of offers and responses in the game.

Numerical simulations of bargaining equilibria closely resemble those of the Binmore,
Rubinstein, and Wolinsky (1983) framework, except that the time to reach agreement is
nonzero and offers are sometimes rejected. In contrast to the model of Perry and Reny, our
numerical results indicate that equilibrium is unique when the space of possible offers is
sufficiently finely spaced.

Keywords: bargaining, control costs, logit equilibrium, near-rational choice.

JEL classification: C72, C78, D81.



Resumen

Este documento estudia un agente cuasirracional que debe escoger entre varias alternativas,
pero que se enfrenta a una funcion de costes para tomar decisiones de manera precisa. A
diferencia de la literatura anterior sobre «costes de control», este documento supone que las
decisiones llevan su tiempo. Es decir, si dedica mas tiempo a su decision, el agente puede
escoger con mayor probabilidad la alternativa mas valiosa. Pero, ademas, supondremos
que cuanto tiempo dedicar a la decision es, también, una decision costosa.

Una disyuntiva entre la precision y la rapidez de las decisiones es especialmente relevante
en una situacion estratégica, donde cada agente debe reaccionar a las decisiones de los
demas. Este documento desarrolla un ejemplo metodoldgico sobre decisiones costosas
en el contexto de un juego de negociacion. El juego se parece al modelo de Perry y Reny
(1993), en el que hacer una propuesta, o reaccionar a la propuesta de otro jugador, lleva
su tiempo. Pero en el modelo de Perry y Reny dicho tiempo es una cantidad exdgena vy fija.
En contraste, este documento supondra que cada jugador puede variar la precision de sus
decisiones dedicandoles mas o menos tiempo, y de esta manera se endogenizara el orden
de las propuestas y reacciones en el juego, y el intervalo de tiempo entre ellas.

Al simular equilibrios del juego de negociacion numéricamente, obtenemos resultados muy
parecidos a los de Binmore, Rubinstein y Wolinsky (1983), salvo que el tiempo para llegar a
un acuerdo es positivo, y que algunas ofertas se rechazan. A diferencia del estudio de Perry
y Reny, nuestras simulaciones indican que el equilibrio del juego es unico siempre y cuando
las ofertas se escojan de un conjunto de puntos suficientemente denso.

Palabras clave: negociacion, costes de control, equilibrio logit, decisiones cuasirracionales.

Cédigos JEL: C72, C78, D81.



1 Introduction!

Frictions are essential in macroeconomic modeling. Empirically-oriented DSGE models, follow-
ing Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2003), and Gertler, Sala,
and Trigari (2008), often feature sticky prices, sticky wages, investment adjustment costs, con-
sumption habits, and search and matching in the labor market, among other frictions. Similarly,
errors are essential in game theory. Theoretical models often fit experimental data better under
equilibrium concepts that incorporate errors in choice, such as quantal response equilibrium
McKelvey and Palfrey (1995, 1998), or its special case, logit equilibrium. In addition, equilib-
rium concepts such as trembling hand equilibrium (Selten 1975), quantal response equilibrium,
and control cost equilibrium (Stahl 1990; Van Damme 1991, Chapter 4; Mattsson and Weibull
2002) have been useful for resolving some behavioral puzzles associated with fully rational Nash
equilibria, and for studying robustness (relative to full rationality) in order to select between
multiple equilibria or between different equilibrium concepts (Moreno and Wooders 1998; Goeree
and Holt 1999, 2001; Anderson, Goeree, and Holt 2002).

Control cost equilibria are based on the assumption that errors occur because decisions are
costly. A decision is conceived as a random variable distributed over a set of possible actions,
and the cost of the decision is assumed to increase with the precision of this random variable.
The player maximizes the payoffs that would obtain in a costlessly rational game, net of the
decision costs. Usually, a player prefers to spread probability across many possible actions (thus
committing “errors”) rather than concentrating all probability on a single action, because the
latter is excessively costly. Thus, players are sophisticated enough to consider the costs and
limitations of their own rationality when they make choices — an appealing property.

Realistically, time use is likely to be an important component of the costs of choice. Time
devoted to decision-making may have an opportunity cost, and also implies discounting of the
terminal payoffs received when the choice is made. In the context of the independent choices of
a single decision-maker, which resources are consumed by the choice process may be irrelevant,
since time, money, and other resources may be fungible. But time-consuming choice could
be an important feature of a game, as it could have strategic implications, representing an
opportunity for other players to intervene with actions of their own. Therefore, the time used
up by decisions should be reflected in the extensive form of the game. Accordingly, this paper
explores the game-theoretic implications of control cost equilibrium when we take the role of
time in decision-making seriously. In doing so, it also extends a model of intermittent updating
— essentially an error-prone (S,s) model — that could prove useful for addressing many frictions
that appear in DSGE models.

The model, developed in Section 2, studies a decision-maker (DM) who may choose quickly or
slowly, and can make a more accurate decision by choosing more slowly.?2 As in previous papers
on control costs, “choosing” means allocating probability across a set of feasible actions.? Unlike
previous papers, the DM is also assumed to control the arrival rate of the decision. Holding fixed
other uses of time, a slower arrival rate implies more time dedicated to the decision, and this,
by assumption, permits a more precise allocation of probabilities across the action set. While
a variety of statistics could serve as measures of precision, this paper focuses on a special case
in which precision is measured by relative entropy. This proves analytically convenient, because

!The author is grateful for helpful discussions with Henrique Basso, Filip Matejka, Pascal Michaillat, Espen
Moen, Anton Nakov, Plamen Nenov, Galo Nufio, Ariel Rubinstein, Antonella Trigari, and Ernesto Villanueva,
and from seminar participants at the Banco de Espafna, the Univ. of Murcia, UC Santa Cruz, Univ. Carlos
III, CEF 2014, SaM 2015, ESSIM 2015, CEF 2015, EEA 2015, and the Eighth Workshop on Theoretical and
Experimental Macroeconomics (Stony Brook, 2017). Views expressed here are those of the author and do not
necessarily coincide with those of the Bank of Spain or the Eurosystem.

*Rubinstein (2013) presents experimental evidence that slower decisions are more accurate.

3For a discussion of decisions as random variables, see Machina (1985) or Chapter 2 of Anderson, de Palma,
and Thisse (1992).
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the probability of each feasible action then takes the form of a multinomial logit (as in Mattsson
and Weibull, 2002).

Note, however, that in many dynamic situations there is a default option that occurs in
the absence of any deliberate action. Our model allows for situations of this type by treating
the timing of any deliberate choice as a time-consuming, error-prone decision too. Under the
functional forms assumed in the paper, decision timing is determined by a weighted binary
logit (as in Woodford, 2008). Considering errors on both margins— the choice itself, and the
timing of the choice— actually simplifies the analysis, because it helps rule out corner solutions.
While the model can have several types of corner solutions in the limiting case where timing is
perfectly rational (see Section 2.1), it has a well-behaved interior solution when timing is error
prone (Secs. 2.2-2.3). Interestingly, the model implies a relationship between the accuracy of
decision-making across the two margins (the choice itself, and its timing), as well as a relation
between the accuracy of decision-making and the value of time. These implications of the model
may be empirically testable, especially in the laboratory.

As an application, Section 3 embeds the model of costly decisions into a game where two
players bargain to split a pie. Time-consuming, error-prone choice is assumed both at the stage of
offering a share to the other player, and at the stage of accepting or rejecting the other player’s
proposal. The game closely resembles that of Perry and Reny (1993), in which two players
make offers to split a pie, and making an offer, or reacting to an offer, requires a nonnegative
amount of time. But whereas Perry and Reny treat the decision time as an exogenous fixed
cost, and assume that all decisions are optimal, here the decision-maker can vary precision by
choosing more or less quickly. Also, while Perry and Reny equate rejecting an offer with making
an alternative offer, these decisions are distinct in our setup; Sections 3.1-3.3 compare several
different bargaining protocols.

Sections 3.4-3.5 further explore bargaining equilibrium by numerical simulation. The equi-
librium resembles that of the Binmore, Rubinstein, and Wolinsky (1986) framework, except that
the time to reach agreement is nonzero, and offers are not always accepted. The simulations
show that equilibrium changes in intuitive ways as underlying parameters vary; this is true even
in an example where parameters imply that splitting the pie is a bad idea. Finally, we explore
uniqueness of equilibrium. While the game of Perry and Reny (1993) has multiple equilibria in
which players receive different bargaining shares, in our game we find a unique equilibrium as
long as the space of possible offers is a sufficiently fine grid. Section 4 concludes.

1.1 Related literature

This paper is closely related to previous work on sequential bargaining under complete infor-
mation, including Rubinstein (1982), and Binmore, Rubinstein, and Wolinsky (1986). Wolinsky
(1987) and Hall and Milgrom (2008) have emphasized the implications of bargaining theory for
wages in matching models. Perry and Reny (1993) studied bargaining when making offers, or
responding to offers, requires a fixed, nonnegative quantity of time. Bono and Wolpert (2010)
study a bargaining game in which offers are stochastic, either due to errors or due to other un-
modeled variation across players. Merlo and Wilson (1995, 1998) and Merlo and Wilson (2010)
study bargaining games where the pie evolves randomly over time.

This paper is also motivated by the author’s previous work on price stickiness. Costain and
Nakov (2015, henceforth CN15) showed that a control cost approach is fruitful for modeling
microdata on intermittent retail price adjustment. They showed that two types of errors were
relevant for the empirical success of their model. Errors in which price to set, conditional on
adjustment, help explain a number of empirical puzzles on retail prices; errors in the timing of
adjustment help explain the macroeconomic finding of significant monetary nonneutrality. The
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present paper extends their framework by allowing for a nonlinear cost of time and shows how
it can be used to endogenize the order and timing of actions in an extensive-form game.*

Another motivation for this paper is its potential for unifying the analysis of several margins
in labor markets. Cheremukhin, Restrepo-Echevarria, and Tutino (2012) have shown how a
matching function can be derived from a model of costly choice over a set of partners (who
are themselves, likewise, engaged in costly choice). The present paper applies a similar cost
function to the decisions involved in a bargaining game, which could be used to model to wage
negotiations. Since the time to reach agreement is strictly positive (in contrast to Rubinstein
(1982) and most related models) the present model could also be applied to duration data on
wage negotiations and/or strikes. After a bargain is accepted, the same model of error-prone
timing could be applied to each partner’s option to reopen the negotiations, which is a natural
way of modeling wage stickiness. Likewise, this decision framework could be applied to each
partner’s separation decision. Thus, wage stickiness and separation could be treated jointly in
this framework, as Barro (1977) advocated.

Thus, control cost equilibrium may offer a single microfoundation for many frictions that
are typically viewed as distinct, including nominal rigidities and matching frictions. Applying
a single model of frictions to all margins could make them easier to calibrate and compare,
and could provide empirical implications about how errors vary across margins over time. Con-
trol cost models were initially developed as a more structured alternative to trembling hand
equilibrium, imposing the property that more costly errors should be less likely (Van Damme
1991, Chapter 4). Starting with Stahl (1990), many papers have shown independently how an
entropy-related cost function can microfound logit decision rules (Marsili 1999; Mattsson and
Weibull 2002; Bono and Wolpert 2009; Matejka and McKay 2015). Similar cost functions have
been used to model other limitations on rationality, as in the model uncertainty framework of
Hansen and Sargent (2007). Control cost models are also influential in the engineering and ma-
chine learning literature; see for example Todorov (2009). In the machine learning context, as in
the reinforcement learning literature in economics (see Baron, Durieu, Haller, and Solal 2002),
control costs are applied to backward-looking behavior, whereas in the present paper they are
applied to forward-looking behavior.

The rational inattention framework of Sims (1998, 2003) is also a general friction applicable
to many different types of decisions, and it is closely related to a control cost approach. Indeed,
Khaw, Stevens, and Woodford (2016) use a rational inattention approach to derive a logit
model of intermittent updating, similar to framework developed here, and show that it helps
explain adjustment behavior in a laboratory experiment.® The main difference between a rational
inattention model and a control cost model is that the former places a constraint on information
flow (measured in terms of entropy), while the latter places a constraint on the precision of the
decision (entropy is then one possible functional form for measuring precision). One possible
interpretation is that rational inattention and control costs address two different “stages” of the
decision process: the initial stage of obtaining information necessary for the decision, and the
final stage of actually making a choice conditional on that information. In reality, both stages
are likely to be costly, and both have the same primary implication: an imperfect correlation
between a player’s true state and her action. But there is an important technical advantage to
modeling the second stage, rather than the first: the rational inattention approach implies a

4CN15 studied a model with a linear cost of time use, which made it possible to separate the decision process
into two Bellman steps, one governing the decision whether to adjust the price, and another governing the choice of
which new price to set conditional on adjustment. This paper’s simultaneous treatment of both decision margins,
discussed in Sec. 2.3, allows us to solve the case of nonlinear time costs. Costain, Nakov, and Petit (2017) find
that nonlinear time costs are required to fit wage data in a model of state-dependent wage adjustment, even
though linear time costs work well in a model of state-dependent prices only.

®Khaw, Stevens, and Woodford (2016), like CN15, assume that the cost of entropy is linear; the present paper
instead allows for a nonlinear cost of entropy (due to a nonlinear value of time).
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much higher-dimensional model, since the decision-maker’s state variable is his prior (which is
typically a high-dimensional object). The simpler state space of a control cost model makes it
more tractable both for DSGE modeling and for computing the equilibrium of a dynamic game,
as in the current paper.

2 Models of time-consuming decisions

2.1 One costly choice

We first analyze a single costly decision, which will subsequently be a building block for more
complex games. We regard a decision as a random variable distributed across a list of possible
alternatives j. The cost of making a choice is that it requires time, for thinking, calculating, or
otherwise comparing options on the basis of available information. The decision-maker faces a
tradeoff: if she chooses more quickly, her decision will be less precise.” Precision is measured
in terms of relative entropy (also known as Kullback-Leibler divergence), which is a measure of
distance from some default probability distribution 7j. When the choice probabilities 7 are set
equal to the default distribution, the decision cost is zero; the time cost of any decision that
deviates from the default probabilities is proportional to the Kullback-Leibler divergence. That
is, the time cost of decision 7 is given by kD(7||7j), where ij is an exogenously-given benchmark
distribution over the same alternatives.®

Figure 1: A decision that requires time.

Time t- Node C:

p€[0.1]
Constraint:
«D(7 ||ii)< |
(#lla)< 7,
1p
Time t+1: v, Node C

Decision completed

Note: Decision maker (DM) chooses solution rate p, of decision; Nature lets conclusion arrive with probability
py- A slower decision allows more precise allocation of probabilities 7;; across alternatives ¢ with values Vj 11,

satisfying the constraint xD(7||77) < p; . Time subscripts suppressed in diagram.

5Under this interpretation, the DM is assumed to have sufficient information to evaluate the alternatives
considered but is not assumed to know which option is best when the decision process begins. Therefore the
presence of the values V; in Bellman equation (2) should not be taken to mean that the DM “knows” the value
of each alternative j. Instead, it can be interpreted as saying that the DM has enough information to calculate
each Vj, given sufficient time.

"The model of this subsection is closely related to the “errors-in-pricing” specification considered in CN15, and
to the models of Mattsson and Weibull (2002) and Matejka and McKay (2015): it allows for errors in a choice
across a set of options, but ignores the possibility of any errors in timing.

8The notation used here to denote the relative entropy D(p]|§) between distributions p and § is standard.
When the two probability vectors have length n, the Kullback-Leibler divergence is defined as D(p]|q) =
>_j=1PiIn(p;/q;). For a discussion, see Cover and Thomas (2006), Chapter 2.3.
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It would be inelegant, unrealistic, and inconvenient to assume that the time required to solve
a decision problem is exactly known. So rather than assuming that the DM chooses the solution
time directly, we assume that she controls the arrival rate, p, of the solution. The expected
duration of the choice process is (approximately) 1/p; a slower solution rate implies more time
spent on the choice, and we assume this permits a more precise allocation of probability across
the alternatives under consideration. Fig. 1 graphs the game tree, showing one discrete time
step that begins at time ¢ (time subscripts are suppressed). Although we describe the model
in discrete time, for most applications the time step should be considered very brief.? The DM
chooses the solution rate p, at node C' (“calculating”); the curve under node C' indicates that
the solution rate is chosen from the unit interval, p, € [0, 1]. Since the actual time to reach a
conclusion is stochastic, we see that the solution arrives with probability p, (the DM reaches
the “deciding” node D), while the DM remains undecided with probability 1 — p,, in which case
the game returns to a node of type C' at time t + 1.

When Nature allows a conclusion to arrive, the DM allocates probabilities 7;; across the
alternatives j € I' = {1,2,...n}. The precision of the decision 7; = (714, 72,,...,Tnt) € A1
is lower when the solution rate is high (since 7; is a probability vector of length n, it is chosen
from the simplex of order n — 1, written as A”~1). Concretely, we assume

n
1 > kKD(T||1) = &k ZWN In <7r]’t> . (1)
Pt = mj

That is, a slower decision can have greater precision, where precision is measured by the
Kullback-Leibler divergence between the decision 7; and the benchmark distribution 7j. Given
the probabilities resulting from the DM’s decision efforts, the actual option selected is random
(chosen by nature); if option j is selected, the DM receives value Vj ;11 at time ¢ + 1.

The model is written with discreteness in two dimensions: a choice set of n discrete options,
and discrete time steps normalized to length one. However, we will focus on deriving solutions
that are independent of this discreteness. In particular, it is helpful to measure precision by
relative entropy rather than by entropy per se. Entropy does not have a finite limit as it is
calculated on finer and finer grids; in contrast, relative entropy is invariant as the density of
grid points increases (see Cover and Thomas, 2006, Chapter 8). Therefore, the discreteness
assumption is fundamentally just a matter of notational convenience.

The time required for more precise decisions could have a variety of costs. As in Rubinstein
(1982), we first assume that the only cost is the pure time discounting, at rate ¢, associated
with delay. Now, let W; denote the value of the problem at node C' at time ¢. The value must
satisfy the following Bellman equation:

Wy = max  (1=0) |pY mVierr + (1= p) Wit (2)
ps it j=1
subject to: pKZﬂ'j In <7TJ> <1 (3)
=1 i

and ij =1 (4)
j=1

We write the multipliers on the two constraints as A, and Ar, respectively. With a bit of
rearrangement, the first-order condition for 7; is

9The model has a well-behaved continuous-time limit, but this paper will focus on a discrete-time formulation.
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LEpe exp (ﬂv',t-&-l - pﬁt)\ﬂ) - 1) , (5)

1

where

By = : (6)

KXp
Hence, 7; is proportional to the exponential of the value of alternative j, scaled by a coefficient

B, which indicates the precision of the choice. Since the probabilities must sum to one, (5) is
solved by a multinomial logit across the various alternatives j:

oy exp(B;Vj 1)
>k M exXP(B Vitr1)
It is now helpful to introduce the notation E™txyy 1 = Z;‘:l T;t%j,+1, representing the time

t expectation of a random variable x;y; with distribution 7;. For example, for the default
distribution 7j, we will write E"z = Z;‘Zl n;zj. Note that the logit probabilities (7) imply

(7)

W],t

mielnmie = (B Vi1 +Inn;) w0 — 0 In (E" exp(8;Viy1)) (8)

and therefore

D@ ) = > mjelnmj, =Y miplnn; = BE™Vi —In(E"exp(8,Vir1)) = K(8y). (9)
o =1

Here E™V; 1 is the expected value of finishing the decision, which is

E"Wi 1 exp(B;Vit1)
Enexp(B;Vit1)

E™Viy = Zﬂj,tvj,tﬂ =
J

(10)

The function K (/) represents the entropy cost of achieving precision level 5 when probabilities
are allocated optimally across the alternatives, according to (7).

Given the precision coefficient f3;, defined in (6), the first-order condition for the solution
rate p; can be written as follows:

By (E™ Vg1 — Wiy1) = D(74][7). (11)

This gives us two different equations for the cost measure D: (9) expresses the time cost when
the probabilities 7;; are allocated optimally across alternatives i, and (11) optimally trades off
the solution cost D against the benefit of finding a solution, which is E™ V1 —W;;;. Combining
(9) and (11), both D and 5,E™V;1; cancel, leaving one simple equation to determine f,, given
the values V}H and Wiy of the alternatives and of continuation:

BiWirr = In(E" exp(8;Vi41)), (12)

or equivalently,'”
ETexp(B;(Viyr — Wiga)) = 1. (13)

The function ¢(8, V) = In(E" exp(8V)) that appears on the right-hand side of (12) is called
the cumulant generating function of the random variable V under distribution 7. (It is the log of
the moment generating function.) To clarify the behavior of the equation (12) that determines
5, it is helpful to state some properties of the functions g and K.

YEquation (12), illustrated in Fig. 2, is analytically equivalent to (13). But (13) is easier to solve numerically
if Wi41 > 0, because subtracting Wi41 from Vj .41 before exponentiating helps avoid numerical overflow.
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Lemma 1 Let g(8,V) = In(E"exp(8V)) = In (Z;;l n; eXp(ﬁVj)). We have:

(a') g(ovvl: 0. ) B )
(b.) 95(8,V) =2V 200 — Brv. Hence 3%(0,V) = E"V and limp 0 35(8,V) = V* =

g Erexp(3V)
max; V;.
. 2
(c ) 852( V) = E;;;fg(pﬁ(@‘)/) - <E£’Ye§§()(ﬁ€/‘;)) = E™V2 — (E™V)% Hence for all 8 > 0, we

have 2 852 7(8, ) > 0, with equality if and only if V; = E"V for all j.

(d.) For all >0, g(3, ‘7) > BEV, with equality if and only if V; = EMV for all j.

(e.) Let K(B) be given by (9). Then K'(B) > 0 for all § > 0 with equality if and only if
V; = E"V for all j. Also, K'(0) = 0.

(f.) The cost of achieving perfect precision is limg_,oc K(f) = —Inn*, where n* is the default
probability on the option with value V*. Therefore limg_,o, K'(5) = 0.

Points (b) and (c) follow directly by differentiating and then simplifying using the logit formula
(7). The derivative in (c) is nonnegative since it represents the variance of the payoff V' when
choices are distributed according to (7). Point (d) follows from the fact that exp(z) is convex,
so E"exp(BV) > exp(BE"V), with equality only if all values V; are equal. Therefore if there is

Figure 2: Optimal choice of precision 3, under backwards induction.

In(E"exp(BV:.1))
EWHl

BEVy.y

B* precision

Note: The figure illustrates the interior solution stated in Prop. 1(b). Curve g(8, Vis1) = In(E" exp(BViy1)) is
tangent to SE"V;41 at 8 = 0, and has limiting slope V* = max; Vj 111 as 8 — oo (the graph assumes V* > Wiy 1).
If instead V* < Wi 1, then g(3, Viy1) lies everywhere below SW; 1, and postponement is optimal; see Prop. 1(a).
If instead E"Viy1 > Wiga, the g(8, V}H) lies everywhere above SW;41, and the corner 8, = 0 is optimal; see
Prop. 1(c).

any difference across the values Vj, we have In(E" exp(5V)) > ln(exp(ﬁE”V)) ﬂE“V. Part

(e) follows by noting that K(8) = Bg—g — g, and therefore K'(8) = 5% + 5852 36 = 52—;3.
Then the nonnegative slope of K follows from (c), and we also obtaln K '(0) = 0. Part (f) can
be shown by direct calculation of the cost of placing probability one on the option with the
maximal value V*. Since K has a finite limit, this also shows that limg_,,, K'(3) = 0. Thus, as
long as there is any variation in the values Vj, the function K (/) is S-shaped: it has zero slope
at =0 and as  — oo, and it is strictly positive sloped for all 5 € (0, c0).

Figure 2 uses these properties of g to show how to solve for the optimal precision, 3,. We
study the solution of problem (2) when W;y; and Y_/;H are taken as a given, as is the case

when we solve (2) by backwards induction. By Lemma 1(b), the curve g(8, Vi41), plotted as a
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function of 3, has slope E"V; 1 at the origin, and its slope converges to V* = max; Vj;41 as
B — oo. Therefore, since g is convex, there exists exactly one positive /3, that solves (12) as
long as E"V;11 < Wiy < V*. This 8, solves a given iteration step of (2), as long as the period
length is sufficiently short.

Proposition 1 states this conclusion formally, and also describes the corner solutions that
arise when the period length is longer, or when W, lies outside of the bounds consistent with
an interior solution.'!

Proposition 1 Consider problem (2)-(4), taking Wiy1 and Vjiqq, j € {1,...,n}, as given.

(a.) Postponement: Suppose V* = max; Vi1 < Wip1. Then it is optimal to postpone
solving, setting the arrival rate p, = 0, achieving the value Wy = (1 — §) Wi

(b.) Interior solution: Suppose V* = max; Vji1 > Wip1 > E'", 1. Then there ewists a
unique positive B that satisfies (12). Let D* and p* be the entropy and arrival rate given by (9)
and (14) when 8 = *. If p* < 1, then (2)-(4) is solved by 5, = B*, p, = p*, achieving the value
K
8"

(c.) Immediate solution: Suppose E"Vii1 > Wiy, or that the conditions of part (b)
hold, but the implied arrival probability in the first time step exceeds one: p* > 1. Then the

optimal arrival rate is p, = 1. If k|Inn*| > 1, then the resulting precision level 3, solves (15); if
instead k|Inn*| < 1, then (2)-(4) is solved with infinite precision.

Wt:(l—é)[ +Wt+1}

The main point is that if V* > W, and the time step is sufficiently short, then an interior
solution applies, and precision is given by the unique positive 3, that solves (12). Knowing j;,
we can solve for the other endogenous quantities in the model: 7;; and E™*V;; are given by
(7) and (10), the entropy cost Dy is given by (9), and the solution rate is

1
KD(7|[77)

However, if the value V* of the best available option is less than the continuation value
Wii1, then the decision should simply be postponed. If instead V* > W, 1 and a precision level
greater than or equal to the S that solves (12) can be achieved within a single time step, it is
optimal to do so. Under this corner solution, the equilibrium precision 3, can be backed out
from the time constraint. If 3, is finite, it is the unique solution to

E"Vi1exp(BVig)
Enexp(BViq1)

The solution probability is then p; = 1 in the first time step.

Considering Prop. 1 and Fig. 2, we can draw some comparative statics conclusions about the
model’s the behavior conditional on the continuation value Wi4q. Fig. 2 shows that given W1,
the solution S, is unaffected by the information cost parameter . Likewise, given Wiy, the
probabilities 7, as well as E™ V1 and K ([3,), are unaffected by . Thus, a rise in x only affects

the arrival rate p, = #(Bt)’ slowing down the solution of the problem. Also, we see from the

Pt = (14)

3 — In(E" exp(BViq1)) = w L. (15)

12,13

" Besides the three solution classes described in Prop. 1, when computing the model we must also consider the
possibility of numerical overflow. Even if the true solution is theoretically an interior solution 8%, the calculations
will overflow on a computer if Zj exp(B*Vji41) > 00™VUM  where 0coYM is the largest real number representable
by the computer. A similar caveat applies to the immediate solutions discussed in Prop. 1(c). When this arises
in our numerical simulations, we set 8* to a large finite number that avoids overflow.

12Tn the continuous-time limit, the “immediate” solution occurs only when E"Vi,. > Wy, for infinitesimal e,
and the solution to (15) reduces to §, = 0, with instantaneous arrival.

13In an earlier version of this paper we also studied a specification that extended (2) to allow for a positive
value of time f(h) in non-decision activities. When time is valuable, it is never optimal to make decisions with
infinite precision. Nonetheless, the three solution classes described here still apply: if waiting is more valuable
than the best option that can be chosen, then postponement is optimal; and if optimal accuracy can be achieved
in less than one time step, then an immediate solution is optimal.
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diagram that increasing the value of delay Wy increases (3, (slows the arrival rate p,), raising
the expected payoff E™V,; and the time devoted to the decision, KK (8;). Similarly, an upward
shift in the distribution of values Vj;y1, in the sense of first-order stochastic dominance, will
decrease 3, since this raises the curve ¢(5) = In(E" exp(8)Vi4+1). Intuitively, a favorable shift in
Y_/;H makes the DM more eager to finish the problem, and less concerned about distinguishing
correctly between the different options.

2.2 Choosing a stopping time

The model in the previous section had three solution regimes (postponement, interior, or im-
mediate solution), depending on how the value of delay, W;1, compared with the values Vj 41
available. While the model displayed error-prone decisions across the alternatives i, it could
also be regarded as an error-free choice of the arrival rate p,. That is, it could be regarded as a
generalized optimal stopping problem, with the choice between stopping immediately (p, = 1)
and postponing (p, = 0) supplemented by all intermediate probabilities p, € (0, 1), in which the
stopping hazard p, was chosen without error. This observation raises the question of how we
might allow for errors in the stopping rate too, for consistency with our treatment of the choice
across the alternatives 1.

Hence, we next study an error-prone stopping problem, in which it is costly to choose the
stopping rate p precisely.'* Abstracting briefly from the choice across alternatives i, we assume
the DM simply chooses between continuing a process, to obtain value W, or “stopping” that pro-
cess to obtain value X. Previously, we interpreted “imprecise” choice as a uniform distribution
over a set of alternatives; here, we interpret “imprecise” choice of the hazard rate as a uniform
hazard with an exogenous rate p. The constant p is a free parameter in our framework, relating
to the underlying speed at which the DM is capable of making decisions. Cost increases with
deviations from the actual hazard from the uniform hazard at rate p, as measured by Kullback-
Leibler divergence.'® To make the problem meaningful, we also allow for an alternative use of
time (besides decision-making), which we will call “work”.

Let h; € [0, 1] be time spent “working”, and u, be time spent “monitoring” the situation, to
decide whether or not to stop. Let the output from work be f(h), satisfying

f(h) =0, f(h) >0, f"(h) <0, lim f'(h) = oc. (16)

The stopping rate is governed by the following Bellman equation:

Wi = max f(h)+(1=96)[pXep1 + (1 — p)Wipd] (17)

h, i, p
subject to: KD<<1fP>H<1f/_)>> < pu, (18)
and h+p<1. (19)

The first constraint limits the precision of the choice of the stopping rate p. The relative entropy
term in the control cost function is given by

() - o)

14This error-prone stopping decision is analogous to the “Errors-in-timing” model considered in CN15.

15 At first glance, one might wish to treat the choice to stop or continue in a single time step as a binary
decision, applying the model from Sec. 2.1 with a uniform benchmark @ = {0.5,0.5} on the two options. But such
a model is not well behaved as we redefine time units; it would imply a 50% probability of adjustment in one
period, conditional on indifference between stopping and continuation, regardless of the length of the time period.
In other words, the continuous-time limit of such a model would imply perfectly rational timing, regardless of .
The introduction of the benchmark stopping hazard p is what gives our model a well-behaved continuous-time
limit in which timing errors are still possible.
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If we denote the multipliers on the constraints by A, and A, the first-order condition for p,
can be written as

In (lp> ~— In (1—pp> + B(Xp1 — Wisr) (21)

-p
where the precision of the decision is indexed by f:
1-96

= . 22
ST Tm 2

Solving for the equilibrium stopping rate p,, we obtain

_ pexp (B, X¢11)
Py = (23)

(1 —p)exp(B;Wit1) + pexp (8 Xi41)

= P (24)

p+ (1 —p)exp(—B;Dis1)’

where Dyy1 = X141 — Wigr. This equation expresses the stopping probability p, as a weighted
binomial logit that places weight p on stopping, and weight 1 — p on continuation. Note that
as the precision (3, approaches zero, the process stops with a constant hazard p regardless of
the value of stopping, while as 5, — oo, the process stops if and only if X;11 > Wiy, The
parameter p controls the speed of stopping; more exactly, it represents the stopping hazard when
the DM is indifferent between stopping and continuing. Using this logit hazard formula, we can
then write the decision entropy (20) as

(2 )(12,) = #diDi =1t = pt pesa@,D1i) (25)

_ PBDit1 B e _
T O pew (FDy TP PeRDe) = KB @)

The function K,(f) represents a cost function for precision; differentiation shows (see proof of
Prop. 2) that K,(3) > 0.

The model of Sec. 2.1 had two possible corner solutions, in which the decision process ended
with probability zero or one in a single time step. In contrast, the present model penalizes
stopping with probability zero or one, which simplifies the analysis by ensuring an interior
solution for 3, at any step of the backwards induction process defined by (17). To see this, write
the time constraint as

1= h = = rK,(8), (27)
where K,(/3) is given by (26). Then we have:

Proposition 2 Define Dy11 = Xiy1 — Wig1, and suppose f satisfies (16). Then there is a
unique pair (hy, 8;), with By > 0 and hy € (0,1], that satisfy (22) and (27). The pair (he, ;)
solves the problem (17)-(19) conditional on Xy11 and Wyi1, and varies smoothly with Dy .

Proof. Note that for h € [0,1], the first-order condition (22) defines  as an increasing
function of h Since limy,_.o f'(h) = oo, the function starts at zero, and it increases continuously
to ] = nf'(l) at h = 1. On the other hand, if we define z = D;;1 and

D P (1 - 5+ pexp(z) = Fy(2)
= - - —In(1—p+pexp(z)) = F,(2).
p+(1—p)exp(—=2)) ’

then by differentiating and simplifying we obtain

oo spen(=a)
S PR s p— T
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Hence Fj(z) > (<)0 if and only if 2 > (<)0, which requires Dyy1 > (<)0 (for 8 > 0). Therefore,
writing K7,(6) = Ff’)(z)g—é, whenever Dyy1 > 0, we conclude that K,(3) > 0 because Fj(z) >0
and g—g = Dy41 > 0. Likewise, when Dy < 0, we conclude that K,(3) > 0 because F)(2) < 0

and g—é = D41 < 0. If instead Dyy1 = 0 exactly, then we can define K,(3) = 0 for all 5 < oo.

Therefore, if we graph (22) and (27) in (5, h) space, the curve (22) slopes upwards from the
origin, and the curve (27) slopes downwards from (3,h) = (0,1), except in the limiting case
D41 = 0, when (27) becomes the horizontal line h = 1. Hence there is a unique solution 3, > 0
and h; € (0,1], which is an interior solution unless D;y; = 0 exactly. In the latter case, the
solution reaches the corner h; = 1, with p, = p, and we can define 3, = le%(‘sl), so that h¢, py,
and 3, all vary continuously and smoothly with D;;;. QED.

Like Prop. 1, Prop. 2 shows that there is a unique solution to a single iterative step of the
Bellman equation, given the forward values X;,; and Wy;1. Graphed with 5 on the horizontal
axis and h on the vertical axis, (22) slopes up, and (27) slopes down, with exactly one interior
crossing under the conditions stated in the proposition. A rise in x shifts both curves left,
decreasing the optimal 3, and thus bringing p, closer to p. When D;1; > 0, an increase in Dy
shifts (27) left, decreasing (3, while p, rises further above p. If instead D11 < 0, an increase in
Dy shifts (27) right, increasing /3, while raising p, towards p.

2.3 Choosing when to solve a problem

A situation in which a DM can choose between several options, but may also simply postpone
that choice, effectively combines a static decision problem with an optimal stopping problem.
A game, such as the bargaining game we consider later, may include both of these elements at
various stages.

Therefore, we next study a situation that combines the two decisions analyzed thus far:
a DM, subject to control costs, chooses a stopping time that determines when he will decide
between several options j € I' = {1,2,...n}. As in Section 2.1, the DM chooses a solution rate p
for the choice problem, and a quicker solution implies a less precise choice across the alternatives
j. But instead of assuming that p is chosen optimally, here we also constrain the precision of
the choice of the solution rate p, as in Sec. 2.2. Errors in the choice of p amount to errors in the
timing of the choice, as distinct from an error in which option is chosen.'®

This now leads us to consider three possible uses of time. First, let h € [0, 1] be the time
dedicated to non-decision activities, such as work or leisure. As before, we assume that non-
decision activities yield payoffs f(h), satisfying (16). Second, let p € [0, 1] be the fraction of time
spent “monitoring” whether the current moment is a good time to solve the decision problem.
The precision of the solution rate p will be limited by monitoring time, under a constraint
identical to (18). Finally, let 7 € [0,1] be the fraction of time dedicated to actually choosing
between options j. Since only a fraction of the DM’s time is dedicated this choice, the precision
of this choice problem is no longer constrained by 1/p (the expected duration of the decision),
as in (1). Instead, precision will be constrained by 7/p (expected time devoted to the decision
problem, up until the solution arrives). Therefore, the decision process will satisfy the following
Bellman equation:

Wy = max F)+ 1 =6) [pd miVispa + (1= p)Wieps (28)
P, h7 T, I, {ﬂ-j}?:l Jj=1

n
s.t.: p/{WZﬂ‘j In <7TJ> < T, (29)
=1 K

1The model developed in this subsection generalizes the benchmark specification of CN15 to allow for a
nonlinear value of time.
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Figure 3: Choosing when to solve a problem.

Time t: Constraint: Node C:

KﬂD((lfij[l—ﬁﬁDgy pel0.1]

V Overall constraint:
h+u+t<1

TeN” 1-p

; Node D:
Constraint:

7lu 7
x,D(7 i) < &

Time t+1: v, V, v Node €

Decision completed

Note: Decision maker (DM) chooses solution rate p, of decision; Nature lets conclusion arrive with probability
p.- A slower decision allows more precise allocation of probabilities 7;; across alternatives ¢ with values Vj 41,
satisfying the constraint x,D(7||7]) < 7¢/p,, where 7, is the fraction of time spent comparing alternatives 4.
Choosing the solution rate p, is also costly, and must satisfy the constraint (30), where p, is the fraction of time

devoted to choosing p,. Time subscripts suppressed in diagram.

and K, (pln (Z) +(1—p)n (1:’;)) < u, (30)

and Zﬂ'j:L and h+p+7<1 (31)
j=1

Here, we have allowed for the possibility that precision in choice and precision in timing may
have different time costs, paramerized by s, and r,, respectively.

We will write the multipliers on the constraints as A-, Ay, Ar, and Ay, respectively. The
decision maker equalizes the marginal value of the three uses of time, implying:

Ay = f’(h) =X = Ay (32)
The first-order condition on 7, is
(1 —=0)pVjtt1 — Arphin (1 +1n (;”)) — A = 0, (33)
J

which again implies a weighted multinomial logit when we impose 2?21 mie = 1

w = exp(Br,Vijt+1) (34)
” > M5 exXP(Br i Vig+1)’
where L5
- - 35
Bw,t :‘Qﬂf/(ht) ( )
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Following equations (8)-(9), we can calculate the entropy cost Dy paid to choose 7 :

E"Wiy1exp(BrVit1)

Dri = E™t —In(E" = 2 —In(E" .
t = BatE™ Vi —In(E"exp(By Vis1)) = Brs B0 exp(Br g Vi) n(E"exp(B,Vit1))
(36)

The first-order condition for the solution rate p, is:

n 1 o
(1-9) Zﬂ'jvj,t-i-l — Wit1 | = ArbaDr — Aukip [ln <g> +1—1In (1—;) - 1] =0 (37
j=1

Following (21)-(24), we again see that the solution rate is a logit:

_ P 38
P (= p)exp (—B,.Des1) >

p exp </3p,t‘~/t+1>

= - (39)
pexp (BeVisr) + (1= p)exp (8,,Wisn)
_ p(EnS;(p(Bﬂ',t‘/t‘f‘l))?p — (40)
p (B exp(BriVis1)) ™ + (1= p) (exp (B Wis1)) ™
where
1-6 K
= 0 _ fmg 41
ﬁp,t Kpf,(ht) Kp Bw,t ( )
Dip1 = Vigr — Wiga, (42)
- D.
Viger = E™Vip — 3 £, (43)
Tt

Equation (39) shows that p, is a weighted binary logit comparing the values of decision and
postponement; it corresponds to equation (20) of CN15.

Equation (41) represents an optimal tradeoff between the allocation of precision (and time)
to the decision about when to adjust, and to the decision about which option to choose, when
adjusting. The quantity f/t“ represents the expected value after adjustment, net of adjustment
costs; the factor 3., converts precision into time at rate i, time into utility at rate f'(ht), and
next period’s utility into utility now at rate 1 — ¢, so that the payoff E™V, 1 is commensurate
with the precision measure Dy ;. Using (36), we can calculate

Vigr = BrpIn (E7exp (B, V1)) - (44)

This corresponds to the explicit value function formula (15) stated in CN15. Finally, following
(25)-(26), the “monitoring” time devoted to choosing the solution rate is

pB,1Dt+1 o
D,; = 2. —In(1—p+pexp(B,,D : 45
Pt p+(1—p)exp (_Bp,tDt—i-l) ( (BpiDrsn)) (45)

Do these first-order conditions define a unique solution for problem (28)-(31)7 To address
this question, note that conditional on the values Y_/;H and Wy associated with the time t + 1
problem, the time ¢ decision can be reduced to two equations. Specifically, the time constraint
must bind, and the first-order condition for precision must be satisfied:

1-h = pksDr+k,D,, (46)
keBof'(R) = 1-3. (47)

BANCO DE ESPANA 19 DOCUMENTO DE TRABAJO N.° 1729



These two equations (illustrated by Fig. 4) effectively depend on only two variables, h and 3,
because all other time-t endogenous variables are easily substituted out. D, can be eliminated
using equation (36), and p can be eliminated using (38) or (40). If we also calculate 3, and Viia
using (41) and (44), we can then eliminate D, using (45).

We can now show that the two equations (46)-(47) have a unique solution. To do so, it helps
to distinguish the special case x; = k, from the general case in which these parameters differ.

2.3.1 Special case: Unifying timing and choice across alternatives when s, = x,

Consider the special case k; = k) = k. In this case, it is helpful to rewrite the decision problem
in terms of the following set of alternatives:

I'" = {Postponement} UT.

This choice situation is equivalent to that modeled in problem (28), but simply treats postpone-
ment as one more alternative to be considered, rather than classifying it separately from the
other options. Without loss of generality, suppose the firm chooses postponement with prob-

ability 1 — p, and draws from the remaining alternatives with probabilities T = pTj, where
L—p+ Y0 mh=1.
Now, using the parameter restriction x, = kj, the two cost functions (29)-(30) can be

summed as follows:

, 1—
pkxDr 4+ K,D, = prix Zﬂ'j In <7r]> + Ky [,0 In <'?> +(1—=p)n <1f_)>]
: n p —p

j J
—k{(1-p)h G:g) + p ijln <Zj> + In <g> (48)

. (1—p)ln<1:2> + p;njln@g)
— K (1—,())111(1:2) + ;wjln <7Tj> : (49)

P

The expression in (49) is a relative entropy measure over the set of alternatives I’I ¢ it is the

Kullback-Leibler divergence of the probabilities (1 — p, ﬁT) =(1-p, ﬂ, . 71;2) from the default

distribution (1 — p, pny, . ..,pn,). It is a convex function of the probabilities (1 — p, @1).
Therefore, when £, = kr = &, problem (28)-(31) can be rewritten equivalently as follows:

W, = max f(h) 4+ (1—9) pz 7r;Vj7t+1 + (1= p)Wita (50)
P ha TT?{T(;}?ZI i=1
1—p - 1 ml
p = PN
and Zﬂ';r =p, and h+71 <1, (52)
j=1

where 77 = 74 p is total time used for decision-making (including “monitoring”). Note that the
objective function in (50) is equivalent to that in (28); and if K, = kx = &, then the constraints
(51)-(52) are satisfied if and only (29)-(31) hold.
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Thus, the firm’s choice can be regarded as a single decision across the set of alternatives I'f,
subject to a relative entropy constraint. An advantage of writing the problem this way is that
it maximizes a concave function over a convex set. Hence we can show that each backwards
induction step has a unique solution:

Proposition 3 Suppose f satisfies (16) for h € [0,1], and min; V;;11 < max; Vjiy1. Then
problem (50)-(52) has a unique solution hy € (0,1), B, > 0, which is characterized by the first-
order conditions (46)-(47).

If kx = Ky = K, this also represents a solution of the original problem (28)-(31).

Proof. Since the payoff function is linear in the probabilities (1 — p, 7?T), and concave in h, it
is concave overall. Since relative entropy is a strictly convex function, (51) defines a convex set,
as do the simplex constraints in (52). Thus, the Bellman equation maximizes a stictly concave
function over a convex set (the intersection of the constraint sets), so there exists a unique
solution to the problem.

Now, if we graph (47) in (3, h) space, assumption (16) implies that it slopes upwards from
the origin. Plugging (36), (40), and (45) into (49), we see that the total decision cost is zero when
B =0, and is strictly positive for all 8 > 0 unless min; Vj ;41 = max; Vj ;11 = Wipq. Therefore
curve (46) passes through the point (8,h) = (0,1) and lies strictly below A = 1 for all § > 0
if min; V441 < max; Vj41. Therefore (46) and (47) have a solution h € (0,1), 8 € (0, Hlf,;(‘sl))
which represents an interior solution for the problem (50)-(52). QED.

2.3.2 General case

For the general case where k. # rK,, we can show the existence of a unique solution to any
backwards induction step by showing that the slopes of (46) and (47) differ in sign. As Fig. 4
shows, first-order condition (47) gives h as an increasing function of ... The harder question is
the slope of constraint (46), viewed as a relation between (. and h. We can use the identities

BrDit1 = In(E7exp(B(V — Wiy1))) and exp (%ﬁthH) = (E"exp(B(V — Wiy1))) /e,
Substituting, the time constraint becomes:

EnVePrV Kx _ . _ fmpg p
1= h = plB)rn <BﬂEnﬁV - IU(E%B”V)> + Kp [p(ﬁw)ﬁﬂ-DH-l —1In (1 —p+pere B t“ﬂ
err [{p

EVehxV s p
= KnBxp(Br) <W> — KaBrp(Br)Wis1 — kpln (1 —p+pereT t“)

EMV eV . _ Ex
= KrBp(Br) [W - Wt+1} — Kpln (1 —p+perr

P = sy, (53)

where p(3,) is the function defined by (40). Note that, conditional on Vi, and Wy, the right-
hand side of (53) is a function of §, which we call ¢(53..); it represents the total time devoted
to decision-making, as a function of precision 3.

Under very weak assumptions, we can show that ¢(/3) slopes upward from ¢(0) = 0 at zero
precision. Therefore the curve h = 1—¢(8) given by (46) slopes downward, and hence the model
has a unique interior optimum.

Proposition 4 Suppose f satisfies (16) for h € [0,1]. Then problem (28)-(31) is solved by the
pair hy € (0,1], B, > 0 that correspond to the unique crossing of curves (46)-(47). The solution

(he, /Bw,t) varies smoothly with changes in ‘_/;_,_1 and Wiy1. The corner solution hy = 1 arises only
when min; V; 11 = max; Vj 11 = W1, otherwise hy <1 strictly.”

1”A MATLAB program, twomargins_eta.m, is provided to solve the problem analyzed in Proposition 4, taking
as given the values Wyy1 and Vi1, the default probabilities 7j, and other parameters. The crossing of curves
(46)-(47) is calculated by bisection.
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Proof. The main point to prove is that the right-hand side of (53) is nondecreasing in f.
Let us write (53) as h =1 — t(3), where

t@)=fw&w%(ﬁﬁﬁ—4V>—mﬂn(l—p+ﬁ(jﬁ?>g), (54)

m(B) = E"exp(BV), and p(f8) =

L . Note that € [0,1] for g € [0, 00).
pH(1—p) exp(— 22 8Dy 11 ) p(B) € [0,1] for § € [0, 00)

Also, 7:;((8)) = E"V, and m(0) = 1. Therefore ¢(0) = 0.

Figure 4: Time use in equilibrium.

Equilibrium precision and hours worked

Labor time h
o = o o o o o
w ) (3,0 o -~ [--] w

=
[X]

0.1

ol

Rationality #_

Note: Choice of precision 3, and labor time h. Red: first-order condition (47); blue: time constraint (46).
Parameters: § = 0.001, p = 0.01, kr = K, = 0.2, f(h) = Zh® with Z = 1, ¢ = 2/3. Also Wi11 = 9, and
Vier = 11— (5 — ©)?, where & = [-10,—-9,...,9,10].

Now by differentiating and simplifying, we can show that

/ / " N\ 2
t'(B) = Fxp <m - W) + kB0’ (m — W> + Kk Bp (m - <m> )
m m m m
L
kr P (eﬂ(‘@)) ’ <€6Wm' — mWefBW>
? - —(m ﬁi 625W
pl—p—|—p<eﬁ(§)> P

m! m’ m" m/ 2 m'
B “’TP(WW)”W(m‘W>+"”Bp(m‘<m> )‘“ﬂp<m—w>’

using (40). Notice that the first and last terms cancel; the remaining terms are
2 / 2 " N\ 2
K m m m
ﬂww=”mm<—w)+mm<—()>. 5
Kp m m m
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The first term on the right-hand side of (55) is obviously nonnegative. In the second term
on the right-hand side of (55), we have

m” m'\? ~ E"W?Zexp(BV) E"V exp(SV)
_()‘Emww_<men

m

- )2 = E"VZ_(E"V)2>0. (56)

This is the quantity that we signed in Lemma 1(c); since it represents a variance, it is strictly
positive for all 8 € [0, 00) as long as min; V; < max; V;. Therefore both terms on the right-hand
side of (55) are nonnegative, and in particular, we have t'(/3) > 0 strictly for all 5 € (0, 00) under
the maintained assumptions of the proposition.

Thus, the curve h = 1 — t(8,) is weakly downward-sloping from h = 1 at 5, = 0; it is
strictly downward-sloping except in the limiting case min; V; ;41 = max; Vj t+1 = Wi41. This

curve shifts Smoothly with any change in V;H or Wt+1 The curve f'(h) = = ﬁ slopes upward

from B, = o= f’ ( 5 = = 0; it exceeds h =1 for B, > - f’ (1) 18 Hence the two curves have a interior

unique crossing which varies smoothly with changes in Vt+1 and Wi 1. QED.

2.3.3 Backwards induction

Propositions 3-4 established general conditions under which a backwards induction step of the
form (28)-(31) has a unique, well-behaved optimum when future values Vi1 and Wy are taken
as given. Now, we show that each backwards induction step acts as a contraction, implying
that (28)-(31) also has a unique, well-behaved optimum when interpreted as an infinite-horizon
dynamic programming problem.

Proposition 5 Suppose f satisfies (16). Then:

(a.) the operator defined by problem (28)-(31) is a contraction, and

(b.) if the problem is defined over an infinite horizon and the options j = 1l..n have time-
independent values ‘755 then (28)-(31) has a unique time-independent value Wy = W1 = Ws.

Proof. Consider two possible continuation values W, ; and Wth, where W, ;| = Wth —1.
Let (h%, p*, @) be the policy that solves (28) when Wy 1 = W, |, with time ¢ value W*; and
let (h?, p?, @) be the solution when W, = WP, =Wg, +1, implying time ¢ value W?. Then

we have
Wit = f(RY) + (1= OWe, + pP (1= ) (E™V = Wiy) + (1 - 6) (57)
> F() + (1= Wiy + p (1= O)(E™V — Wi )+ (1 - M) (1 -8) (58
= WP = f(") + (1= )W + (1= 0)(E™V — WPy)) (59)
> f(h*) 4 (1= )Wy + p*(1 = 8)(E™V = W) (60)
= F(h) + (1= )Wy + p*(L = ) (E™V = W) + (1 —p)(1—6)  (61)
> W = f(h") + (1= )W, +p*(1 = 8)(E™V — Wf,) (62)
> Wy = f(h) + (1= W, +pP (1= 8)(E™V — W), (63)

Note that
Wtb - Wta < (1 - 5) = Wt+ - Wt_7
whereas

Wiy — Wiy =1
Thus (28) defines a contraction of modulus (1 — d). Part (b) is an immediate corollary. QED.

8The Inada condition limp_so f’(h) = o0 is not necessary to prove Prop. 4. It suffices to assume that
limp—o f'(R) > 155
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3 Bargaining games

We now apply our decision framework to some simple sequential bargaining games. In the
games, two impatient players, A and B, negotiate shares of a cake of size K. Each may propose
a share between 0 and 1 to the other player, and may accept or reject an offer received from
the other player. Accepting the other’s offer ends the game. We allow for costly, error-prone
decisions when making offers, and when deciding whether or not to accept them, so these games
will be applications of the decision framework described in Prop. 4.

We compare four possible bargaining protocols, representing different assumptions about the
set of signals that the players may exchange over the course of play.

e One particularly simple protocol is the rejectable offers protocol where the possible re-
sponses to any offer are signals meaning “yes” or “no”. Accepting the offer by saying “yes”
ends the game, while rejection returns the game to a situation with no offer outstanding.
The player who made a given offer cannot revise or withdraw that offer.

e A simple alternative is the alternating offers protocol where acceptance (“yes”) ends
the game, but rejection is equated with making a counteroffer. Therefore the responding
player cannot “just say no”, but must instead propose an alternative. Again, the proposer
of a given offer cannot alter it.

e The withdrawable offers protocol generalizes the rejectable offers protocol by allowing
either player to say “no” to the current offer, returning the game to a situation with
no offer outstanding. That is, the recipient of an offer can accept it or reject it without
offering an alternative, and the player that made the offer can likewise withdraw it without
offering an alternative.

e Finally, the updateable offers protocol generalizes the alternating offers protocol by
allowing either players to propose an alternative to the current offer. Thus, the responding
player may accept or make a counterproposal, while the player that made a given proposal
may instead substitute it by an updated proposal.

Note that under the alternating offers protocol, the responder must be careful not to propose
an unfavorable alternative, and can take plenty of time to respond since the proposer can do
nothing else until the responder acts. But in turn this gives both players an incentive to be very
careful when making the first offer. So this protocol might be expected to imply substantial
delay, compared with the other specifications. The updateable and withdrawable protocols are
of particular interest because they are especially robust versions of the game, since they never
oblige players to remain in an undesirable state.

We will solve the games by backwards induction from a finite ending time. Time steps are
assumed discrete but very short, so we ignore the possibility that offers arrive simultaneously.
Therefore in any of the four protocols considered, each player ¢ € {A, B} may be in one of three
types of states at any time during play:

e State N/ (“none”): No offer outstanding
e State M/(s) (“mine”): Own offer outstanding
e State Ri(s) (“received”): Other’s offer outstanding

By definition, player A’s state is N/ if and only if B’s state is NP. The state of player i is
M (s) if and only if the other player, called —i, is in state R; ’(s). Without loss of generality, we
define offers from the point of view of agent A. Thus s € I' C [0, 1] represents A’s share of the
cake, where T'® is a finite grid of shares between zero and one. Terminal payoffs are u(s) = sK
and u”(s) = (1—5)K for A and B, respectively. To avoid unnecessary notation, we will identify
the names of the states with the names of the value functions associated with those states.

BANCO DE ESPANA 24 DOCUMENTO DE TRABAJO N.° 1729



3.1 Solving the rejectable offers game

First, we analyze a bargaining game under the rejectable offers protocol. Figures 5-7 illustrate
the nodes N/, Ri(s), and M;(s) under this protocol. We have used the notation pi for player i’s
decision rate at node N}, and 7i(s) indicates the probabilities of the possible offers s € I'* which
could be made at that node. Fig. 5 shows that players i and —i choose their decision rates pi
and p; ¢ simultaneously (the figure is drawn from i’s point of view; it could be redrawn from
the perspective of —i by relabelling nodes appropriately).! If player i completes a decision, the
game will be distributed across nodes M; 11(s) at time ¢ + 1: an offer s made by player i will be
on the table. If instead player —i completes a decision, the game will move to one of the nodes
R}, (s), indicating that an offer s has been made by —i.%

To describe the decision problems in the game, it is easiest to work backwards from node
Ri(s), at which player i is considering offer s received from —i, as illustrated in Figure 6. In this
figure, Ai(s) represents the arrival rate of player i’s decision, to accept with probability al(s) or
reject with probability 1 — ai(s). Policies Ai(s) and ai(s) solve the following problem:

Ri(s) = X hm:txu ) F)+ (1 =8 {A[(1— )N/, y +aui(s)] + (1= R, ) (64)
ste Aka <aln (%) +(1—a)1n(tg>> < (65)
and Ky (Aln (;) +(1-\)n (ti)) < and htptT<1 (66)

The Bellman equation (64)-(66) is formally identical to (28)-(31), so Prop. 4 applies, allowing
us to calculate the policies and the value Rj(s) in terms of the future values R} ,(s) and N/ .

Knowing the solution at node R; ‘(s), we can also calculate the value at node M;(s), where
player ¢ is waiting for a response from —i, as seen in Figure 7. Here there is no decision to be
made; player i simply waits for a response, setting h = 1. Therefore M} (s) satisfies:

Mi(s) = F(1)+(1=8) {A7() [(1— ag ()Nfy s + ()i (s)] + (1 — A;Z(s))MzH(s)}( .
6

The subgame at a node where no offer has yet been made is slightly more complex, because,
even taking as given the time ¢ + 1 equilibrium, A’s choice at time t interacts with B’s choice
at t. Since we have assumed shares are chosen from the grid I'®, the values that ¢ chooses from
at node N/ are V41 = {M},,(s) : s € T'*}. If instead player i fails to make a decision at node
N}, he will face an offer from —i with probability p; ¢ or will return to a node with no offer
outstanding with probability 1 — p,° i Therefore the continuation value for player i’s problem is

Wi = (1= p, YNia +pp Z my (8) Ry (s). (68)
sel's

But the continuation value W/, is unknown unless we know the decision rate p; * and prob-
ability allocation ’(s) of player —i; hence we must solve the problems of the two players
simultaneously. We can find a Nash equilibrium iteratively by beginning with the initial guess
W} 1~ N} 1, and then solving the following problem, using Prop. 4.

19The simultaneous decision is indicated by the dashed oval surrounding the subnodes DMt_i, which represents
an information set. This indicates that all instances of the subnode DM, lie in the same information set,
meaning that player —i does not observe the value of player i’s choice p¢. Since the figure ignores simultaneous
arrivals, the time step should be chosen short enough so that the resulting inaccuracy is small.

20To conserve space, Fig. 5 suppresses the intermediate subnodes (shown in Fig. 3) at which Nature selects
which of the decision outcomes will actually occur, after players ¢ and —i choose the probability allocations ﬂi(s)
and 7, “(s).
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Figure 5: Node N/: no offer outstanding.

Time t:

(0 (0)

Trix(s) T[’it(l
Time t+1: Mit+1(0) Mit+1(s) Mit+1(1) Rit+1(0) Rit+1(s) Rit+1(1) Nit+1

L J \ J
f f

i makes an offer -i makes an offer

Note: Decision makers A and B simultaneously choose arrival rates p;* and p? of their offers. A slower decision

implies higher precision in the allocation of probabilities 7} (s) across possible offers s € [0, 1].

Figure 6: Rejectable offers protocol, node Ri(s): offer of player —i outstanding.

Time t: Node Ri(s): DM,

1-Ni(s)

a(s) 1-a(s)
Time t+1: ui(s) Ny Ris(s)
i accepts, No offer Other’s offer
game over outstanding outstanding

Note: Player i chooses response arrival rate A;. A slower response implies higher precision in the decision to

accept or reject the offer s.
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Figure 7: Rejectable offers protocol, node M{(s): offer of player i outstanding.
Time t: Node Mi(s): DM

Ni(s)

Nature

o)
Time t+1: ui(s) Niyy Miy,4(s)
-i accepts, No offer My offer

game over outstanding outstanding

Note: Player —i chooses response arrival rate A\, ‘. A slower response implies higher precision in the decision to

accept or reject the offer s.

N} = max f(h) + [P Z $)M[1(s) + (1= p)Wipa (69)
P h77—7,ua {W(S)}SGFS sel's

s.t.: prx Y '(s)In <7:((;))> < 7 (70)

sel's
P 1—p
and Ky | pln ()—i— 1—p ln()) < u, 71
(om (2)+a-pm (1= )
and Zﬂ'i(s):l, and h+p+7<1. (72)
sel's

Solving this problem for both ¢ and —i, we can update our guesses for Wti+1 and Wtjl using
(68), and then solve (69)-(72) again for both players. We continue iterating in this way until we
find fixed points for pj, Wt+17 NE p I/VtJr17 and N, ‘

3.1.1 Numerical example: rejectable offers

The discussion thus far has outlined a single backwards induction step to update the values
Ri(s), M}(s), and N}, and likewise for —i. Iterating backwards in time until all value functions
have converged, we arrive at an equilibrium of the game.?! Figure 8 illustrates a numerical
example, for two risk-neutral agents that split a cake of size K = 100, under a parameterization
chosen for computational convenience: £ = 0.2, 6 = 0.0005, and p = 0.005, and f(h) = Zh¢ with
Z =0.01 and ¢ = 2/3. A discrete, evenly-spaced grid I'* of offers is considered, from s = 0% to
s = 100% by steps of size 0.1%. For simplicity, we assume a uniform default distribution on the
grid I'*:

77 =u = (1/n,...,1/n) (73)
where n = 1001 is the number of points in the grid. Likewise, we assume a uniform default
distribution for the acceptance choice, setting (1 — a, @) = (1/2,1/2). The decision arrival rate

21Working backwards requires an initial guess of the value function at some hypothetical future time 7', A
good guess under a symmetric parameterization is Nyt = NP = 049K, R%(s) = max{sK, N4}, and R%(s) =
max{(1—s)K, N7}. But as long as the step size in the grid I'* is sufficiently fine, backwards induction converges
to the same equilibrium regardless of the initial guess.
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p is set low enough so that the probability of completing a decision in a single time step is
close to zero; together with the low discount rate, it reflects our assumption that time steps
are very brief. The offer step size is chosen fine enough to guarantee that equilibrium is unique
(for further discussion, see Sec. 3.5 below). The precision cost & is chosen large enough so that
errors are visible in the graphs, without displaying a high degree of irrationality. The value of Z
is a normalization, but its setting relative to cake size K matters: crucially, we wish to consider
parameters such that negotiation is actually worthwhile. Under a symmetric parameterization,
this requires that the present discounted value of never bargaining, and instead devoting all
future time to alternative activities, Z/6 = 20, is less than the value of immediately ending the
game by splitting the cake evenly, which is 50.

The first panel graphs the functions M4 (s) and R4(s) that represent player A’s value of an
outstanding offer when A made the offer, or received the offer, respectively. Both are shown as
functions of the share s promised to A, so M“(s) and R”(s) are mostly constant or increasing
in s. This equilibrium is symmetric around an offer of a 50/50 split, so MB(1 — s) = M4(s)
and RB(1—s) = RA(s); likewise all the functions describing player B’s behavior are left-to-right
reflections of the corresponding objects shown in Fig. 8 for player A.22 The value to A of an offer
made by A, M A(s), is shown in blue. It starts at 0 for s = 0, and rises approximately linearly to
a peak at M4 (51.2) = 50.40. It then drops slightly to a flat plateau at M4 (s) = 47.69 for offers
in the range s > 55. Values in this range reflect the fact that player B accepts offers less than
50 with probability near one, as we can see in the last panel of the figure. Higher offers would
be more valuable to A if B accepted them, but the acceptance probability =2 (s) is less than
one percent for s > 54, so for large s, M“(s) mostly reflects the value of waiting for someone to
formulate a new offer after the outstanding offer is rejected.

While A’s value is high conditional on having made a high offer, it is even higher conditional
on receiwing a high offer, since A can then accept, ending the game. Therefore, the green curve
RA(s), representing A’s value of responding to an offer from B, lies just below the 45° line for
s > 50. And when s < 46, we have R4(s) = 47.41, representing the value of the option to
reject. While it might appear on a first glance that R*(s) > M“(s) for all s, this is not true
around s ~ 50, where R4(50) = 49.10 < MA(50) = 49.39. The reason is that regardless of
who proposed s = 50, A can expect to receive the terminal payoff uA(5O) = 50 with very high
probability soon. But if A made the offer, then A only needs to wait in order to receive this
terminal payoff; if instead B made the offer, then A needs to think about it in order to decide
to accept. Hence the value of receiving an offer of a perfectly even split is slightly less than the
value of having already made the same offer. Both of these values also exceed the initial value
NA = NP = 48.14 (red star), reflecting the fact that if no offer is outstanding then players will
need to think, and time will elapse, before the terminal payoff is received.

Thus we see that equilibrium outcomes are simple and highly rational, resembling the Ru-
binstein (1982) game; the actual split is typically near to 50/50, with a small advantage to the
proposer, in spite of the presence of errors in the model. The modal proposal by A is 51.2, and
90% of all offers made by A lie in the interval [50,52] (top, right panel of Fig. 9). An even split
is accepted with 99.6% probability, while A accepts the proposal s = 49 with 93.6% probability
and s = 48 with 34.2% probability (last panel of the figure). However, some low-cost errors are
present. For example, although it is hard to see in the top, right panel, A has a tiny, roughly
constant probability (0.012%) of making any offer s in the range s > 55. These unacceptable
offers are not very costly, because they simply postpone arrival of an agreement. On the other
hand, the probability that A makes an offer below 50 declines extremely rapidly; only one in a
million offers made by A lies in the range s < 45.5. Low offers are very costly mistakes to A,
since B accepts them with very high probability.

22This equilibrium was computed by initializing with a symmetric guess of the form Ni = NE. But as long
as the step size in the grid I'® is sufficiently small, the same (unique) equilibrium is obtained starting from an
asymmetric guess. See Sec. 3.5.
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Figure 8: Equilibrium of rejectable offers game.
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Note: Player A behavior in equilibrium of rejectable offers game (choices described by Prop. 4).
Objects at node N in red; node R in green; node M in blue.

Top left: Values to A of outstanding offers. Red star: Value N* = 48.18 when no offer has been made. Green:
Value R*(s) of offer made by B. Blue: Value M (s) of offer made by A.

Top right: Probabilities 7 (s) of offers s made by A at node N*.

Middle left: Precision of A. Red: offer precision Bﬁ at node N, Green: response precision ,Bg(s).

Middle right: Time use of A at nodes R“(s) and N*. Dash and cross: labor h; solid and star: h + 7.

Bottom left: Decision arrival probabilities of player A: p* (red) and A\ (s) (green).

Bottom right: Acceptance probabilities ot (s) of player A, conditional on decision.
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While behavior in this example is close that found under full rationality, the bottom panels
of Figure 9 show the obvious contrast with Rubinstein (1982): agreement is not immediate.
Instead, offers take time to arrive, and their order of arrival is an endogenous result of the model.
The bottom right panel shows that, conditional on responding, A accepts any offer s > 50 with
probability « close to one. However, the bottom left panel shows that this response takes time,
arriving with probability A ~ 3% in any single time step. This decision rate corresponds to
spending roughly 40% of time choosing whether to accept or reject the outstanding offer (the
vertical distance between the solid and dashed green lines in the second panel of the second
row shows that 7 ~ 0.4). This time allocation remains roughly constant across offers s, except
near s = 50, where the player is nearly indifferent between accepting and rejecting, so 7 falls
sharply, and instead the player devotes effort to finishing the decision quickly (we see a spike in
the vertical distance pu above the solid green line, leading to the spike in the arrival rate p shown
in the bottom left panel). In contrast, each player’s offer arrival rate p is roughly 1% per time
step at node N (red star in the bottom left panel). This slower arrival rate reflects the fact that
making an offer requires the player to consider many options, rather than just two. Hence at
node N, almost all time is devoted to choosing between possible offers (7 =~ 0.9 at node N, seen
as the vertical distance between the red star and the red cross in the second row, second panel).

Thus, taking into account both player’s decisions, around fifty time steps are expected to
pass before the first offer is made, and another thirty elapse before it is (usually) accepted.
Indeed, the game usually ends with the acceptance of the first offer: the probability of this
event is Y .7 (s)a”!(s) = 82.5%. This is reminiscent of the fact that the first offer is
accepted immediately in Rubinstein’s equilibrium; but here there is a delay, and a non-negligible
probability that the first offer fails.

3.2 Solving the alternating offers game

3

The game we just solved assumed that the response to any offer took the form “yes” or “no”.
We next consider the alternating offers protocol, in which rejecting an offer requires a player to
make a counteroffer. The game tree at node N} is still the one seen in Fig. 5. The subgames at
nodes M;(s) and Rj(s) are changed by eliminating the rejection option that leads back to N/,
and substituting it with a choice across many counteroffers s’ € T'%.

Defining notation for the equilibrium policies at node Ri(s) of this game, let hi(s) be time
devoted to “work”, let Ai(s) be the response arrival rate, let a(s) be the probability of accepting
an offer, and let v:(s'|s) be the probability of a given counteroffer s’. Both «!(s) and ~i(s'|s)
are defined conditional on arrival of a response, so that

ai(s)+ Y mls'ls) = L. (74)

s'el's

Then the value of responding to an offer satisfies:?

Riy(s) = f(hi(s)) + (1 0) {/\i(S) (Z 1 (8'8) My (s) + ai(S)ui(8)> + (1= Xi(s)) i+1} ,
SIEFS
(75)
and the value waiting for a response to one’s own outstanding offer is

M{(s) = f(1)+(1-0) {/\Zi(S) < > A9 R () + 04?(8)“(8)) + (1= Afi(S))MZH} :
s'el's
(76)

23Here, for brevity, we just state the value function in terms of the policy functions, instead of spelling out the
underlying maximization problem.
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A numerical example of alternating offers equilibrium is shown in Fig. 9. Parameters are
identical to the previous example, except that we must define a default distribution compatible
with the choice set at node R:(s) under alternating offers. To make the results quantitatively
comparable with those from the rejectable offers case, we hold fixed the default probability a
associated with the option to accept. And conditional on making a counteroffer, we impose
the same default offer probabilities that apply in state N;/. In other words, we benchmark the
choice of offering any s/ € I'*, or accepting the outstanding offer s, against the following default
probabilities:

Lo 1—a 1—a _
(1-a)u,a) = < e ,a), (77)
with @ = 1/2 and n = 1001 as before.

The value functions, the initial offer probabilities, and the acceptance probabilities are very
similar to those we saw before. As in the previous example, the offer that is actually accepted
remains close to a 50/50 split, with a small advantage to the proposer. A’s modal offer is now
s = 50.8, and the probability that A’s offer lies in [50,52] is 92%. As before, the game is likely
to end with the acceptance of the first offer; the probability is 83.8%), slightly higher than in the
rejectable offers case. Also, note that the second panel of the top row shows A’s counteroffer
probabilities 74 (s’|s) alongside the initial offer probabilities 7{*(s) associated with node N*.
The counteroffer probabilities (green, graphed conditional on an outstanding offer s = 0.5) are
so similar to the initial offer probabilities that green curve is almost entirely obscured by the
red curve representing 77 (s). Thus, the distribution of offers remains similar even after a first
offer is rejected.

The most visible differences in this new specification relate to decision rates and time use.
The first offer arrives at the rate pf* ~ 1%, and responses to “good” offers arrive with roughly
3% probability per time step, as in the rejectable offers case. But rejecting a “bad” offer is now
a harder decision, since it requires a counterproposal. Therefore the response rate to low offers
drops back to )\f(s) ~ 1%, similar to the speed of making the first offer. Similarly, looking
at time use (second row, second panel), we see that roughly 90% of A’s time is dedicated to
formulating an offer in state N/ (vertical distance between red star and red cross) and when A
is facing a low offer (vertical distance between solid and dashed green lines). But when facing
a good offer, A reallocates time from choosing a response (7 falls to 0.4), to concentrating on
finishing the decision quickly (u rises to roughly 0.5, and therefore the decision rate rises to 3%
per time step).

3.3 Withdrawable or updateable offers

Withdrawable offers protocol

The sequence of choices in the withdrawable bargaining protocol is the same as in the re-
jectable offers protocol (illustrated by Figs. 5-7), except that agent i at node M/ (s) has the
option of withdrawing the outstanding offer, thus returning the game to node N}, where no offer
is outstanding. Note that choosing to withdraw does not immediately entail a choice across
any other alternatives. Therefore player i’s withdrawal decision at M} (s) is an example of an
error-prone stopping problem — as analyzed in Sec. 2.2 — instead of the error-prone decision
problem analyzed in Sec. 2.3.

For comparability with previous results, the default withdrawal rate is set equal to the
default decision rate p = 0.005 assumed in previous simulations. All other default probabilities
take the same values that were assumed in the rejectable offers case. We write the equilibrium
withdrawal probability as 52;(8), with notation for the other policy functions as before. Then the
value function at node M} (s) satisfies

M;(s) = f(hi(s)) + (1 = 0)&(s)Ni 1y

+ (1 =01 = &) {7 () (1= a7 () Niyy + o (s)u'(s)) + (1 — AJi(S))M§+1(8))} :
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Figure 9: Equilibrium of alternating offers game.
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Note: Player A behavior in equilibrium of alternating offers game (choices described by Prop. 4).

Objects at node N in red; node R in green; node M in blue.

Top left: Values to A of outstanding offers. Red star: Value N = 48.16 when no offer has been made. Green:

Value R%(s) of offer made by B. Blue: Value M*(s) of offer made by A.

Top right: Probabilities 7 (s) and v (s|s) of offers s at node N* (red) and counteroffers s’ at R*(s) (green).
Middle left: Precision of A. Red: offer precision ﬁﬁ at node N*. Green: response precision 5@(3).

Middle right: Time use of A at nodes R*(s) and N*. Dash and cross: labor h; solid and star: h + 7.

Bottom left: Decision arrival probabilities of player A: p* (red) and A\ (s) (green).

Bottom right: Acceptance probabilities aA(s) of player A, conditional on decision.
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Likewise, the option to withdraw alters the equation for the value function R:(s):

Ri(s) = f(hy(s)) + (1 = 6)Ai(s) (1 = aj(s))Niyy + aj(s)u'(s))
+ (1= 8)(1 = Xi(5)) (1 = &7 () Riya(s) + & ()Ni 1) - (79)

To evaluate equations (78)-(79), i’s decision variables hi(s), Ai(s), 7i(sj|s), ai(s), and &)(s), as
well as the corresponding policies of —i, are calculated by applying Prop. 4.%4
Updateable offers protocol

Like the withdrawable offers protocol, the updateable offers protocol assumes it is possible
to take back an offer that has already been made. But in this case the player that made the
existing offer can only cancel it by proposing an alternative. Thus, it is a natural extension of
the alternating offers protocol. We assume the same default probabilities that we considered
in the alternating case, extending them in the most obvious way: the default decision rate and
default offer distribution for updating one’s own offer are set equal to those associated with a
making counteroffer.

Thus, let 5@(3) be the probability of updating one’s own current offer s with a new offer s/,
and let vi(s'|s) be the distribution of updated offers. Then equation (76) is replaced by the
following equation for M} (s):

M;(s) = f(hi(s) + (1= 0)&i(s) D vils'ls)Mi 4 (s))

s'el's

+(1-08)(1 - &(s) {At_i(s) ( > (S8R () + a[i(S)ui(S)> +(1 - /\{i(S))MfH(S)} 7
s'el's
(80)
The notation for the other policy functions is as before. Likewise, the fact that —¢ can update
the outstanding offer is reflected in the equation for Ri(s), which becomes

Ri(s) = f(hi(s)) + (1 = 6)Ai(s) ( D il )My () + ai(S)WS))

s'el's

+ (1= 0)(1 = Ai(s)) ((1 — & ()R (5) + 67 () S v;l(s’|s>RzH<s’>) (8D
s'el's
Results
The results of the withdrawable and updateable protocols are shown in Figures 10 and 11,
respectively. These graphs show a few more curves than Figs. 8-9, corresponding to the addi-
tional decisions that play a role in the updateable and withdrawable specifications. Nonetheless,
a brief inspection shows close similarities with our previous results. In particular, the curves
shown in Fig. 8 for the rejectable offers protocol are almost unchanged in Fig. 10, which illus-
trates the withdrawable offers protocol. Likewise, the curves seen in Fig. 9 (alternating offers)
are almost identical to the corresponding curves in Fig. 11 (updateable offers). The most note-
worthy difference is seen in the value function M“(s), seen in blue in the top left panels of
Figs. 8-11. If offers can be withdrawn or updated, then an excessively low offer is a less costly
mistake. Therefore, the curve M4(s) is higher and less steeply sloped over the range s < 50 in
Figs. 10-11 than it was in Figs. 8-9, which described protocols under which rescinding an offer
was impossible.
The additional curves seen in Fig. 10 (in blue) illustrate the withdrawal decision at node
MA(s). The blue curve in the middle right panel illustrates time use at M“(s): the height of the
curve represents “work”, and the vertical distance above the curve represents time devoted to

24Prop. 2 is a special case of Prop. 4. Therefore the program twomargins_eta.m that solves the general model
of Sec. 2.3 is also applicable to the special case of an error-prone stopping problem.
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Figure 10: Equilibrium of game with withdrawable offers.
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Note: Player A behavior in equilibrium of withdrawable offers game (choices described by Prop. 4).
Objects at node N in red; node R in green; node M in blue.

Top left: Values to A of outstanding offers. Red star: Value N* = 48.17 when no offer has been made. Green:
Value R*(s) of offer made by B. Blue: Value M*(s) of offer made by A.

Top right: Probabilities 7 (s) of offers s made by A at node N*.

Middle left: Precision of A. Red: offer precision ﬁﬁ at node N, Green: response precision ,31‘3(5).

Middle right: Time use of A at nodes R“(s) and N*. Dash and cross: labor h; solid and star: h + 7.

Bottom left: Decision arrival probabilities of player A: p* (red) and A\ (s) (green).

Bottom right: Acceptance probabilities o (s) of player A, conditional on decision.

the withdrawal decision. When player A has made a reasonable offer that is likely to be accepted
(s ~ 50), she devotes almost all her time to work (h =~ 0.9). But when the outstanding offer
is slightly below 50, her time use shifts dramatically, concentrating entirely on the withdrawal
decision (h = 0); thus the probability of withdrawal rises from near zero to roughly 4% per
period (blue curve in bottom left panel). When the outstanding offer is instead above 50, A
devotes roughly half her time to the withdrawal decision (h ~ 0.5); an excessively high offer is a
less costly error than an excessively low one, but player A still stands to gain by rescinding her
unacceptable offer, so she withdraws it with roughly 3% probability per period.
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The interpretation of the blue curves in Fig. 11 (updateable offers protocol) is similar. In
this protocol there are three uses of time at node M4(s), as seen in the middle right panel:
the height of the dashed blue line represents h (“work”), the distance above the solid blue line
represents o (time devoted to choosing whether to update the current offer), and the distance
between the solid and dashed lines represents 7 (time devoted to deciding which new offer to
make). Again we see that when the outstanding offer is sufficiently close to 50, almost all time
is spent working. But for s < 50, h falls rapidly to zero as player A devotes time to decision-
making instead, and the arrival rate of an updated offer is between 3% and 4% per period. For
s > 50, time use is divided more or less equally between work and decision-making, and an
updated offer arrives with roughly 1.5% probability per time step.

The top right panel of Fig. 11 also features a blue curve which represents the distribution
vA(s'|s) of updated offers s’. We illustrate this distribution conditional on the outstanding offer
s = 0.45, a relatively bad offer which player B is eager to accept and player A is eager to update.
As the middle right panel shows, conditional on s = 0.45 player A devotes most of her time to
deciding to rescind the offer, and less time to choosing an appropriate counteroffer (u >> 7 at
s = 0.45). That is, in her hurry to correct a poor offer, player A hastily proposes an alternative.
Therefore the precision of the updated offer is low, which explains why the blue curve in the
top right panel (the distribution v of updated offers s’) is much less sharply peaked than the
red curve (the distribution 7 of initial offers s). This can also be seen in the middle left panel,
which shows the precision [ of the distribution of counteroffers (in blue). Updated offers are
most precise when the outstanding offer s is close to the optimum (just above 50), and rapidly
become imprecise otherwise, especially if the outstanding offer is too low instead of too high.

While the strategies played under the withdrawable and updateable protocols are more com-
plex than those associated with the first two frameworks, ultimately the most striking conclusion
about the cases compared is the similarity of the equilibrium distribution of outcomes in all four
protocols. The first offer is expected to arrive after approximately 50 time steps. Initial offers
are tightly clustered around a 50/50 split in all specifications, with a small advantage to the
proposer. Offers in this range are rarely withdrawn or updated; instead they are typically ac-
cepted after roughly 30 periods. The probability that the first offer is accepted, thus ending
the game, is 80.3% and 72.6% under the withdrawable and updateable protocols, respectively,
somewhat lower than the probabilities for the other protocols considered. Stationarity of the
game implies that under the rejectable and withdrawable protocols, subsequent offers are drawn
from the same distribution as the first if the first is rescinded. The distributions of counteroffers
in the alternating and updateable protocols, and the arrival rates of these counteroffers, are also
very similar to the distribution of initial offers. When an update occurs under the updateable
protocol, it is drawn slowly from a more tightly clustered distribution if the outstanding offer was
already close to the optimal offer, and it is drawn quickly with lower precision if the outstanding
offer was excessively generous; but updates are unlikely events ex ante.

The unimportance of changes in the bargaining protocol recalls and reinforces some intuitions
from full-information games. Indeed, Perry and Reny (1993) argue that under full rationality,
bargaining protocols with rejection and with proposal of alternatives are equivalent; therefore
they focus only on the latter. While these protocols are not formally equivalent in the presence
of costly, error-prone choice, nonetheless our results show that they are very similar when costs
are parameterized as we have done here. Likewise, the ability to rescind an offer (prior to
acceptance) plays no role in a fully rational game, since no player will make an offer that he
perceives to be suboptimal. In a bargaining game where players may make mistakes, the ability
to rescind an offer may obviously be valuable ex post when an error occurs. Nonetheless, our
results suggest that the possibility of rescinding offers also has little effect on the value of a
game ex ante, as long as players have the ability to exert cognitive effort in order to avoid costly
errors.
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Figure 11: Equilibrium of game with updateable offers.
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Note: Player A behavior in equilibrium of updateable offers game (choices described by Prop. 4).
Objects at node N in red; node R in green; node M in blue.

Top left: Values to A of outstanding offers. Red star: Value N* = 48.15 when no offer has been made. Green:
Value R*(s) of offer made by B. Blue: Value M (s) of offer made by A.

Top right: Probabilities 7 (s), v*(s'|s), and £ (s'|s) of offers s at node N** (red) and counteroffers s at R*(s)
(green) and M*(s) (blue).

Middle left: Precision of A. Red: offer precision ﬁﬁ at node N*. Green: response precision 5@(3).

Middle right: Time use of A at nodes R“(s) and N*. Dash and cross: labor h; solid and star: h + 7.

Bottom left: Decision arrival probabilities of player A: p* (red) and A\ (s) (green).

Bottom right: Acceptance probabilities ozA(s) of player A, conditional on decision.

3.4 Comparative statics

We next explore how our results change as parameters vary. Figure 12 illustrates a comparative
statics exercise in which we make time inherently more valuable, raising the productivity of
alternative activities from its benchmark value of Z = 1 to Z = 2. (See the Appendix for the
graphs in this subsection and the following one.) The setup and the parameters are otherwise
identical to the rejectable offers benchmark of Fig. 8. Since time is more costly, less of it is
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devoted to the decision. Comparing the red cross in the middle-right panel of Fig. 12 to that
of Fig. 8, the time devoted to alternative activities rises from only h = 0.035 when Z = 1 to
h = 0.397 when Z = 2. Therefore the decision arrives more slowly, and with less accuracy.
In particular, the probability that Z offers s € [49,52] falls from 93.4% in the benchmark
specification to 86.6% when Z = 2. At the same time, the arrival rate of the first offer falls from
1.3% per time step in the benchmark specification to 0.9% per time step when Z = 2 (red star
in bottom left panel of the figure), and the arrival rate of a decision to reject an offer falls from
roughly 3% per time step to roughly 1.6% per time step.

Thus, the main impact of making time in alternative activities more valuable is to slow
down the arrival of the decision. Similar effects are observed in several other comparative
statics exercises (these additional figures are not shown). In particular, with Z = 1, lowering
the noise parameter from x = 0.2 to Kk = 0.02 increases the arrival rate of initial offers from
1.3% per time step to 6.4% per time step and shrinks the range of offers made in equilibrium.
Likewise, lowering the benchmark arrival rate p from 0.005 to 0.001 slows down the arrival rate
of initial offers, from 1.3% per time step to 0.95% per time step, while raising p to 0.01 raises
the arrival rate of initial offers to 1.5% per time step.

A rather different comparative statics exercise is considered in Fig. 13, of alternative activities
is raised to Z = 3. The interesting aspect of this example is that now the value of alternative
activities is so high that the players would be better off never ending the game by splitting this
“rotten pie”. That is, the value of “working” full time forever, h(1)/6 = Z/§ = 60 exceeds the
value of half the pie (50) in this example.

The results change in a sensible way. If these players were fully rational, they would simply
avoid negotiating altogether. Being imperfectly rational, they are not entirely sure whether they
should think about negotiations. Therefore they do spend some time analyzing the bargaining
game, but the red dot in the middle-right panel of Fig. 13 shows that almost all their time
is devoted to “work” (h = 0.95). Therefore offers arrive very slowly; initial offers arrive with
probability 0.45% per time step (red star in the bottom-left panel). Since ending the game by
accepting a 50/50 share is worse than continuing without agreement, the probability of offering
or accepting equal shares is very close to zero; A’s acceptance probability jumps close to one
only when an offer s > 60 is received. Since A knows that B is unlikely to accept offers above
s = 40, on the rare occasions when A does make offers, some of these are as generous as s = 42.5.
Indeed, the two panels in the top row show that A is almost indifferent about what offer she
makes as long as her offer will be rejected almost certainly by B.

3.5 When is equilibrium unique?

The examples analyzed thus far, which assumed symmetric parameters for the two players, were
calculated from a symmetric initial guess, and yielded symmetric equilibria. However, we have
not yet investigated whether other equilibria might also exist.

The alternating offers game of Rubinstein (1982) implies a unique equilibrium with immedi-
ate agreement. In Perry and Reny’s (1993) game with fixed time costs for decisions, agreement
is not immediate, and multiple equilibria occur for two distinct reasons. First, multiplicity may
arise due to the possibility of exactly simultaneous actions. Player ¢ may make an offer at time
t which she expects will be accepted by —i; this is supported as an equilibrium if —i expects
that his offer at ¢ would be rejected. Since the same argument can be made for either player,
which player proposes at a given point in time is not uniquely determined. Second, the game of
Perry and Reny displays multiple equilibria in which one of the agents expects, and on average
receives, a higher share than the other. Thus, even under symmetric parameters, the expected
payoffs of A and B may differ.

Multiplicity of the first type is ruled out almost by construction in our model, since precise
control of timing is costly. While it is feasible in this model to make a proposal with probability
one in a single discrete time step, such a rapid choice implies low precision but requires a high
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fraction of time devoted to monitoring, so this is usually suboptimal. Knowing that ¢ might
complete an offer over the interval [t,¢ + 1] with a small positive probability does not suffice to
rule out decision effort by player —i. Therefore, in equilibrium at node N?, both players think
simultaneously about making offers.

The possibility of multiplicity of expected shares is a separate issue from multiplicity in
timing. To investigate this question, we now report some examples computed from asymmetric
initial guesses, and check whether they converge to a symmetric equilibrium. Our baseline
simulation computed the rejectable offers scenario from a symmetric initial guess, N4 = NFF =
50, which converged to the symmetric equilibrium shown in Sec. 3.1, with N4 = NB = 48.1811.
To check for multiplicity, we have run the same calculation from a highly asymmetric initial
guess, N:,‘f‘ = 80, N:]pg = 20. Under the baseline parameterization — which assumes a fine grid
I'* on [0,100] by steps of size 0.1 — we find that the asymmetry in players’ expected shares
unravels as backwards induction proceeds, converging finally to the same symmetric equilibrium,
with N4 = NB = 48.1811. The left panel of Figure 14 shows the value functions from both
simulations. The baseline simulation that starts from a symmetric guess is plotted with M4(s)
in blue and RA(S) in green. The simulation that starts from an asymmetric guess is plotted
showing both functions in red, but the red lines are invisible because they are exactly overlaid
by the blue and green lines.

Unravelling from the asymmetric initial guess happens very slowly. When player A expects
to receive a high share (represented by a high value of Nt‘f‘H), she will reject low offers, so
N{' cannot lie far below the assumed value of Nf},. Indeed, if offers are constrained to a
sufficiently coarse discrete grid, backwards induction may get “trapped” at a distribution of
offers that remains asymmetrically favorable to one of the players. In other words, on a coarse
grid, multiple equilibria may be sustained. This is illustrated in the right panel of Figure 14,
which shows the value functions that are calculated from the asymmetric initial guess Nji‘ = 80,
N:,’? = 20, conditional on four different offer grids I'*. The dotted lines assume a grid of possible
shares from 0 to 100 by steps of 2.5; in this case backwards induction converges to an asymmetric
equilibrium with N4 = 53.10, N¥ = 43.57. Given a step size of 1.0, the computation instead
converges to N4 = 50.03, NB = 46.37, shown with dashed lines in the graph. Finally, graph
also shows equilibria calculated with a step size of 0.5 (dash-dot lines) and with step size 0.1
(the benchmark parameterization, shown with solid lines). Both of these equilibria converge
to full symmetry, with N4 = NP = 48.1811, even when we start from an asymmetric guess.?
While the equilibria with step sizes 0.5 and 0.1 are both plotted, they are indistinguishable in
the graph.

In all the cases shown in the two panels of the figure, a fully symmetric equilibrium is found if
we start from a symmetric guess. But as the figure shows, on a coarse grid, backwards induction
may instead converge to an asymmetric equilibrium. As long as the grid is sufficiently fine,
backwards induction converges to a unique equilibrium, which is symmetric as long as the two
players have symmetric parameters. It is reasonable to conjecture that equilibrium is unique if
the game is defined on a continuous space of possible offers, but demonstrating this rigorously
is beyond the scope of the numerical analysis of this paper.

Additional exercises were also performed (graphs available on request) that lowered the
decision noise parameter from its benchmark value of k = 0.2 to kK = 0.02, in order to explore
how the degree of rationality affects multiplicity of equilibrium. We find that if decisions are
less costly, then a wider range of equilibrium shares can be sustained, conditional on a given
discrete grid. Assuming x = 0.02 and a step size of 2.5, backwards induction from a guess
favorable to A converges to N4 = 76.7, NB = 22.4. With step size 0.5, the same calculation
converges to N4 = 62.1, NB = 37.3; and even with step size 0.25, it converges to N4 = 54.8,
NPB = 44.6. We only find uniqueness when we go all the way to step size 0.1; then backwards
induction from an asymmetric starting guess converges all the way to a symmetric equilibrium
with N4 = NP = 49.66.

25The solid curves are identical to those shown in the left panel of the figure.
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4 Conclusions

This paper has presented a model of a near-rational decision-maker whose choices require time.
Concretely, we consider a time-consuming decision across several feasible options, in which the
a quick choice achieves low precision, while slower choice can achieve arbitrarily high precision,
selecting with probability one the action with highest gross value. To maximize payoffs net
of decision costs, the decision-maker may prefer to make some “errors”, because selecting the
most valuable option with probability one would take too much time. But the optimality of this
interior solution for precision depends on parameters; there are also two types of corner solutions
that may arise. If the value of delaying any choice exceeds the gross value of the best option
available, then it is better to simply postpone the decision. When a random choice across the
available options is more valuable than postponement, then it is instead preferrable to complete
the decision immediately (that is, within a single period).

However, if we consider that postponement and immediate random action are just two more
available options, then we might expect choices across these options to be subject to error as
well. Therefore, we generalize our initial model to allow for errors in the timing of decisions, as
well as errors in the decisions per se. In the general model, where both choices and the timing of
those choices require costly deliberation, optimal decision-making is characterized by an interior
solution that varies smoothly with the underlying parameters. This occurs because errors in the
timing of choice eliminate the corner solutions that otherwise complicate the analysis.

When this model of decision-making is embedded inside a game, the time devoted to choice
must be reflected in the extensive form. FError-prone choice is known to be helpful for pre-
dicting play in extensive form games (e.g. McKelvey and Palfrey, 1998; Anderson, Goeree, and
Holt, 2002). But while previous work focused on games in which the timing of decisions was
fixed exogenously at the outset by the extensive form, in our setup costly, error-prone choice
endogenizes the timing of decisions. This could prove to be a useful extension of the control
cost equilibrium concept, and it would be interesting to test its performance in the laboratory,
especially in experiments where players make intermittent decisions in continuous time.

As an application, this paper considers a sequential bargaining game. Two players may make
offers to split a pie; making an offer is a time-consuming, error-prone decision. A player that
has received an offer may accept the offer, ending the game, or reject it, returning the game to
a state where no offer is outstanding; this binary choice is also a time-consuming, error-prone
decision. Several other protocols are also considered, in which rejecting an offer requires the
formulation of an alternative offer, or in which the proposer may withdraw or update the offer.

Numerical simulations of these bargaining games reveal an equilibrium structure very similar
to that of Rubinstein (1982), except that agreement is not achieved instantaneously, and offers
are sometimes rejected. Under a symmetric parameterization, there is a high probability of a
roughly even split of the pie. When no offer is outstanding, both players simultaneously devote
part of their time to formulating offers. Players typically propose shares slightly favorable to
themselves, and are usually willing to accept shares that are slightly unfavorable to themselves.
Sometimes players propose shares excessively favorable to themselves, which are typically re-
jected; proposing shares that are excessively generous to the opponent is a much more costly
mistake and therefore occurs less frequently in equilibrium.

Perry and Reny (1993) also considered a sequential bargaining game with time-consuming
formulation of offers. While their game exhibited two types of multiplicity of equilibrium,
we instead find a unique equilibrium as long as offers are drawn from a sufficiently fine grid.
Assuming higher noise in decision-making also makes uniqueness more likely. Thus we find that
the results of the Rubinstein (1982) and Binmore, Rubinstein, and Wolinsky (1986) games are
more robust than Perry and Reny’s generalization suggested.

BANCO DE ESPANA 39 DOCUMENTO DE TRABAJO N.° 1729



References

ANDERSON, S., A. DE PALMA, anD J.-F. ¢. THISSE (1992): Discrete Choice Theory of Product
Differentiation. The MIT Press.

ANDERSON, S., J. GOEREE, AND C. HOLT (2002): “The logit equilibrium: a perspective on
intuitive behavioral anomalies,” Southern Economic Journal, 69(1), 21-47.

BaAroN, R., J. Durieu, H. HALLER, aND P. SoLAL (2002): “Control costs and potential
functions for spatial games,” International Journal of Game Theory, 31, 541-61.

”

BARRO, R. (1977): “Long-term contracting, sticky prices, and monetary policy,” Journal of

Monetary Economics, 3, 305-16.

BINMORE, K., A. RUBINSTEIN, AND A. WOLINSKY (1986): “The Nash bargaining solution in
economic modelling,” Rand Journal of Economics, 17(2), 176-88.

Bono, J., anp D. WOLPERT (2009): “Statistical prediction of the outcome of a noncooperative
game,” American University Economics Working Papers 2009-20, American University.

(2010): “A theory of unstructured bargaining using distribution-valued solution con-
cepts,” American University Economics Working Papers 2010-14, American University.

CHEREMUKHIN, A., P. RESTREPO-ECHEVARRIA, AND A. TUTINO (2012): “The assignment of
workers to jobs with endogenous information selection,” Discussion paper, Federal Reserve
Bank of Dallas.

CHRISTIANO, L., M. EICHENBAUM, AND C. EVANS (2005): “Nominal rigidities and the dynamic
effects of a shock to monetary policy,” Journal of Political Economy, 113(1), 1-45.

CoSTAIN, J., AND A. NAKOV (2015): “Logit price dynamics,” Discussion Papers 10731, CEPR.

CosTAaIN, J., A. Nakov, anp B. PETIT (2017): “Monetary policy implications of state-
dependent prices and wages,” mimeo, Banco de Espana.

CoOVER, T., anp J. THOMAS (2006): Elements of Information Theory, 2nd ed. Wiley Inter-
science.

GERTLER, M., L. SALA, AND A. TRIGARI (2008): “An estimated monetary DSGE model
with unemployment and staggered nominal wage bargaining,” Journal of Money, Credit and

Banking, 40(8), 1713-64.

GOEREE, J., anp C. Horr (1999): “Stochastic game theory: for playing games, not just for
doing theory,” Proc. Nat. Acad. Sci. USA, 96, 10564—7.

(2001): “Ten little treasures of game theory and ten intuitive contradictions,” American
Economic Review, 91(5), 1402-22.

Harr, R., anp P. MIiLGROM (2008): “The limited influence of unemployment on the wage
bargain,” American Economic Review, 98(4), 1653-74.

HANSEN, L. P., aND T. SARGENT (2007): Robustness. Princeton Univ. Press.

Kuaw, M. W., L. STEVENS, aND M. WOODFORD (2016): “Discrete adjustment to a changing
environment: Experimental evidence,” Working Papers 22978, NBER.

MAcCHINA, M. (1985): “Stochastic choice functions generated from deterministic preferences
over lotteries,” Economic Journal, 95, 575-94.

BANCO DE ESPANA 40 DOCUMENTO DE TRABAJO N.° 1729



MARSsILI, M. (1999): “On the multinomial logit model,” Physica A, 269, 9-15.

MATEJKA, F., axD A. McKAY (2015): “Rational inattention to discrete choices: a new foun-
dation for the multinomial logit model,” American Economic Review, 105(1), 272-98.

MATTSSON, L.-G., anDp J. WEIBULL (2002): “Probabilistic choice and procedurally bounded
rationality,” Games and Economic Behavior, 41, 61-78.

McKELVEY, R., anp T. PALFREY (1995): “Quantal response equilibrium for normal form
games,” Games and Economic Behavior, 10, 6-38.

(1998): “Quantal response equilibrium for extensive form games,” Experimental Eco-
nomics, 1, 9-41.

MERLO, A., aND C. WILSON (1995): “A stochastic model of sequential bargaining with com-
plete information,” Econometrica, 63(2), 371-99.

(1998): “Efficient delays in a stochastic model of bargaining,” Fconomic Theory, 11(1),
39-55.

(2010): “Identification of stochastic sequential bargaining models,” Discussion paper,
Univ. of Pennsylvania.

MORENO, D., anDp J. WOODERS (1998): “An experimental study of communication and coor-
dination in noncooperative games,” Games and Economic Behavior, 24, 47-76.

PERRY, M., anp P. RENY (1993): “A non-cooperative bargaining model with strategically
timed offers,” Journal of Economic Theory, 59, 50-77.

RUBINSTEIN, A. (1982): “Perfect equilibrium in a bargaining model,” Econometrica, 50, 97-109.

(2013): “Response time and decision-making: an experimental study,” Judgment and
Decision Making, 8(5), 540-551.

SELTEN, R. (1975): “A reexamination of the perfectness concept for equilibrium points in
extensive games,” International Journal of Game Theory, 4, 25-55.

Sivs, C. (1998): “Stickiness,” Carnegie-Rochester Conference Series on Public Policy, 49, 317—
56.

(2003): “Implications of rational inattention,” Journal of Monetary Economics, 50,
665-90.

SMETS, F., axnD R. WOUTERS (2003): “An estimated stochastic dynamic general equilibrium
model of the euro area,” Journal of the European Economic Association, 1(5), 1123-1175.

STAHL, D. (1990): “Entropy control costs and entropic equilibrium,” International Journal of
Game Theory, 19, 129-38.

Tobporov, E. (2009): “Efficient computation of optimal actions,” Proc. Nat. Acad. Sci. USA,
106(28), 11487-11483.

VAN DAMME, E. (1991): Stability and Perfection of Nash Equilibrium. Springer Verlag, 2 edn.

WOLINSKY, A. (1987): “Matching, search, and bargaining,” Journal of Economic Theory, 42,
311-33.

WOODFORD, M. (2008): “Information-constrained state-dependent pricing,” Journal of Mone-
tary FEconomics, 56, S100-S124.

BANCO DE ESPANA 41 DOCUMENTO DE TRABAJO N.° 1729



5 Appendix. Additional figures.

Figure 12: Equilibrium of rejectable offers game, assuming costlier time (Z = 2).
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Note: Equilibrium of rejectable offers game (choices described by Prop. 4).
Green: Node R; blue: node M; red: node N. Assuming costlier time (Z = 2 instead of Z = 1).

Top left: Values to A of outstanding offers. Red: Value N when no offer has been made. Green: Value R“(s)
of offer made by B. Blue: Value M (s) of offer made by A.

Top right: Probabilities 7 (s) of offers s made by A at node N*.

Middle left: Precision of A. Red: offer precision ﬁﬁ at node N4, Green: response precision 5‘13(3).

Middle right: Time use of A at nodes R*(s) and N*. Dash and cross: labor h; solid and star: h + 7.

Bottom left: Decision arrival probabilities of player A: p* (red) and A*(s) (green).

Bottom right: Acceptance probabilities aA(s) of player A, conditional on decision.
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Figure 13: Equilibrium of rejectable offers game, with a “rotten pie” (Z = 3).
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Note: Equilibrium of rejectable offers game (choices described by Prop. 4).
Green: Node R; blue: node M; red: node N. Time value raised to Z = 3, implying “rotten pie”: 50 < Z/0.

Top left: Values to A of outstanding offers. Red: Value N** when no offer has been made. Green: Value R*(s)
of offer made by B. Blue: Value M (s) of offer made by A.

Top right: Probabilities 7 (s) of offers s made by A at node N*.

Middle left: Precision of A. Red: offer precision ﬁﬁ at node N4, Green: response precision Bg(s).

Middle right: Time use of A at nodes R*(s) and N*. Dash and cross: labor h; solid and star: h + 7.

Bottom left: Decision arrival probabilities of player A: p* (red) and A\*(s) (green).

Bottom right: Acceptance probabilities aA(s) of player A, conditional on decision.
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Figure 14: Equilibrium uniqueness and multiplicity in the rejectable offers game.
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Note: Functions R“(s), in green, and M (s), in blue, of rejectable offers game.

Left panel: Example of uniqueness. Two simulations shown.
Parameters same as benchmark equilibrium of Fig. 8, including step size 0.1 in grid I'*.
Equilibrium calculated from asymmetric starting guess is plotted in red. Equilibrium calculated from sym-

metric starting guess is plotted in green and blue, but is numerically identical and therefore covers up the red lines.

Right panel: Examples of multiplicity when offer grid is coarse. Four simulations shown.

Parameters same as benchmark equilibrium of Fig. 8, except for step size in grid I'®.

Backwards induction from asymmetric guess with step size 0.1 (solid) or step size 0.5 (dash-dot) converges to
symmetric equilibrium, indicating uniqueness.

Backwards induction from asymmetric guess with step size 1 (dash) or 2.5 (dot) converges to asymmetric

equilibrium; indicates that multiple equilibrium are found, depending on initial guess.
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