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Abstract

We characterize the optimal debt-maturity management problem of a government in a small open 

economy. The government issues a continuum of fi nite-maturity bonds in the presence 

of liquidity frictions. We fi nd that the solution can be decentralized: the optimal issuance of 

a bond of a given maturity is proportional to the difference between its market price and its 

domestic valuation, the latter defi ned as the price computed using the government’s discount 

factor. We show how the steady-state debt distribution decreases with maturity. These results 

hold when extending the model to incorporate aggregate risk or strategic default.

Keywords: debt maturity, debt management, liquidity costs.

JEL classifi cation: F34, F41, G11.



Resumen

En este trabajo se determina el problema de la gestión óptima de la deuda pública en una 

pequeña economía abierta. El Gobierno emite un continuo de bonos de vencimiento fi nito sujeto 

a restricciones de liquidez. Hallamos que la solución puede ser descentralizada: la emisión óptima 

de un bono de un vencimiento dado es proporcional a la diferencia entre su precio de mercado 

y su valoración doméstica, esta última defi nida como el precio obtenido empleando la tasa de 

descuento del Gobierno. Mostramos que la distribución de deuda en el estado estacionario 

disminuye con el vencimiento. Estos resultados se mantienen si extendemos el modelo para 

incorporar riesgo agregado o impago estratégico.

Palabras clave: vencimiento de la deuda, gestión de la deuda, costes de liquidez.

Códigos JEL: F34, F41, G11.
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This rule states that the optimal issuance of a bond of a given maturity is the ratio of a relative
value gap to the liquidity coefficient. The relative value gap of a bond of a given maturity is
the difference between the bond price in the secondary market and the domestic valuation, rel-
ative to the secondary market price. The domestic valuation is the counterfactual bond price
computed using the government’s discount factor, which differs from the international short-

1This limitation is easily understood with a simple example. If we want to construct a yearly model where the
government issues a single 30-year, zero-coupon bond, we need at least 30 state variables: a 30-year bond becomes
a 29-year bond the following year, and a 28-year bond the year after, and so on. By contrast, a bond that matures
by 5 percent every year is still a bond that matures by 5 percent the year after its issuance.

1 Introduction

How should a government manage its debt maturity structure? This paper presents a new
framework to think about maturity management. The framework makes two innovations.
First, it puts forth the importance of liquidity frictions, namely the notion that the larger an
issuance at a given maturity the lower the price. Liquidity costs have been well documented
by the empirical literature, but have received much less attention by normative theory. The
second innovation is technical. The curse of dimensionality quickly restricts the number and
class of bonds that can be considered in debt-management problems. Quantitative studies typ-
ically model bonds that mature exponentially and work with two maturities only.1 In practice,
however, governments issue finite-life bonds in many maturities. The framework here allows
us to work with any number of bonds of arbitrary coupon structure.

The goal of the framework is to analyze an optimal debt-maturity design in the presence of
liquidity frictions. To this end, we lay out a continuous-time, small open economy. A relatively
impatient government chooses to issue or (re-)purchase finite-life bonds within a continuum of
maturities. Its financial counterparts are risk-neutral international investors. The government’s
objective is to smooth consumption. It faces income and interest rate risk and can default when
those risks materialize. Liquidity costs emerge because bonds are auctioned to primary dealers
that need time to liquidate their bond holdings after an auction. The bond market is segmented
across maturities and vintages, in the spirit of Vayanos and Vila (2009). Under these assump-
tions, the larger the auction, the lower the price. The induced price impact is summarized by a
single coefficient that increases with the holding costs of intermediaries, but decreases with the
size of order flows.

We characterize the solution to the government’s problem and show that the optimal is-
suance problem can be decentralized. Namely, the problem can be studied as if the govern-
ment delegates issuances to a continuum of subordinate traders, each in charge of managing a
single maturity. Each trader then applies a simple rule to determine how much to issue of his
maturity:

issuance at maturity
GDP

=
relative value gap

liquidity coefficient
.
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2The government’s discount factor is computed as the solution of a fixed-point problem in the path of con-
sumption. An imputed consumption path maps to a government discount factor. This discount factor generates
a path for debt through the issuance rule. Ultimately, the path for debt produces a new consumption path. In the
optimal solution, both consumption paths must coincide.

term rate.2 A positive value gap indicates that the trader in the decentralization scheme would
otherwise issue as much debt as possible. That desire is contained by the liquidity costs, cap-
tured by the liquidity coefficient, which reduce prices in the primary market. We calibrate the
liquidity coefficient using data on turnover rates and intermediation spreads.

The paper is built in layers. In the first layer, we study the problem under perfect foresight,
in the second layer we add risk, and in the final layer, we add the option to default. Under
perfect foresight, the asymptotic dynamics of the model can be obtained analytically. Provided
that liquidity costs are above a certain threshold, the model features a steady state. In the steady
state, the government issues at all maturities, but issues greater quantities of long-term bonds.
It is optimal to issue at all maturities because liquidity costs are convex, namely the price impact
increases with the issuance. The steady-state maturity structure is determined by the desire to
spread out issuances to minimize the liquidity costs. Nonetheless, this desire does not produce
a uniform issuance distribution. This is because long-term bonds have to be rolled over less
frequently than short-maturity ones and, hence, the use of the former is preferable in order to
minimize rollover costs. Although issuance flows increase with maturity, the outstanding stock
of debt decreases with maturity. This decreasing maturity profile for the debt stock is an artifact
of bonds having a finite life: as long-term bonds mature, they become short-term bonds. Thus,
at steady state, the stock of debt at a given maturity is the accumulation of the issuance flows
at higher maturities. We calibrate the model for the case of Spain and obtain a debt profile that
resembles that in the data.

We use the framework to characterize the maturity distribution as liquidity frictions vanish.
Although there is no steady state distribution below a threshold value of the liquidity coeffi-
cient, there always exists a well-defined asymptotic debt distribution. This limit-determinacy
result contrasts with the case without liquidity costs, in which the maturity profile is indeter-
minate.

We also study the transitional dynamics after an unexpected shock. Two forces interact
with the liquidity costs to shape the dynamics: consumption smoothing and bond-price reaction.
Consumption smoothing is activated when the path of consumption growth changes the do-
mestic discount factor. As a result, domestic valuations are modified. Consumption smoothing
lengthens the maturity during downturns: after a shock produces a temporary drop in con-
sumption, the domestic discount rate remains temporarily high while the economy recovers.
This reduces domestic valuations, particularly for longer maturities. The optimal rule thus pre-
scribes the issuance of more debt, especially at longer maturities. The economic intuition is
that the government issues more debt during recessions to smooth consumption, especially at
longer maturities to avoid the liquidity costs associated with the rollover of debt.

The bond-price reaction force appears when a shock to short-term rates changes bond prices.
This force only plays a role in the presence of liquidity costs. Without liquidity costs, the do-
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3The concept of RSS is equivalent to the one that appears in Coeurdacier et al. (2011). The analysis of the RSS is
the only tractable solution that does not rely on approximations. Transitional dynamics prior to the shock are not
analytically tractable.

mestic discount factor coincides with the market interest rate, and the government is indifferent
between issuing debt at any two maturities. With liquidity costs, however, the government is
not indifferent, as rebalancing between different maturities is costly. If a shock temporarily
increases short-term rates, thereby reducing market prices—especially for long maturities, the
optimal rule dictates, ceteris paribus, a decline in debt issuances and the tilting of the matu-
rity distribution toward shorter maturities. The government thus reduces the issuance of those
bonds most affected by the temporary fall in prices. The initial shock produces a decline and
posterior recovery in consumption, which activates consumption smoothing —a force that par-
tially mitigates bond-price reaction.

The next layer incorporates risk. Because the state variable is the entire maturity distribu-
tion, the characterization of an equilibrium with recurrent shocks faces the same computational
challenge as incomplete market models with heterogeneous agents and aggregate shocks (as in
Krusell and Smith, 1998, and subsequent literature). To provide an analysis of the government’s
problem with risk that does not rely on numerical approximations, we study an economy where
shocks are anticipated, but occur only once. This approach is useful because we can characterize
the risky steady state (RSS), defined as the steady state reached when the government expects
a shock, but the shock has not yet materialized.3 Through the analysis of the RSS, we can study
how the anticipation of risk shapes the maturity distribution. We show that the government
follows the same issuance rule as in the deterministic case. The anticipation of risk introduces
an extra term into the domestic valuations: expected valuations after the shock arrival are ad-
justed by the ratio of post- to pre-shock marginal utilities, reflecting an effective "exchange rate"
between consumption goods at different states.

Risk introduces a new force that influences the maturity distribution, insurance. Insurance
shapes the maturity profile in two ways. First, the government tries to build a hedge. In the ab-
sence of liquidity costs, the government may hedge the changes in consumption due to interest
rate shocks by building a portfolio that offsets the impact of the shock. Liquidity costs make a
perfect hedge—a hedge that guarantees equal consumption in all states— too costly. Second,
the government tries to self insure. Self-insurance shows up in the ratio of marginal utilities be-
cause a future drop in consumption increases that ratio and, thus, raises valuations. By raising
valuations, self-insurance produces a lower stock of debt in the RSS than in the deterministic
steady state (DSS). Self insurance-lengthens the average maturity because long-term bonds are
less likely to have expired by the time a shock arrives, thus reducing the expected liquidity
costs of debt rollover under a negative shock. Although both hedging and self-insurance are
present, our calibration shows that self-insurance is a stronger force.

The final layer incorporates strategic default. We solve the Ramsey problem where the gov-
ernment commits to a debt program, but upon the arrival of an income or interest-rate shock,
the government can choose to default. Default is costly and thus only exercised if it renders
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4There is substantial evidence of liquidity costs in different asset classes, as surveyed by Vayanos and Wang
(2013b) or Duffie (2010). In the specific case of fixed-income securities, studies that provide evidence suggestive of
the presence of liquidity costs are Cammack (1991), Duffee (1996), Spindt and Stolz (1992), Fleming (2002), Green
(2004), Pasquariello and Vega (2009), Krishnamurthy and Vissing-Jorgensen (2012), Lou et al. (2013), and Song and
Zhu (2018) for US Treasury markets, by Duffie et al. (2003), Naik and Yadav (2003b), Pelizzon et al. (2016) and
Breedon (2018) for sovereign bond markets, Edwards et al. (2007) and Feldhutter (2011) for US corporate bond
markets, and Green et al. (2007) for US municipal bond markets. Our calibration is based on inventory-depletion
evidence in the US Treasury market documented by Fleming and Rosenberg (2008).

a higher value than repayment. Once again, the optimal issuance rule determines the matu-
rity profile, but default changes bond prices and valuations. Both bond prices and valuations
are corrected by a default risk premium. However, domestic valuations are also adjusted by
an additional term, which does not appear in the market price of bonds. We dub this term
the revenue-echo effect. The revenue-echo effect appears because, in the decentralization of the
problem, traders anticipate that a marginal rise in their issuances increases default probabili-
ties during the life of the bond. The increase in default risk in future periods echoes back in
time through the prices of all bonds that are outstanding during the life of the bond. This fall
in bond prices reduces revenue collections from other issuances. All in all, the revenue-echo
effect incorporates the spillover of default risk from one bond to the rest of the portfolio. We
analyze how the option to default shapes the maturity distribution at the RSS and find that, for
our calibration, the revenue-echo effect dominates all the other forces in shaping the maturity
distribution.

A similar revenue-echo effect would appear in a version of the model where liquidity costs
depend on the outstanding stock of debt, and not only on issuances, as we study here. The so-
lution with default showcases that the techniques are portable to more general environments.
Indeed, section 5 explores several variations and applications of the model, namely (i) alterna-
tive specifications of liquidity costs, (ii) the case of a government that can only issue debt at a
finite number of maturities, and (iii) the issuance of consols instead of finite-life bonds.

Related literature. Maturity management appears in various areas of finance: international,
public, and corporate. The framework here captures forces that have been previously identified
and uncovers new ones. An advantage of the framework is that it allows for a large number of
securities with a realistic coupon structure.

A central feature of the framework is the presence of liquidity costs. There is a large liter-
ature that studies both, theoretically and empirically, the sources and magnitudes of liquidity
costs.4 The formulation of liquidity costs in this paper builds on two ideas. As in Vayanos and
Vila (2009), markets for bonds of different maturities are segmented. As in Duffie et al. (2005),
issuances are intermediated by dealers that face a high discount and need time to reallocate
assets. In Vayanos and Vila (2009), a finite mass of long-lived investors demand bonds of a
specific maturity from intermediaries. Investors trade bonds of all maturities with intermedi-
aries. The price impact in that model depends on the overall outstanding amount of bonds of a
specific maturity. In our framework, a large flow of customers contacts dealers, independent of
the outstanding amount at a given maturity. Therefore, in our case, the price impact depends
on the amount of issuances because this amount affects the time taken by dealers to offload
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5See for example Arellano (2008) and Aguiar and Gopinath (2006), and Aguiar and Amador (2013) and Tomz
and Wright (2013) for recent reviews.

6Hatchondo and Martinez (2009), Chatterjee and Eyigungor (2012), and Chatterjee and Eyigungor (2015) study
quantitatively the positive and normative properties of a model in which the government borrows by issuing long
term bonds, a setup that is prone to debt dilution.

bonds to investors. Our framework can, however, also be used to study maturity management
problems without liquidity costs.

International finance stresses several forces that, in our framework, interact with the liq-
uidity costs and shape the maturity structure. One force is insurance. A small open economy
effectively has access to complete markets when income shocks are correlated with shocks to the
yield curve in a way that allows complete asset spanning, as illustrated by Duffie and Huang
(1985). With complete spanning, the optimal maturity design is governed by the formation of
a bond-portfolio hedge that insulates the country against income and interest rate risk. But
if income shocks are uncorrelated with interest rate shocks, the government cannot exploit
the maturity of its portfolio to hedge. In that case, the debt dynamics are governed by self-
insurance only, as in Chamberlain and Wilson (2000) or Wang et al. (2016). In between these
extremes, there are a range of cases with incomplete asset spanning with a role for both hedging
and self-insurance. In our framework, liquidity costs inhibit perfect hedges, so self-insurance
and partial hedging interplay to shape the debt-maturity profile, independently of the asset
structure.

The second force stressed by international finance is incentives. When the government has
the option to default, it should take into consideration how current issuance affects the incen-
tives to default in the future and how future default affects current prices. This feature was first
introduced in a sovereign debt model by Eaton and Gersovitz (1981), and a large literature has
followed.5 The effect of incentives in our framework is captured by the revenue-echo effect.
The literature has further identified two important channels, which we abstract from, through
which incentives shape the optimal maturity design. The first channel is debt dilution. Bulow
and Rogoff (1988) identified that, without commitment to a debt program, long-term debt is
prone to debt dilution. Debt dilution occurs when the price of outstanding bonds fall as a re-
sult of a new issuance. The expectation of debt dilution raises the cost of long-term debt. Debt
dilution is a force tilting issuances toward short maturities.6 The second channel, rollover risk,
operates in the opposite direction. Cole and Kehoe (2000) identified that a solvent government
faces rollover risk if it cannot refinance a large amount of principal and, as a result, is forced

to default. Rollover risk is a force toward spreading debt services through many maturities to
avoid a large principal payment at any given point.

The literature on sovereign debt has studied setups in which insurance and incentive forces
are both present. For example, Arellano and Ramanarayanan (2012) and Hatchondo et al. (2016)
study the interaction between insurance and incentives, when the government has access to
both short- and long-term debt. Bianchi et al. (Forthcoming) study this trade-off when the gov-
ernment saves in a risk-free asset. Recently, Aguiar et al. (Forthcoming) prove the remarkable
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7Dovis (Forthcoming) studies the optimal risk sharing agreement when the government lacks commitment
and income is not verifiable, and shows that empirical features documented and rationalized by the quantitative
literature on sovereign borrowing naturally emerge as constrained-efficient outcomes in this setup.

8Two alternative frameworks allow for richer debt structures, Sánchez et al. (2018) and Bocola and Dovis (2018).
In Sánchez et al. (2018) the government chooses each period total debt and the number of periods to repay this
debt in equal installments. In our formulation, this choice corresponds to flat debt maturity profiles that differ in
their average duration. In Bocola and Dovis (2018), instead, the government chooses each period total debt and a
rate of decay for future promised payments. In both papers, total debt plus an additional state variable (number
of periods or rate of decay) are sufficient to describe debt maturity profiles. By constrast, in our paper, we allow in
principle for any debt maturity profile.

9Barro (2003) considers a tax-smoothing objective to assess the optimal maturity structure of public debt.

property that, under debt dilution, once the country has issued long-term debt, it should let
long-term bonds mature rather than refinance them with short-term debt. Further recent con-
tributions that combine insurance, incentives, and rollover risk include, for example, Aguiar et
al. (2017) and Bocola and Dovis (2018).7

Our paper abstracts away from debt dilution and rollover risk, but contributes to the afore-
mentioned literature along two dimensions. First, as we explained earlier, most of the models
employed by this literature restrict the number and types of bonds issued. Our framework
presents a methodology in which debt problems can be analyzed without these restrictions.
In light of the previous discussion, restrictions on the number of bonds and coupon structure
represent a limitation of the sovereign debt literature. For example, if debt dilution is present,
hedging may be very expensive if long-term debt is restricted to only bonds of very long matu-
rities. Similarly, rollover risk can be mitigated if the country can spread out its issuances, and is
not restricted to a few bonds. By circumventing these ad-hoc restrictions, we believe our frame-
work is a step toward understanding debt management with realistic debt structures, where the
government is allowed to design its debt profile to mitigate these incentive problems.8 Second,
this paper is the first to solve the debt management problem under commitment to a debt pro-
gram. This case is a natural and useful benchmark. It is natural if we think that an independent
agency controls the debt maturity profile or if an international organization has a discipline
device on a sovereign. It is also a useful benchmark to obtain an upper bound on the welfare
gains if we want to establish the benefits from a fiscal rule.

Maturity choice is also a classical theme in public finance models. Models of taxation with
commitment, as in Lucas and Stokey (1983), Angeletos (2002) or Buera and Nicolini (2004),
show how a menu of bonds that differ in maturity implements a complete market allocation.9

Buera and Nicolini (2004) also show that this implementation results in unrealistic debt flows
and positions.10 In our paper, because of the liquidity costs, portfolios have to be rebalanced
very smoothly and this induces less extreme positions. Recently, Debortoli et al. (2017) and
Debortoli et al. (2018) study maturity choice in similar environments but when the govern-
ment lacks commitment. These papers show that the government chooses a maturity structure
that is approximately flat. Our framework generates allocations that are tilted toward shorter

10 Faraglia et al. (2010) show that introducing habits and capital leads leads to bond positions that are even
larger and more volatile.



BANCO DE ESPAÑA 14 DOCUMENTO DE TRABAJO N.º 1919

g
11Maturity choice is also a recurrent theme in corporate finance. Leland and Toft (1996) introduce a stationary

debt structure, which has been widely adopted in the literature that studies the optimal capital structure. Recent
contributions that study optimal maturity choice are, for example, Chen et al. (2012), He and Milbradt (2016) and
Manuelli and Sánchez (2018). Our framework can be adapted to answer questions in public or corporate finance.

12Recent examples are Bhandari et al. (2017a) and Bhandari et al. (2017b). The first paper shows how the gov-
ernment chooses debt, asymptotically, to minimize the variability of fiscal shocks, defined as the sum of the return
on debt and spending shocks. The second paper, building on the previous results, shows that when the model is
calibrated using US returns on debt and primary deficits, the optimal maturity of debt does not involve any short
positions.

maturities which, in our calibrated exercise, are quantitatively similar to those of the Spanish
government.11

Our paper is also close to the literature that studies tax smoothing under incomplete markets
following Aiyagari et al. (2002).12 Faraglia et al. (Forthcoming) introduce a new method to
solve an extension of Aiyagari et al. (2002) that allows for several finite-life bonds of different
maturities. In contrast, our paper develops an analytical method to characterize the solution.
Our method allows for a clear decomposition of the different economic forces that shape the
debt distribution in response to shocks. A common aspect with Faraglia et al. (Forthcoming) is
the importance of liquidity costs to obtain a realistic debt profile.

On the technical front, the framework employs infinite-dimensional optimization techniques
similar to those applied in heterogeneous agent models. Lucas and Moll (2014) study a problem
with heterogeneous agents that allocate time between production and technology generation.
Nuño and Moll (2018) study a constrained-efficient allocation in a model with heterogeneous
agents and incomplete markets. Nuño and Thomas (2018) study optimal monetary policy in a
heterogeneous-agent model with incomplete markets and nominal debt. The contribution rel-
ative to those studies is that this paper introduces the risky steady-state approach to study the
impact of aggregate risk. This feature is novel, and allows for an exact characterization that can
be used to analyze models with aggregate risk.

2.1 Model setup

Time is continuous. The model features two exogenous state variables, {y(t), r∗(t)}t≥0, rep-
resenting an endowment and a short-term interest rate process, respectively. The vector of
exogenous states is X(t) ≡ [y(t), r∗(t)]. For any variable, whether endogenous or exogenous,
we employ the notation x∞ ≡ lim t→∞x(t) to refer to its asymptotic value and xss to refer to
its steady state value, if it exists. In the case of the exogenous state variables, we use both sub-
scripts indistinctly. All the partial differential equations (PDE) that we present here have exact
solutions which are presented in Table A of Appendix A.

2 Maturity management with liquidity costs
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Households. We consider a small open economy. There is a single, freely-traded consump-
tion good. The economy is populated by a representative household with preferences over
expenditure paths, {c (t)}t≥0, given by

V0 =

ˆ ∞

0
e−ρtU (c (t)) dt,

where ρ ∈ (0, 1), r∗ss < ρ, is the discount factor and U (·) is an increasing and concave utility
function.

Government. The economy features a benevolent government that issues bonds to foreign
investors on behalf of households. Bonds differ by their time to maturity. The time to maturity
of a given bond is denoted by τ. Issuances are chosen from a continuum of maturities, τ ∈
[0, T], where T is an exogenous maximum maturity. The maturity of a given bond falls with
time, ∂τ

∂t = −1, and the bond is retired once it matures, τ = 0. At maturity, the bond pays its
principal, normalized to one unit of good. Prior to maturity, the bond pays an instantaneous
constant coupon δ. As we discuss in section 5, our framework can also accommodate bonds
with different coupon rates. However, for simplicity, we focus on the case in which all bonds
have the same coupon rate.

The outstanding stock of bonds with a time-to-maturity τ at date t is denoted by f (τ, t). We
call { f (τ, t)}τ∈[0,T] the debt profile at time t. The law of motion of f (τ, t) follows a Kolmogorov
forward equation (KFE):

∂ f
∂t

= ι (τ, t) +
∂ f
∂τ

, (2.1)

with boundary condition f (T, t) = 0. The intuition behind the equation is that, given τ and t,
the change in the quantity of bonds of maturity τ, ∂ f /∂t, equals the issuances at that maturity,
ι (τ, t), plus the net flow of bonds, ∂ f /∂τ. The latter term captures the aging of the outstanding
bonds, i.e., the automatic flow from longer to shorter maturities. Issuances, ι (τ, t), are cho-

sen from a space of functions I : [0, T]× (0, ∞) → R that meets some technical conditions.13

When negative, issuances are interpreted as bond purchases or repurchases. The initial stock
of τ−maturity debt is given, f (τ, 0) = f0 (τ). The government’s budget constraint is:

c (t) = y (t)− f (0, t) +
ˆ T

0
[q (τ, t, ι) ι (τ, t)− δ f (τ, t)] dτ, (2.2)

where y (t) is the (exogenous) output endowment, with steady state value yss. Furthermore,
− f (0, t) is the principal repayment, δ

´ T
0 f dτ are total coupon payments from all outstanding

bonds, and
´ T

0 qιdτ are the funds received from debt issuances at all maturities. Finally, q (τ, t, ι)

is the issuance price of a bond of maturity τ at date t in the primary market. As we discuss
below, the price depends on the total volume of issuances of that maturity τ.

13In particular, I is the space of functions g(τ, t) on [0, T]× [0, ∞) such that e−ρtg is square Lebesgue-integrable.
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14See Foucault et al. (2013) for a textbook treatment of liquidity and market micro-structure and Stoll (2003),
Madhavan (2000) and Vayanos and Wang (2013a) for reviews. The three main economic forces explored by this
literature are: (i) inventory management of financial intermediaries, (ii) adverse selection and, (iii) order processing
costs. Seminal inventory problem papers are Ho and Stoll (1983), Huang and Stoll (1997), Grossman and Miller
(1988), and Weill (2007). In the case of adverse selection, see Glosten and Milgrom (1985), Kyle (1985) or Easley
and O’hara (1987). A general reference of the implications of order processing costs is Foucault et al. (2013). A
large empirical literature has documented the presence of price impact. For example, see Madhavan and Smidt
(1991), Madhavan and Sofianos (1998), Hendershott and Seasholes (2007) or Naik and Yadav (2003a,b).

International investors. The government trades bonds with competitive risk-neutral inter-
national investors. The issuance price, q, has two components, a frictionless market price and a
liquidity cost:

q (τ, t, ι) = ψ(τ, t)︸ ︷︷ ︸
market price

− λ (τ, t, ι)︸ ︷︷ ︸
liquidity costs

. (2.3)

The first component, ψ(τ, t), is the arbitrage-free market price of the domestic bond. This price
depends on the path of the international risk-free interest rate, r∗(t). Given this risk-free rate,
the market price ψ(τ, t) has a PDE representation:

r∗ (t)ψ(τ, t) = δ +
∂ψ

∂t
− ∂ψ

∂τ
, (2.4)

with a boundary condition ψ(0, t) = 1. Unless indicated otherwise, we assume that δ = r∗ss.
Liquidity costs. The second component in the issuance price, λ (τ, t, ι), represents a liquidity

cost associated with the issuance (or purchase) of ι bonds of maturity τ at date t. In Appendix B,
we present a wholesale-retail model of the bond market, whose solution yields the formulation
of the liquidity cost that we employ throughout the paper. This is similar in spirit to models
that feature over-the-counter (OTC) frictions, like Duffie et al. (2005). The main virtue of this
friction is that it produces a price impact of issuances, which has been extensively documented
in asset markets.14

In particular, we assume that to issue bonds of maturity τ at date t, the government decides

to auction ι (τ, t) bonds. The participants in that auction are a continuum of investment bankers.
Bankers participate in the auction and buy the total bond issuance. This is the wholesale market.
Then, bankers offload bonds to international investors in a retail (secondary) market. As in
Duffie et al. (2005), bankers have higher costs of capital than investors. In particular, bankers’
cost of capital is r∗(t) + η, where η > 0 is an exogenous spread. In the retail market, bankers are
continuously contacted by investors. The contact flow is μyss per instant. Each contact results
in an infinitesimal bond purchase by investors from a banker’s bond inventory. Thus, in an
interval Δt, the stock of bonds sold by the banker is μyssΔt. We assume that bankers extract all
the surplus from the international investors.

The key friction that translates into a liquidity cost for the government is that it takes time
for bankers to liquidate their bond portfolios. This, together with the fact that bankers have an
inventory holding cost due to the cost of capital, implies that the larger the auction the longer
the waiting time to resell a bond and, thus, the lower the price the banker is willing to offer
in an auction. As auction size vanishes, the opposite occurs, and the price converges to the
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Thus, the approximate liquidity cost function is λ (τ, t, ι) ≈ 1
2 λ̄ψ(τ, t)ι. The term λ̄ is a liquidity

cost coefficient which increases with the spread and decreases with the contact flow.
More General Liquidity Costs. An implicit assumption behind this formulation is that

there are no congestion externalities: the contact flow is independent of the outstanding debt at
a given maturity. We may consider two departures to this case. First, we could allow for a price
impact that spills across maturities and, in that case, equation (2.5) would depend on the entire
issuance function, ι(·, t), and not only the issuance at a given maturity. This departure would
still feature liquidity costs that depend on issuances. A second departure would be to allow
for liquidity costs that depend on the stock of outstanding debt. In principle our methodology
can also deal with that situation. In fact, the solution would share a similarity with the case of
default analyzed in section 4. We discuss this connection again in section 5.

We now return to the government’s problem and make no further reference to the source of
the liquidity costs.

L [ι, f ] =

ˆ ∞

0
e−ρtU

(
y (t)− f (0, t) +

ˆ T

0
[q (t, τ, ι) ι (τ, t)− δ f (τ, t)] dτ

)
dt

+

ˆ ∞

0

ˆ T

0
e−ρt j (τ, t)

(
−∂ f

∂t
+ ι (τ, t) +

∂ f
∂τ

)
dτdt,

15An alternative approach to solving for the optimal solutions, proposed by Golosov et al. (2014), Sachs et
al. (2016), and Tsyvinski and Werquin (2017), is to analyze the welfare gains of perturbations from (potentially
suboptimal) policies observed in practice.

market price ψ(τ, t). These properties are common to OTC models, e.g., Duffie et al. (2005).
In Appendix B, we present an exact solution to the auction price as a function of the market
price and the issuance size. Here we present an approximation, a first-order Taylor expansion
around ι = 0, which yields a convenient linear expression for the auction price:

q(ι, τ, t) ≈ ψ(τ, t)− 1
2

η

μyss︸︷︷︸
λ̄

ψ(τ, t)ι(τ, t). (2.5)

V [ f (·, 0)] = max
{ι(τ,t), f (τ,t),c(t)}t≥0,τ∈[0,T]

ˆ ∞

0
e−ρtU (c (t)) dt, (2.6)

Government problem. The government maximizes the utility of the households given by

subject to the law of motion of debt (2.1), the budget constraint (2.2), the initial condition f 0 and
debt prices (2.3). The object V is the value functional, which maps the initial debt profile given
by f0, into a real number. It is a functional because the state variable is infinite-dimensional.15

2.2 Solution: the debt issuance rule

We can employ infinite-dimensional optimization techniques to solve the government’s prob-
lem. This section presents a gist of the approach. A full proof is in Appendix C.1. The main
idea is to formulate a Lagrangian:
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where we substitute consumption and bond prices from the objective function using the budget
constraint (2.2) and the bond price schedule (2.3). The second line is the law of motion of the
debt distribution, to which we attach the Lagrange multiplier j (τ, t). The necessary conditions
are obtained by a classic variational argument. The idea is that, at the optimum, the optimal
issuance and debt paths cannot be improved. A first condition is that no infinitesimal variation
around the control ι can produce an increase in the Lagrangian. This implies that:

U′ (c(t))
(

q (t, τ, ι) +
∂q
∂ι

ι (τ, t)
)
= −j (τ, t) . (2.7)

This necessary condition is intuitive: the issuance of a (τ, t)-bond produces a marginal cost and
a marginal benefit, and both margins must be equal at an optimum. The marginal benefit is the
marginal utility of the marginal increase in consumption, which equals the average price of that
bond, q, plus the price impact of an additional issuance, ∂q

∂ι ι. The marginal cost of the issuance
is summarized in the Lagrange multiplier, −j, which captures the forward-looking information
on the bond repayment, as explained next.

A second condition is that no infinitesimal variation over the state f can yield an improve-
ment in value. The solution cannot be improved as long as the Lagrange multipliers j satisfy
the following PDE:

ρj (τ, t) = −U′ (c (t)) δ +
∂j
∂t
− ∂j

∂τ
, τ ∈ (0, T], (2.8)

with a boundary condition: j (0, t) = −U′ (c (t)) and a transversality condition limt→∞ e−ρt j(τ, t) =
0.

Each Lagrange multiplier is forward-looking because it captures future repayment costs in
the form of a continuous-time present-value formula. The first term, −U′ (c (t)) δ, is a disutility
flow associated with the marginal cost of coupon payments. The second and third terms, ∂j/∂t
and ∂j/∂τ, capture the change in flow utility as time and the maturity of the bond progress. For
interpretation purposes, it is convenient to translate the multiplier j from utils into consumption
units. This change of units is useful to transform each multiplier into a financial cost. Define a
transformed multiplier as v (τ, t) ≡ −j (τ, t) /U′ (c (t)) . We refer to v as the domestic valuation
of a (τ, t)-bond. Aided with this definition, we re-express the first-order conditions (2.7) and
(2.8) as

∂q
∂ι

ι (τ, t) + q (t, τ, ι) = v (τ, t) , (2.9)

and the PDE,

r (t) v (τ, t) = δ +
∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T], (2.10)

with terminal condition v (0, t) = 1. The rate r (t) is defined as

r (t) ≡ ρ− U′′ (c (t)) c(t)
U′ (c (t))

.
c(t)
c(t)

. (2.11)
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Different from r∗ (t), the rate r (t) is the infinitesimal domestic discount factor. Under Constant
Relative Risk Aversion (CRRA) utility, U(c) = c1−σ−1

1−σ , the domestic discount factor satisfies the
classical formula r(t) = ρ + σċ(t)/c(t). There is a remarkable connection between the domestic
valuation (2.10) and the market-price equations (2.4): both are net present values of the cash
flows associated with each bond, the only difference between them is the interest rate used
to discount the flows. The market price of the bond is computed discounting at r∗, whereas
the domestic valuation uses r. The optimal issuances given by (2.9) depend on the spread
between the two valuations. The next proposition summarizes the discussion and provides a
full characterization of the solution:

Proposition 1. (Necessary conditions) If a solution {c(t), ι (τ, t) , f (τ, t)}t≥0 to (2.6) exists then do-
mestic valuations satisfy equation (2.10), optimal issuances ι (τ, t) are given by the issuance rule (2.9)
and the evolution of the debt distribution can be recovered from the law of motion for debt, (2.1), given
the initial condition f0. Finally, c(t) and r(t) must be consistent with the budget constraint (2.2) and
the formula for the internal discount, (2.11).

Proof. See Appendix C.1.

The rule states that the optimal issuance of a (τ, t)-bond should equal the product of the value
gap and the inverse liquidity coefficient. This value gap is the difference between the market
price, ψ, and the domestic valuation of a bond, v, relative to the market price. When the value
gap is positive, a trader wants to issue debt because the market price exceeds the valuation of
that debt. A force contains the desire to issue, the liquidity cost, which captures the reduction
in price as the issuance becomes larger. This force appears as the coefficient 1/λ̄. The lower λ̄,
the greater the issuance.

The government’s problem has a dual cost-minimization representation. The dual problem
minimizes the net present value of financial expenses, given the discount r (t) constructed out
of a desired consumption path c(t). Formally, the dual problem is:

min
{ι(τ,t)}t≥0,τ∈[0,T]

ˆ ∞

0
e−
´ t

0 r(s)ds

(
f (0, t) +

ˆ T

0
δ f (τ, t) dτ −

ˆ T

0
q(τ, t, ι)ι(τ, t)dτ

)
dt (2.13)

There are two noteworthy features of the solution. The first feature is a decentralization result:
We can interpret the solution as if the government designates a continuum of traders, one for
each τ, to give an domestic price to its debt, given the domestic discount factor r. Each trader
then issues debt according to the rule in (2.9). The discount factor, of course, must be internally
consistent with the consumption path produced by issuances.

The second feature is that issuances are given by a simple debt issuance rule. Considering
the liquidity cost function (2.5), the optimal-issuance condition (2.9) can be written as:

ι(τ, t) =
ψ(τ, t)− v(τ, t)

ψ(τ, t)︸ ︷︷ ︸ .

value gap

1
λ̄︸︷︷︸

1/liquidity coefficient

(2.12)
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2.3 Asymptotic behavior

The long-run behavior of the solution can be characterized analytically, as shown in Appendix
C.3. In some instances, the solution reaches a steady state and in others the solution converges
asymptotically to zero consumption. Whether there is a well-defined steady state with positive
consumption depends on the value of λ̄. In particular, we obtain an expression for the threshold
value λ̄o. A steady state exists if and only if λ̄ > λ̄o. If λ̄ ≤ λ̄o, there is no steady state;

∂ιss

∂τ
=

ρ− r∗ss
λ̄

e−ρτ > 0.

where r(t) is given by (2.11), the minimization is subject to the law of motion of debt (2.1) and
the initial condition f0, and debt prices satisfy (2.3). The expression in parentheses is the net
flow of financial receipts. This dual problem is consistent with a debt-management office man-
date to minimize the financial expenses of a given expenditure path. The proof is in Appendix
C.2.

consumption decreases asymptotically at the exponential rate r∗ss − ρ and r (t) converges to a
limit value r∞

(
λ̄
)
. The asymptotic discount factor r∞

(
λ̄
)

is increasing and continuous in λ̄

with bounds r∞
(
λ̄o
)
= ρ and r∞ (0) = r∗ss.

In the case where λ̄ > λ̄o, the solution renders an analytic expression for the steady state,
with market prices and valuations:

ψss(τ) = δ
1− e−r∗ssτ

r∗ss
+ e−r∗ssτ and vss(τ) = δ

1− e−ρτ

ρ
+ e−ρτ. (2.14)

Assuming that δ = r∗ss, all bonds are issued at par, ψss(τ) = 1, and vss(τ) = r∗ss
1−e−ρτ

ρ + e−ρτ.
Issuances at steady state, ιss (τ), follow from (2.12), and the outstanding debt satisfies

fss(τ) =

ˆ T

τ
ιss(s)ds, (2.15)

so their expressions are given by:

ιss (τ) =
ρ− r∗ss

ρλ̄

(
1− e−ρτ

)
, and fss(τ) =

ρ− r∗ss
ρλ̄

ˆ T

τ

(
1− e−ρs) ds. (2.16)

We can investigate these expressions to learn about the forces that govern the steady state debt
profile. In a deterministic environment, the entire maturity structure in the steady state is deter-
mined by the desire to spread out issuances to minimize the liquidity costs. Nonetheless, this
does not produce a uniform issuance distribution as long-maturity bonds have to be rolled over
less frequently than short-maturity ones, and hence the use of the former is preferable in order
to minimize rollover costs. There is, therefore, a tension between issuing debt at long maturities
to minimize rollover, and spreading out debt. The solution is that, in the steady state, issuances
are increasing in maturity, which can be verified through the derivative of the issuance rule with
respect to maturity:
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There is no issuance at the shortest maturity, ιss (0) = 0, because domestic valuations coincide
with market prices. Differences in valuations are higher for longer maturities, as the govern-
ment discounts future cash flows at a rate ρ greater than r∗ss, whereas the market price of all
bonds is constant and equal to 1. This means that, at the margin, the government is willing to
receive a lower price on a long-maturity bond, because it requires less frequent retrading.

By contrast to the maturity distribution of issuances, that of debt is decreasing in maturity.
The reason is simple: because debt is the integral of issuances (see equation 2.15), it should be
decreasing in maturity as long as issuances are positive, which is guaranteed by the fact that

16These two results regarding issuance are a direct consequence of the fact, explained in Appendix C.3, that the

limit discount factor is r∗ss ≤ r∞
(
λ̄
) ≤ ρ and hence limT→∞ ι∞ (τ; T) =

r∞(λ̄(T))−r∗ss

r∞(λ̄(T))λ̄(T)

(
1− e−r∞(λ̄(T))τ

)
= 0 and

∂ι∞
∂τ =

r∞(λ̄(T))−r∗ss
λ̄(T) e−ρτ > 0 with limT→∞

∂ι∞
∂τ = 0. In the limit, the domestic discount converges to the risk-free rate,

limT→∞ r∞
(
λ̄
)
= r∗ss, to ensure that the asymptotic debt distribution is zero, limT→∞ f∞(τ; T) =

r∞(λ̄)−r∗ss

r∞(λ̄)λ̄(1)
= 0,

and hence that there is no infinite expenditure in coupon repayments.

the government is more impatient than foreign investors:

∂ fss

∂τ
= −ιss (τ) < 0.

Ceteris paribus, as we increase the spread (ρ− r∗ss) the maturity profile shifts toward longer ma-
turities and the overall stock of debt increases. The liquidity cost coefficient decreases issuances
in equal proportion.

The analysis above is also useful to discuss what would happen if we allowed the govern-
ment to issue at any maturity, T → ∞. Notice first how any comparison across economies with
different values of the maximum available maturity, T, should be done via a normalization to
avoid the artificial disappearance of the liquidity costs as the maximum maturity increases. In
particular, we must keep the aggregate contact flow constant, i.e., keep a constant

´ T
0 μ (T) dτ

as we increase T, which implies μ (T) = μ (1) /T. As a result of this normalization, the liquidity
coefficient depends linearly on the maximum maturity, λ̄ (T) = λ̄ (1)T. If we take the limit as
T → ∞ in the steady state equation (2.16), we obtain a flat debt profile

lim
T→∞

fss(τ; T) = lim
T→∞

ρ− r∗ss
ρλ̄(1)T

(
T − τ +

e−ρT − e−ρτ

ρ

)
=

ρ− r∗ss
ρλ̄(1)

,

for all τ. As a flat debt profile implies an infinite expenditure in coupon repayments in the
budget constraint (2.2) and thus an infinitely negative consumption, we may conclude that no
steady state exists and that consumption decreases asymptotically toward zero. Asymptotic
individual issuances, ι∞(τ), also converge to zero as T increases. Asymptotic issuances are
increasing in maturity but they progressively converge toward a flat structure.16 Figure H.1
in Appendix H verifies these results for the particular calibration described below. The figure
displays the asymptotic values of consumption, discount factor, and the issuance and debt
distributions for different values of T ranging from 20 to 1000 years.
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2.4 The cases without liquidity costs and vanishing liquidity costs

Proposition 1 characterizes the optimal debt profile in the presence of liquidity costs. Here we
characterize the solution without liquidity costs and at the limit when liquidity costs vanish.
As expected, in the absence of liquidity costs, the maturity profile is indeterminate. In contrast,
the limit solution as liquidity costs vanish features an uniquely determined debt profile.

where κ is a positive constant that guarantees that the budget constraint is consistent with zero
consumption at the limit. The debt profile shares the qualitative features of the case with pos-
itive liquidity costs in Proposition 1; debt issuances are also tilted toward long term bonds,
but now ρ plays no role. The result shows that the solution correspondence is upper hemi-
continuous, but it is not lower hemi-continuous because for any arbitrarily small cost the dis-
tribution is determined. This limiting solution can be employed as a selection device that deter-
mines the maturity structure.

Consider first the case without liquidity costs, i.e., λ̄ = 0. The necessary conditions for
a solution are still summarized in Proposition 1. Since the issuance rule (2.9) still holds, any
interior solution must satisfy an equality between domestic valuations and prices, v (τ, t) =

ψ (τ, t) for any τ. This in turn requires an equality between the domestic discount factor and
the interest rate, r∗(t) = r (t). This feature of the limit solution should be familiar: domestic
discount factors are equal to the interest rate in standard consumption-savings problems. This
observation is enough to characterize the solution at the limit. Denote the market value of the
government’s debt as:

B(t) ≡
ˆ T

0
ψ (τ, t) f (τ, t) dτ. (2.17)

Proposition 7 in Appendix C.4 shows that any solution of the government problem with λ̄ = 0
yields the same value as a consumption-savings problem with a single instantaneous bond in
amount B(t), a budget constraint Ḃ(t) = r∗(t)B(t)− y(t) + c(t) and an initial condition given
by B(0). Hence, there are infinitely many solutions that satisfy (2.17) for a B(t) that solves
the problem with an instantaneous bond. The intuition is simple, given that the yield curve
is arbitrage-free and the discount factor coincides with the interest rate, there is no way to
structure debt to reduce the cost of servicing debt. All bonds are redundant, but the path of
consumption is consistent with r∗(t) = r (t) and an intertemporal budget.

Now consider the limit solution as λ̄ → 0. In Appendix C.5, Proposition 8, we present a
general formula for the limiting distribution. In the particular case where δ = r∗ss, the limiting
issuance distribution is determinate and equal to:

lim
λ̄→0

ι∞(τ) =
1− e−r∗ssτ

1− e−r∗ssT κ,
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2.5 Calibration

To provide further insights, we calibrate the model to the Spanish economy. The objective of the
calibration is to illustrate the ability of the model to generate realistic debt profiles, and to study
the qualitative and quantitative responses to unexpected income and interest rate shocks in the
next section. Following Aguiar and Gopinath (2006), we set the value of the coefficient of the
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Figure 2.1: Maturity distribution. Data for Spain as of July 2018 and the model in the steady state.

utility function, σ, to 2, and the long-run annual risk-free rate, r∗ss, to 4 percent. We normalize
income yss to 1 and the maximum maturity, T, to 20 years, as roughly 90 percent of Spanish
debt has a maturity of less than 20 years. The coupon, δ, is set to 4 percent so the market price
equals one at all maturities. Steady state output is normalized to one. In order to calibrate the
price impact of bonds, λ̄, we need to set the values of the arrival rate, μ, and the spread, η, in
equation (2.5). In the model, η represents the cost of capital for market makers. We calibrate
this spread to 150 basis points. As a reference, we obtain an approximation of the cost of capital
of the five biggest US banks in terms of their assets and compute the average spread. More
details are provided in Appendix D.

We jointly calibrate the discount factor, ρ, and the arrival rate, μ, to match the average level
of Spanish public debt and to replicate the average time that market makers need to exhaust
bond inventories. In particular, the calibration tries to match two targets: First, the Spanish
government net debt, obtained from the International Monetary Fund World Economic Outlook
(IMF WEO), was 46 percent of GDP over the period 1985-2016. Second, according to Fleming
and Rosenberg (2008), US primary dealers exhaust 60 percent of their inventory one week after
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they participate in the US Treasury primary market. These two targets imply that, in the steady
state,

μT´ T
0 ι(τ)dτ

= 0.6, and
ˆ T

0
f (τ)dτ = 0.46.

Accordingly, we set the value of μ to 0.0011 and the value of ρ to 0.0416. The implied value of
λ̄ is 7.08. Note that ∂q

∂ι
ι
q ≈ ∂q

∂ι
ι
ψ = − 1

2 λ̄ι. We can compute the elasticity of auction prices with
respect to changes in the size of the issue that is produced by this calibration, to get a sense of
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Figure 2.2: Steady-state equilibrium objects as a function of the liquidity cost
(
λ̄
)
. Note: The thick

red line in panels (c) and (d) indicates the values at the threshold λ̄o .

the magnitude of the price impact. The maximum value of issuances is 0.003, for a maturity of
20 years, and hence the elasticity of the auction price equals − 1

2 × 7.08× 0.003 = 0.011. This
means that if the government duplicates the size of its steady-state issuance of the 20-year bond,
the bond price falls by 1.1 percent at the time of the auction.17

Figure 2.1 presents the steady state debt profile generated by the calibrated model alongside
the data corresponding to the Spanish debt profile of July 2018. Admittedly, the comparison has
some limitations: we compare a steady state object of the model with an empirical counterpart
in a particular period.18 Nevertheless, the figure shows that, despite its simplicity, the model
reproduces remarkably well the decreasing maturity profile of Spanish debt. This figure corre-

17The magnitude of the price impact is roughly similar to other estimates in the literature. For instance, Faraglia
et al. (Forthcoming) consider average auction costs of 0.0028 for 10-year, 0.0026 for 9-year and 0.000284 for 1-year
bonds based on the empirical findings for the US market of Lou et al. (2013). In our model, calibrated for Spain,
these costs amount to 0.0065, 0.0060 and 0.00078, respectively.

18Notwithstanding, we have repeated the analysis for other periods with similar results. Results are available
upon request.
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sponds to outstanding amounts. We discuss the corresponding data for debt issuances in Spain
between 2000 and 2018 in Appendix E.

Under the calibration, the model has a proper steady state because the calibration satisfies
λ̄ > λ̄o. Figure 2.2 displays steady-state objects as functions of λ̄. The value of the threshold
λ̄o is 0.14, well below the calibrated value of λ̄, which is 7.08. Panels (a) and (b) show how, for
liquidity costs below the threshold, asymptotic consumption c∞ is zero because no steady state
exists. Similarly, as liquidity costs vanish, the discount factor r∞ converges to the annual risk-

free rate of 4 percent. The thick red line in panels (c) and (d) indicates the values at the threshold
λ̄o. The black lines above it are the values for λ̄ ≤ λ̄o. The limiting distribution is approached
as λ̄ goes to zero and it is relatively similar to the distribution at the threshold. This implies
that, even in the case of liquidity cost values such that no steady state exists, the asymptotic
debt and issuance profiles are approximately the same as those at the threshold λ̄ = λ̄o.

2.6 Maturity management with unexpected shocks

The computation of the transitional dynamics that satisfy the analytic expressions of the solu-
tion in Proposition 1 requires a numerical algorithm. The idea follows directly from Proposition
1: Given a guess for {c (t)}, we obtain the domestic discount factor {r (t)} through equation
(2.11). This discount factor produces valuations {v (τ, t)} according to (2.10), which, in turn,
determine the issuances {ι (τ, t)} through the optimal issuance rule (2.9). Issuances produce
a path of debt profiles { f (τ, t)} obtained from the law of motion of debt, (2.1). Given these
debt profiles and the corresponding issuance policies, the budget constraint, equation (2.2), de-
termines a new consumption path. The transition to the steady state is a fixed point problem
in {c (t)}, where the guess and resulting consumption paths should coincide. We present the
details of this numerical algorithm in Appendix F.

We now study transitions after unexpected shocks to income or to the short-term interest
rate. Transitions are initiated from a steady state debt profile. In the experiments, we reset either
y (0) or r∗ (0) to an initial value, and then let the variable revert back to the steady state. Once
either variable is reset, the entire path is anticipated. We study the dynamics of the debt profile.
These dynamics are governed by two forces: consumption smoothing and bond-price reaction. Both
forces are counterbalanced by the liquidity costs.

Consumption smoothing refers to the management of the debt profile in order to smooth
consumption along a transition path. Consumption smoothing is active only when the gov-
ernment is risk averse, i.e., σ > 0. This force operates even without liquidity costs, but the
force has an effect on the debt maturity profile only when liquidity costs are present, λ̄ > 0.19

This force is summarized by the internal discount factor r(t) = ρ + σċ(t)/c(t). In fact, when
r∗ is constant (ψ = 1), the value gap equals 1− v. In this case consumption growth shapes the
maturity profile directly from the solution to v presented in Proposition 1: if a shock produces

19Without liquidity costs, permanent income and the path of interest rates determine the consumption path, but
the debt maturity profile is indeterminate, as we discussed above.
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a growing consumption path, the domestic discount increases and the debt distribution tilts
toward longer maturities, as valuations at longer horizons are affected more. The increase in
domestic discounts, or equivalently the decline in domestic valuations, also induces an increase
in the volume of issuances.

Bond-price reaction is a more subtle force. This force determines how the debt profile
changes with bond prices, ψ(τ, t). It is present even with risk neutrality, i.e., when we shut
down consumption smoothing. This force only plays a role in the presence of liquidity costs,
λ̄ > 0. Without liquidity costs, the domestic discount factor coincides with the interest rate,
r (t) = r∗ (t), and since bond prices are arbitrage free, the government is indifferent between
issuing at any two maturities. With liquidity costs, even a risk-neutral government is no longer
indifferent. The reason is that liquidity costs allow for a gap between r (t) and r∗ (t) as rebalanc-
ing is now costly. Any gap between these two rates is compounded differently along different
time horizons, and thus the government faces different consumption paths depending on its
maturity choice. We can again observe how this force operates through the value gap in the
simplified case of risk neutrality. In this case consumption smoothing is not active, and valu-
ations are constant and equal to their steady state value vss. If a shock temporarily increases
short-term rates, thereby reducing market prices −specially at long maturities, the optimal is-
suance rule (2.12) prescribes a decline in debt issuances and a tilting of the maturity distribution
toward shorter maturities. In the general case with risk aversion, interest rate shocks produce
a race between consumption smoothing and bond-price reaction.

To gather further insights into these two forces, we analyze the responses to unexpected
shocks to y(t) and r∗(t) separately. Consider first the response to an income shock, displayed
in figure 2.3. In the experiment, income follows dy(t) = αy (yss − y(t)) dt, the continuous-time
counterpart of an AR(1) process. We set y(0) to a level 5 percent below its steady state value,
corresponding to a major recession in Spain.20 The reversion coefficient, αy, is set to 0.2 in line
with Spanish data. In this case, the only active force is consumption smoothing, as the interest
rate remains constant.

Figure 2.3 displays the transition. Panels (a) and (b) show how the fall in income produces a
decline in consumption on impact, followed by a recovery. The expected consumption growth
produces an increase in the domestic discount on impact, which reverts back to the steady state.
Since there is an increase in domestic discounting, domestic valuations decrease, which acts like
a reduction in the perceived cost of debt. Given that bond prices are constant, the optimal is-
suance rule (2.12) dictates an increase in the issuances at all maturities, as displayed in panel (e)
and hence in the outstanding amount of total debt (panels c and f), b(t) ≡ ´ T

0 f (τ, t) dτ. One
noticeable feature is that new issuances are not homogeneously distributed across maturities:
they are more concentrated in longer maturities, as expected. This is because long-term domes-
tic valuations are more sensitive to changes in the discount factor. This produces an increase in
the average debt duration of the portfolio, computed as the average of the Macaulay duration
of each individual bond (panel d).

20See Appendix D for further details on the calibration of the experiments.
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The intuition for this pattern is the following. In response to a negative income shock, the
government attempts to smooth consumption by issuing more debt. Because of the liquidity
costs, the government tilts issuances toward long-term debt to minimize the liquidity costs as-

Figure 2.3: Response to an unexpected temporary drop in income.
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sociated with debt rollover during the period in which the decline in income, and consumption,
is more acute. The desire of the government to delay these rollover costs explains the lengthen-
ing in the maturity.

To pry on the mechanism, figure 2.4 displays the optimal transition path when at time 0 it
is revealed that a positive income shock lasting one year will hit the economy 20 years ahead
(panel b). Prior to the arrival of the shock, the government progressively issues debt that ma-
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tures when the shock hits. In particular, the first year it issues 20-year bonds, in the second year
it issues 19-year bonds, and so on (panel e). As displayed in panels (c) and (d), the government
not only steadily decreases the maturity of the issuances, it also increases the amount of debt
issued as the date of realization of the shock approaches. The result is a progressive build-up of
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Figure 2.4: Response to an unexpected drop in income 20 years ahead.

debt, which allows a relatively constant consumption path greater than its long-term value. The
average duration is longer than its long-term average during the first 14 years, because the gov-
ernment issues bonds with longer maturities than the average (around six years) and declines
afterwards until the shock arrival. Once the shock hits, the government uses the extra income
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to (i) repay the principals of all the debt issued in the pre-shock period, (ii) repurchase part of
its debt stock, especially at short-term maturities and (iii) increase temporarily consumption.
As in the previous exercise, this strategy minimizes the liquidity costs because the government
spreads out bond issuances and avoids any rollover of the extra debt prior to the shock arrival.

Next, consider an unexpected shock to r∗ (t), as presented in figure 2.5. We let dr∗(t) =

αr (r∗ss − r∗(t)) dt, with αr = 0.2, which is also taken from the Spanish data. On impact, the
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Figure 2.5: Response to an unexpected temporary shock to interest rates.
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interest rate increases from 4 percent to 5 percent. The shock produces a consumption drop of
the same magnitude as the income shock in figure 2.3, which makes both shocks comparable.
In this case, both the bond-price reaction force and consumption smoothing are active.

We can interpret the transition as follows. On impact, the domestic discount jumps to 5
percent, as shown in panel (a) of figure 2.5. This narrows the value gap across all maturities.
The initial effect of a narrower value gap is a decrease in all issuances (panel e). This captures
the notion that, upon an interest rate increase, the government wants to sacrifice present con-
sumption to mitigate a higher debt burden. A noticeable feature is that the interest rate shock
produces an initial reduction in the average debt duration. This occurs even though the path
of consumption resembles the one of the income shock that produces the opposite prediction

3 Risk

The previous section analyzed optimal debt-management under perfect foresight. This section
presents a characterization that allows for risk. The goal is to understand how the anticipation
of shocks affects the shape of the optimal debt profile and the ability to insure.

regarding debt maturity. The reason why maturity shrinks with the rate shock is that, in this
case, the valuation gap decreases more for long-term bonds. The valuation gap is proxied by
the interest rate gap, r(t)− r∗(t), which narrows on impact, but widens again as consumption
recovers. This tells us that bond-price reaction dominates over consumption smoothing.

The intuition in this case is straightforward. Faced with temporary lower bond prices, the
government decides to issue less debt. This reduction is more relevant for long-term bonds,
because these are the bonds that experience the larger price declines. This effect is, neverthe-
less, partially mitigated by consumption smoothing because the initial decline in consumption
encourages, as discussed above, the issuance of long-term bonds.

In order to isolate the bond-price reaction force, figure H.2 in Appendix H displays the tran-
sitions when the government is risk neutral, i.e, σ = 0. The effects of figure 2.5 are magnified
as consumption smoothing is not active. As figure H.2 shows, once the shock arrives and bond
prices fall, the government decides to directly repurchase debt, especially at long maturities,
and to resell it when prices go up again. This summarizes well the essence of this force: be-
cause liquidity costs make it expensive to rebalance debt across maturities, the government
buys (or issues less) debt when it is temporarily cheap in order to resell it (or issue more) when
prices recover.

Summing up, the introduction of liquidity costs explains the opposite responses, in terms of
the issuance profile, to contractionary shocks. In the case of an income shock, the desire to issue
more debt to smooth consumption will necessarily depress bond prices in the primary market,
forcing the government to spread issuances to minimize the price impact and tilt them toward
long maturities to reduce the rollover during the recession. In the case of an interest rate shock,
the previous channel is more than compensated by the change in bond prices in the secondary
market, and hence, the government finds it optimal to temporarily reduce issuances in the long
part of the yield curve because those are the bonds most affected by the decline in prices.
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3.1 The model with risk

Risk is modeled as a single jump at a random date. We introduce notation to distinguish pre-
from post-jump variables: for any variable x, we represent its value prior to the shock by a hat,
i.e., x̂(t), and use x(t) to express the value after the jump event.

21Formally, X (t) is right-continuous. If the jump occurs at to, the left-limit X̂ (to) ≡ lims↑to X̂(s) jumps to some
new X (to) ∼ G(·; X (to)).

The exogenous state X (t), comprising income, y(t), and the risk-free rate, r∗(t), now fea-
tures a jump at a random date to. Prior to the jump, the state is denoted as X̂ (t). The random
date to is exponentially distributed with a parameter φ. Upon the jump, a new value for the
state is drawn, X(to) ∼ G(·|X̂ (to)), where G(·) is the conditional distribution of the exogenous
state given its value prior to the shock.21 We let {y(to), r∗(to)} take values in the compact space
[yl, yh] ×

[
r∗l , r∗h

]
and let G(·|X̂ (to)) be a discrete or continuous distribution. We denote the

conditional expectation operator under the distribution G (·; X (t−)) by EX
t [·].

Once the jump occurs, each element x(t) ∈ X(t) follows a continuous mean-reverting pro-
cess:

ẋ(t) = −αx(x(t)− xss)

where αx captures the speed of mean reversion to its steady-state value xss. Obviously, there
is risk before the one-time jump, but after the jump the economy becomes the perfect-foresight
one of the previous section.

With risk, bond prices satisfy a standard pricing equation with a single jump. The flow
value of the bond, δ, plus the expected price appreciation should equal the value of the bond at
the market rate r̂∗ (t) ψ̂(τ, t). Thus, the market price is now given by:

r̂∗ (t) ψ̂(τ, t) = δ +
∂ψ̂

∂t
− ∂ψ̂

∂τ
+ φEX

t
[
ψ (τ, t, Xt)− ψ̂ (τ, t)

]
, if t < to, (3.1)

with the terminal condition ψ̂(0, t) = 1. As before, the market price ψ (τ, t, Xt) denotes the
perfect-foresight price of the bond after the shock if the initial state is Xt, which still satisfies
(2.4). The price that the government receives is still given by (2.5).

Prior to the shock, the government problem is:

V̂
[

f̂ (·, 0) , X (0)
]
= max
{ι(τ,t), f (τ,t),c(t)}t≥0,τ∈[0,T]

Et

[ˆ to

0
e−ρtU (ĉ (t)) dt + e−ρto

EX
to

[
V
[

f̂ (·, to) , X (to)
]]]

,

(3.2)
where V

[
f̂ (·, to) , X (to)

]
is the value given by (2.6). The maximization is subject to the law of

motion of debt (2.1), the budget constraint (2.2) and the initial condition f̂ (·, 0) = f0, and bond
prices are given by (3.1).



BANCO DE ESPAÑA 32 DOCUMENTO DE TRABAJO N.º 1919

3.2 Solution: risk-adjusted valuations

To characterize the problem, we adapt the perfect-foresight solution to allow for risk. The
proof of the solution to the problem with risk can be found in Appendix C.6. The approach is

the same as the one used to prove Proposition 1: We construct a Lagrangian and then apply
variational techniques to obtain the first-order conditions. Proposition 2 below is the analogue
to Proposition 1.

Proposition 2. (Necessary conditions) If a solution {c(t), ι (τ, t) , f (τ, t)}t≥0 to (3.2) exists, it satisfies
the same conditions of the perfect-foresight solution (Proposition 1) with valuations prior to the shock
now satisfying the PDE

r̂ (t) v̂ (τ, t) = δ +
∂v̂
∂t
− ∂v̂

∂τ
+ φEX

t

[
v (τ, t)

U′ (c (t))
U′ (ĉ (t))

− v̂ (τ, t)
]

, τ ∈ (0, T], (3.3)

with boundary condition v̂ (0, t) = 1.

Proposition 2 shows how the decentralization scheme of the perfect-foresight problem car-
ries over to the problem with risk: The optimal issuance rule still holds, but applies to the
pre-shock valuations, which now are adjusted for risk. After the shock, the transition and
asymptotic limits coincide with those of the perfect-foresight problem that takes as its initial
condition the debt profile at the time of the shock.

This decentralization shows that the effect of risk is captured exclusively through a cor-
rection in domestic valuations. The PDE is similar to the one that corresponds to the riskless
case, equation (2.10). The only difference is the last term on the right. This term is akin to
the correction in any expected present-value formula that features a jump. In the particular
case of domestic valuations, the expression captures that, upon the arrival of the shock, val-
uations jump from v̂ (τ, t) to v (τ, t), the latter term being corrected by the ratio of marginal
utilities. This ratio of marginal utilities captures an "exchange rate" between states. The do-
mestic valuation after the shock, v (τ, t), is measured in goods after the arrival of the shock, but
the valuation v̂ (τ, t) is expressed in goods prior to the shock. The ratio of marginal utilities
tells us how goods are relatively valued in terms of utilities, before vis-à-vis after the shock. If a
shock produces a drop in consumption, the ratio of marginal utilities associated with that state
is greater than one. This correction captures that payments associated with a bond are more
costly in states where marginal utility jumps. This extra kick in the valuations affects bonds of
different maturities differently, as we illustrate below.

Although Proposition 2 characterizes the solution with risk, its computation involves solv-
ing a fixed point problem over a family of debt distributions. The reason for this complexity is
that any date t prior to the shock is associated with a jump in consumption from ĉ (t) to c (t).
The size of the jump is a function of the distribution f (·, t) . Through its influence on valuations,
the potential consumption jump affects the choice of issuances. Hence, a solution to the tran-
sition is a fixed point over a family of debt distributions, requiring a time-varying distribution
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prior to the shock arrival consistent with the post-shock consumption path. This complexity
renders the numerical solution to the problem unfeasible, and we are forced to employ only

approximate solutions. If instead of a single jump, we were to consider multiple jumps, the
complexity would escalate even further. An analogous challenge appears in incomplete mar-
ket models with aggregate shocks, which is why the literature uses the bounded-rationality
approximation of Krusell and Smith (1998) or equivalent approaches.

Our approach to analyze the influence of risk is to study the risky steady state (RSS) of the
problem. In our context, the RSS is defined as the asymptotic limit of variables prior to the
realization of the shock. In other words, the RSS is the state to which the solution converges
when shocks are expected to arrive but have not yet materialized. We obtain an explicit solution
to the valuations in the RSS:

v̂rss (τ) = e−(r̂rss+φ)τ +

ˆ τ

0
e−(r̂rss+φ)(τ−s)

(
δ + φEX

rss

[
U′ (c (0))
U′ (ĉrss)

v (s, 0)
])

ds, for τ ∈ (0, T],

(3.4)
where v (τ, 0) is the valuation of the perfect-foresight problem with initial condition f̂rss (τ).

The advantage of the RSS approach is that the RSS can be characterized as a fixed point in
the space of consumption policies, an object that is feasible to compute. In fact, the method used
to calculate a solution adds only one more unknown to the perfect-foresight algorithm; now we
must obtain the RSS consumption. The idea is to propose a guess of crss and the path {c(t)} and
then compute the valuations using (3.4) for the RSS and (2.10) for the valuation after the shock.
We then obtain issuances from the simple issuance rule (2.12). Given issuances, we compute
the debt profile in the RSS using the law of motion of debt (2.1). The budget constraint (2.2)
yields a new crss and a new path {c(t)}. Naturally, {c(t)} is the solution to the perfect-foresight
problem where f (τ, 0) = f̂rss(τ).

We can exploit a decomposition to explain how risk alters the debt distribution from the de-
terministic steady state (DSS) to the RSS. The main force that shapes the maturity profile under
risk is insurance. Insurance is captured by the ratio of marginal utilities, U′ (c (0)) /U′ (ĉrss),
in equation (3.3). Insurance is achieved in two ways: via self-insurance or hedging. By self in-
surance we refer to the fact that, in some cases, the government may decide to reduce its RSS
debt stock to minimize the fall in consumption after a negative income or interest rate shock.
Moreover, in the case of an interest rate shock, the government might, in principle, hedge the
fall in consumption by building a portfolio that offsets the impact of the shock. In Appendix
G.1 we analyze the particular case without liquidity costs and show how, in the case of interest
rate shocks, the government may perfectly hedge, whereas in the case of income shocks, it is
forced to self-insure.22

22In the case of interest rate shocks, we derive a generalization of the conditions that guarantee market comple-
tion discussed in Duffie and Huang (1985), Angeletos (2002) or Buera and Nicolini (2004).



BANCO DE ESPAÑA 34 DOCUMENTO DE TRABAJO N.º 1919

3.3 The risky steady state

We now return to our calibration to analyze how quantitatively important the forces that risk
introduces are in shaping the maturity profile. To do so, we compute the RSS and analyze post-
shock transitions. We compare these dynamics with those following unexpected shocks when
the economy is at the deterministic steady state. Naturally, in both cases the economy converges
to the DSS as time progresses. We calibrate the shock intensity φ to 0.02. As explained in Ap-
pendix D, the value of the intensity is obtained by computing the cross-country frequency of a
yearly output decline greater than or equal to 5 percent. We maintain the rest of the calibration.

The comparisons are reported in figures 3.1 and 3.2 where solid lines denoted by DSS are
the dynamics of the perfect-foresight section and dashed lines denoted by RSS describe the
dynamics when the shock is expected.

Figure 3.1 reports responses to a shock that produces a 5 percent income drop. Compared
to the DSS, the total debt stock in the RSS prior to the shock (panels a and c) is smaller, 35
percent of GDP compared to 45 percent. The reason for this decline is self-insurance. Since
rates do not move, both hedging and bond-price reaction are shut down. Thus, the decline in
the stock of debt is a race between two forces, ex-post consumption smoothing and ex-ante self-
insurance. These forces are encoded in the valuations. Recall from the RSS valuation formula
(3.4) that two terms influence RSS valuations, namely the ratio of marginal utilities and post-
shock valuations. Panel (f) displays the valuation immediately after the arrival of the shock,
v(τ, 0). This value is lower than the DSS valuations, vss(τ), reflecting that once the shock hits,
r (t) will increase. Despite v (τ, 0) being lower than vss(τ), the RSS valuations are higher, i.e.,
vrss(τ) > vss(τ) > v (τ, 0), and this mechanically occurs because of the larger ratio of marginal
utilities U′(c(0))

U′(ĉrss)
=
(0.986

0.971

)2
= 1.03. This tells us that self-insurance and consumption smoothing

operate in opposite directions, with self-insurance as the dominant force, thereby producing a
lower stock of debt.

Another feature is that duration is slightly higher in the RSS (panel d). This can be entirely
explained by the change in the concavity of the valuations in the RSS, v̂rss(τ), with respect to
valuations in the DSS, both displayed in panel (f). As explained in section 4.3, once the shock
hits, consumption smoothing extends the average duration to reduce rollover costs. This is
captured by the shape of v(τ, 0), which is inherited by v̂rss(τ). The intuition is the following.
The government slightly tilts the debt distribution toward long maturities to reduce rollover
costs in the event of the shock arrival.

Next, consider the case of an interest rate shock. The stock of debt is 30 percent of GDP in
the RSS, a smaller value than the 45 percent in the deterministic steady state, as displayed in
panel (c) of figure 3.2. The reduction is seen at all maturities (panel a). Again, we can dissect
which forces drive these results by examining the effects on valuations and prices. As with the
income shock, consumption smoothing operates in the opposite direction of self-insurance, but

in this case both forces cancel each other. As shown in panel (f), domestic valuations are very
similar between the DSS and the RSS.
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In the case of an interest rate shock, hedging might also play a role in shaping the maturity
profile. We can understand the role of hedging by comparing the RSS solution to the counter-
factual RSS of a risk-neutral government, σ = 0. This comparison is reported in figure H.3 of
the Appendix H. The figure reveals that the overall stock of debt is not modified substantially.
However, we do observe some hedging. As discussed in the case without liquidity costs in
Appendix G.1, the correct hedge to a negative interest-rate shock is to hold more long-term
debt and less short-term debt. We observe that pattern, but the effect is small. This suggests
that liquidity costs introduce both a cost to set up the hedge ex-ante and a cost to unwind the
position. In our calibration, these costs are large and practically mute the hedging force.

Figure 3.1: Response to a shock to income. RSS is model starting at the risky steady state and DSS at
the deterministic steady state.
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Once we know that valuations do not change between the RSS and the DSS and that hedging
is ineffective, we conclude that the reduction in debt follows mainly from bond-price reaction,
namely from the reduction in bond prices in the RSS relative to the DSS (panel e). In the RSS
a future rate increase has been priced into the bonds, which has a greater effect on long-term
bonds. As a result, the government avoids a high interest-rate expense and holds less debt,
especially at longer maturities, which explains the slight reduction in duration (panel d).

4 Default

This section extends the model with risk to allow for the possibility of strategic default. The
nature of the problem changes because now bond prices depend on government actions.
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Figure 3.2: Response to a shock to interest rates. RSS is the model starting at the risky steady state
and DSS at the deterministic steady state.
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23Note that the government can hold foreign bonds ( f (τ, t) < 0). Default implies that these bonds are expropri-
ated by foreign investors.

4.1 The option to default

Consider the model in section 3.1, but now, upon the realization of the shock to X (t), assume
that the government has the option to default. If the government exercises this option, it de-
faults on all debts and is barred from international markets. The value in autarky is

VD(X (to)) ≡
ˆ ∞

to
e−ρ(s−to)U ((1− κ)y (s)) ds + ε. (4.1)

The value is the discounted utility of consuming the endowment, assuming a permanent output
loss of κ, plus a a zero-mean random variable, ε. The variable ε captures randomness around the
decision to default. Thus, the post-default value is also a random variable, centered around the
expected value of moving into perpetual autarky with an output loss κ. Denote by Θ(·) and θ(·)
the cumulative distribution and the probability density function of VD(X (t)), respectively.23

If the government chooses not to default after the shock, the economy becomes the perfect-
foresight economy studied in section 2. The government strategically defaults when

VD(X (to)) > V
[

f̂
(
·, t0

)
, X

(
t0
)]

,

that is, if the value after default is greater than the value obtained by continuing to service its
debts, which coincides with the perfect-foresight value of an initial debt profile f̂ (·, to). There-
fore, at any given time, the default probability is

P
{

VD(X (to)) > V
[

f̂
(
·, t0

)
, X

(
t0
)]}

= 1−Θ
(

V
[

f̂ (·, t) , X (t)
])

and the probability of repayment is Θ
(

V
[

f̂ (·, t) , X (t)
])

.
Market prices must be adjusted for credit risk. The corresponding pricing equation is:

r̂∗ (t) ψ̂(τ, t) = δ +
∂ψ̂

∂t
− ∂ψ̂

∂τ
+ φEX

t

[
Θ
(

V
[

f̂ (·, t) , X (t)
])

ψ (τ, t, X (t))− ψ̂ (τ, t)
]

, if t < to.
(4.2)

After the shock, the pricing equation is again (2.4). Prior to the shock, the pricing equation is
similar to the version with risk, but now the post-shock price is multiplied by the probability
of repayment. The idea is that the expected change in the price after the shock is the perfect-
foresight price times the repayment probability, Θ (V)ψ. The option to default implies that the
government’s actions affect bond prices, a new feature which alters the nature of the solution
to the government’s problem.

max
{ι(τ,t), f (τ,t),c(t)}t≥0,τ∈[0,T]

Et

[ˆ to

0
e−ρtU (ĉ (t)) dt + e−ρto

EX
to

[
max

{
V [ f (·, to) , X (to)] , VD(to, X

(
t0
)
)
}]]

(4.3)

With a default option, the government’s problem now becomes:
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subject to the law of motion of debt, (2.1), the budget constraint, (2.2), and the pricing equation
(4.2).

In this problem, the government commits at time zero, before the realization of the shock,
to a debt program. Notwithstanding, the government cannot commit to repay its debt once the
shock arrives and it may default strategically. We focus on this case for three reasons. First, the
problem with commitment to debt policies is a natural extension of the problems analyzed in
sections 2 and 3. Second, this is a relevant case from a practical point of view. For example,
it is a natural benchmark when an independent agency designs the debt policy of a sovereign
country or when the government commits to a fiscal rule, which are reasonable approximations
for developed economies. Third, to the best of our knowledge, the solution of the game between
the government and the investors that is usually studied by the literature following Eaton and
Gersovitz (1981) must rely on numerical approximations, which is beyond the scope of the
current paper. This is one of the first studies to deal with the case of full commitment.24

4.2 Default-adjusted valuations

We adapt the framework to allow for default. The main novelty is that the government takes
into account how its decisions affect market prices and the future decisions to default. To ease
notation, we define V(t) ≡ V [ f (·, t) , X (t)].

Proposition 3. (Necessary conditions) If a solution {c(t), ι (τ, t) , f (τ, t) , ψ(τ, t)}t≥0 to (4.3) exists,
it satisfies the same conditions of the perfect-foresight solution (Proposition 1) with valuations prior to
the shock now satisfying the following PDE,

r̂ (t) v̂ (τ, t) = δ +
∂v̂
∂t
− ∂v̂

∂τ
. . .

+φ

(
EX

s

[
(Θ (V(t)) + Ω(t))

U′ (c (t))
U′ (ĉ (t))

v (τ, t)
]
− v̂ (τ, t)

)
, (4.4)

v̂ (0, t) = 1.

24A recent exception is Hatchondo et al. (2018), which compares debt policy under full commitment in a model
as in Eaton and Gersovitz (1981) with long-term debt, to the debt policy of the Markov Equilibrium with bonds
and income as state variables.

where

Ω(t) = θ (V(t))U′ (ĉ (t)) . . .
ˆ T

0

ˆ t

max{t+m−T,0}
e−
´ t

z (r
∗(u)−r̂(u))duψ (m, t)

1
2λ̄

[
1−

(
v̂ (m + t− z, z)
ψ̂ (m + t− z, z)

)2
]

dzdm.

Proposition 3 shows that the option to default alters valuations, but that the principle of a
simple issuance rule still holds. We can compare the expression for valuations with default,
(4.4), to the expression for market prices (4.2). As discussed in section 3, without the option
to default, prices and valuations would only differ in their discount rates (r̂ (t) versus r̂∗) and
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in the presence of an adjustment for risk (U′(c(t))
U′(ĉ(t)) ) in the latter. Default introduces two new

features. The first is that default allows for a new form of insurance. This is captured by the
repayment probability, Θ (V(t)). After-shock valuations are multiplied by the repayment prob-
ability in equation (4.4) since debt is worthless after a default. The same repayment probability
appears in the market price (4.2). This captures the improvement in insurance provided by the
option to default. As we explained in the previous section, the increase in marginal utility is
driven by a self-insurance motive. The option to default reduces this motive because the prob-
ability of repayment is low when a negative shock triggers an increase in the marginal utility
ratio—to put it simply, Θ offsets the effects of U′(c(t))

U′(ĉ(t)) in the valuations in particularly adverse
states. This feature captures how default improves insurance under incomplete markets (an
idea found for example in Zame, 1993).

The second feature reflects the role of incentives. Once the default option appears, the gov-
ernment cannot commit to repay. The inability to honor debts in the future impacts bonds
prices. The issuance of a (τ, t)-bond increases the probability of default, which not only affects
the price of that particular bond, but also the price of all the bonds that coexist with it, inde-
pendently of when they were issued. This implies that the issuance of a bond at a certain date
reduces revenues at different dates through a decline in bond prices, an effect which should be
taken into account by the government when deciding whether to issue. The marginal impact of
this reduction in revenues from each bond issuance, which we dubbed as the revenue-echo effect,
is captured by the term Ω in equation (4.4).

We analyze the terms inside Ω to uncover an interpretation. We develop the explanation
with the aid of figure 4.1. The revenue-echo Ω (t) is the product of the marginal probability
of default, θ (V(t))U′ (ĉ (t)), and an integral described below. To understand why, consider
a small issuance of a (τ0, t0)-bond, located at the gray dot in figure 4.1. The bond matures as
time progresses, as depicted by the gray ray in the direction (1,−1) that starts at the issuance
point. By time t, the bond, now with a maturity τ = τ0 − (t− t0), has a marginal impact on the
repayment probability. If we multiply the term θ (V(t))U′ (ĉ (t)), inside Ω, by the term U′(c(t))

U′(ĉ(t))v
in the valuation, we obtain the marginal effect on the repayment probability:

Hence, the term θ (V(t))U′ (c (t)) reflects the marginal effect on the repayment probability at
time t.

The double integral captures how a lower repayment probability at time t impacts the rev-
enues generated by all issuances in all moments prior to t. Notice how the range of integration
covers all maturities m ∈ [0, T] in the outer integral. The inner integral covers the relevant
times prior to time t, z ∈ max {t + m− T, 0}, when the marginal effect on repayment of the
(τ, t)-bond affects the repayment probability of other bonds. These bonds are those that are still
outstanding at time t, with a maturity m—they are depicted in the vertical line at time t. The ef-

θ (V(t))U′ (c (t))︸ ︷︷ ︸
effect on repayment probability

·v (τ, t) .
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Figure 4.1: Illustration of the revenue-echo effect (axes inverted).

fect of default at time t impacts past prices in an "echo effect": Any bond price at a date prior to t
for a bond that is still outstanding at time t should include the discounted value of its price at t,
e−
´ t

z (r̂
∗(u))duψ (m, t) for a specific maturity m. For example, the price of a bond with maturity m,

ψ (m, t), affects the price of all bonds (m + t− z, z) indexed by z ∈ max {t + m− T, 0}. Each ray
that extends from the vertical line at t depicts one such family of bonds. Thus, if we multiply
the change in the repayment probability at t by e−

´ t
z (r̂

∗(u))duψ (m, t), we obtain the reduction in
the price of the (m + t− z, z)-bond. We can do the same for all bonds in m ∈ [0, T], the outer
integral, and past times z, the inner integral, to obtain the marginal effect that the (τ, t)-bond
has on all past bond prices.

time

maturity

T

t

{m, t} − bonds

vintage {τ0, t0}

impact on default at t:
θ ·U′ · v(τ, t)

impact on bond price {m1, t}

impact on bond price {m2, t}

This marginal impact on past prices affects past revenues. Thus, fix a maturity m and a date
t. If we want to get the effect on revenues of a change in past prices, we must multiply the
change in price by ι̂

(
1− (λ̄/2

)
ι̂
)
, the issuance amount net of the liquidity costs. If we use the

optimal issuance rule (2.12), revenues are proportional to:

1
2λ̄

[
1−

(
v̂ (m + t− z, z)
ψ̂ (m + t− z, z)

)2
]

.

Thus, when this term is inside the double integral, it captures the impact on past revenues of an
increase in default probabilities. We bring past reductions in revenues into the current period t
by multiplying by e

´ t
z r̂(u)du. The echo effect is present at any instant prior to the maturity of the

bond, which is why it appears as a flow in equation (4.4). When the government considers the
marginal issuance of the (τ0, t0)-bond, its valuation is the present value of all the echo effects
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Ω that last throughout the life of the bond. This reduction in revenues is part of the issuance
consideration.

In Appendix G.2 we analyze the option to default without liquidity costs. In contrast to the
case only with risk, the possibility of default makes it impossible to perfectly hedge. As long
as the cardinality of shocks is discrete, the maturity profile is indeterminate. One extreme case
of indeterminacy is that of a shock which does not produce a jump in income nor interests, but
only grants a default option. Aguiar et al. (Forthcoming) studies that shock in a discrete-time
model similar to ours but without commitment.

As in section 3.2, the computation of the solution in proposition 3 involves solving for a
fixed point in a family of time-varying debt distributions. In this case the problem is even more
complex, due to the interplay between debt management and bond prices that was absent in
previous sections. However, as with the case with risk, we can obtain a solution in the RSS.

4.3 The impact of default on maturity choice

We now continue with the quantitative analysis, but incorporate default. We calibrate the out-
put loss, κ, to 1.5 percent. This is a lower value than the 2 percent used in, for example, Aguiar
and Gopinath (2006). We calibrate a lower output loss because the literature usually assumes
reinsertion to capital markets after some periods. Here autarky is absorbing. A lower κ is meant
to produce a similar autarky value as if we allowed for reinsertion. The distribution of ε is a
logistic with coefficient ς, as is common in discrete-choice models. We set ς to 100. This num-
ber produces a default in Spain in 32 percent of the events when it is hit by an extreme shock.
Coupled with the intensity of the extreme event, φ, the unconditional default probability is 0.6
percent per year, roughly a default every 157 years—according to Reinhart and Rogoff (2009)
Spain experienced one default during the years 1877-1982. Further details on the calibration
can be found in Appendix D.

To gather a sense of the quantitative impact of default, figure 4.2 analyzes the RSS and the
post-shock transitions in an economy with the option to default that is facing an income shock.
The figure also reports the case with risk but without default, which is studied in section 3.3.
We use the labels "Default," and "No default” correspondingly. Panel (e) and panel (f) show
prices and valuations for the version with default at the RSS, the DSS, and the impact of the
shock, v(τ, 0).

The possibility of default leads to a reduction in the level and maturity of debt compared
to the case only with risk. In panel (c), we observe that the option to default produces a re-
duction in total debt in the RSS, from 35 percent to 30 percent. Four main forces are at play.
First, as in the case only with aggregate risk, there is self-insurance. Second, despite the ab-
sence of changes to the market interest rate, bond-price reaction is operative here. This is due
to the presence of the default premium, Θ

(
V
[

f̂ (·, t) , X (t)
])

, which reduces bond prices in
the RSS (see equation 4.2). Third, as discussed above, default provides additional insurance
because it limits payments in high-marginal utility paths. Fourth, the revenue-echo effect in-
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Figure 4.2: Response to a shock to income when the option to default is available. Panels (e)
and (f) refer to the case with the option to default.
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creases domestic valuations as the government internalizes how extra debt affects revenues.
Self-insurance, bond-price reaction and the echo effect are all forces toward less debt, whereas
the insurance provided by the default probability operates in the opposite sense.

The reduction in the debt stock is dominated by the echo effect. We can see this by calculat-
ing the analogue of figure 4.2, and comparing the solution with default with a myopic solution
without echo effect (Ω = 0). This comparison is reported in figure 4.3. Once we shut off the
echo effect, the RSS debt stock increases from 30 to 40 percent, a level even higher than without
the default option. This pattern reflects the trade-off between insurance and incentives. If we
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Figure 4.3: Response to a shock to income with Ω = 0 when the option to default is available.
Panels (e) and (f) refer to the case with Ω = 0.

shut down the echo effect, the possibility of default improves insurance. This extra insurance
is strong enough to reverse the effect of both self-insurance and bond-price reaction.

The shortening of maturities can also be read off from figure 4.2. We discussed above how,
despite a constant risk-free rate, the ex-ante increase in the default premium activates the bond-
price reaction force, tilting the distribution toward shorter maturities. The increase in insurance
partially offsets this effect because long-term debt has higher valuations in the RSS. Back in
figure 4.3 we see that, without the echo effect, maturity falls even further. At first, this result
seems surprising because the echo effect penalizes longer maturity bonds. However, the echo
effect reduces the debt outstanding, which lowers the default probability. Hence, the echo
effect reduces the risk premium, which mitigates the bond-price reaction force that pushes the
distribution toward shorter maturities.
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Figure H.4 in Appendix H, compares the baseline solution with default and risk aversion
with the solution assuming risk neutrality. Both solutions approximately coincide in the RSS:
the debt level, consumption, and the risk premium are almost identical. This occurs because
the insurance and incentives channels offset each other. This result is intuitive because the
echo effect is linked to the elasticity of inter-temporal substitution through the comparison of
revenues across time.

5 Extensions

To underscore the flexibility of our framework, in this section we illustrate further extensions
that bring the model closer to reality or that can help us understand the cost and benefits of the
introduction of alternative debt instruments, which connects this framework with topics that
are currently discussed in the literature.

5.1 Alternative specifications for the liquidity costs

As a first extension, we could introduce liquidity costs that also depend on the overall stock of
debt rather than only on the issued amount, in the spirit to Vayanos and Vila (2009). In that
case, valuations in the deterministic version of the model should be adjusted by a term with a
flavor similar to the revenue-echo-effect term discussed in section 4. The reasoning is similar,
even if there is no default: Given that the issuance of a bond will affect future liquidity costs,
and hence future revenues, the government should take that into account when deciding how
much debt to issue at each maturity. We can also allow for a more general function of λ̄, for
instance one that changes with the sign of issuances or with maturity. This extension can be
used to understand the impact on fiscal policy of central bank quantitative easing programs or
the role of safe assets, as in (Bianchi et al., Forthcoming). Furthermore, we can assume that λ̄ is
a stochastic process, which could be interpreted as rollover risk.

5.2 Finite issuances

Through sections 2, 3 and 4, the sovereign actively issues in a continuum of maturities. In
practice, however, countries issue only at a discrete number of maturities. One example are the
issuances of Spain, as we discuss in Appendix E. Here we show how the model is adaptable to
allow for issuances at a discrete set of points. We set the liquidity coefficient λ̄ (N) to be finite
only for a discrete number of maturities {τ1, τ2, ..., τN} as well as a function of the total number
of available maturities, N.25

For the deterministic, risk, and default cases, simple extensions to Propositions 1, 2 and 3
imply that the optimal issuance rule would be:

25Technically, issuances have to be modeled with Dirac delta functions at the issuance points, obtained as a limit
where we shrink intervals. In terms of computations, this technical detail does not matter because the maturity
space is discretized.
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ι(τ, t) =

⎧⎨
⎩

1
λ̄(N)

· ψ(τ,t)−v(τ,t)
ψ(τ,t) τ ∈ {τ1, τ2, ..., τN}

0 τ /∈ {τ1, τ2, ..., τN} ,

without changes to the valuation formulas for the three cases. To render reasonable compar-
isons, the liquidity coefficient, λ̄ (N), has to be adapted to the total number of maturities, N.
This can be done by keeping the overall customer flow constant and spreading it equally across
maturities. We can use this formulation to study, for instance, the welfare gains of increasing
the set of maturities at which the government issues.

In Appendix E, we describe how we also observe the pattern of increasing issuances by
maturity, but that the pattern holds for two groups of bonds—below and above one year. It
is easy to adapt the model to reproduce this profile, for example, by introducing a liquidity
coefficient that varies within groups of bonds. This extension can capture segmented markets
or institutional features that affect the order flow at different maturities.

The market price at time tof a consol maturing at a rate 1
τ̃ , ψc (τ̃, t), satisfies:

r∗(t)ψc (τ̃, t) = (
1
τ̃
+ δ)− 1

τ̃
ψc (τ̃, t) +

∂ψc(τ̃, t)
∂t

.

with limτ̃→0 ψc(τ̃, t) = 1. The first term in in this valuation equation,
(

1
τ̃ + δ

)
, denotes the

coupons δ and a principal repayment 1
τ̃ . The second term captures the maturity rate of the

bond, and the third term captures the change in bond prices over time. The government’s
budget constraint and law of motion of debt are:

c (t) = y (t) +
ˆ T

0

[
qc(τ̃, t, ι)ιc(τ̃, t)−

(
1
τ̃
+ δ

)
f c (τ̃, t)

]
dτ̃,

∂ f c(τ̃, t)
∂t

= ιc(τ̃, t)− 1
τ̃

f c(τ̃, t).

The solution to this problem entails the same issuance rule as in the case of finite-life bonds,
equation (2.12), but domestic valuations are now given by

r (t) vc (τ̃, t) =

(
1
τ̃
+ δ

)
− 1

τ̃
vc (τ̃, t) +

∂vc

∂t
,

1
τ̃
∈ (0, T],

5.3 Consols

To keep the state space manageable, most quantitative applications on debt management em-
ploy bonds that mature probabilistically, also known as consols (see, for example, Leland and
Toft, 1996, or Hatchondo and Martinez, 2009). Perpetuities with different coupons, proposed
by Cochrane (2015) and studied from a normative point of view by Debortoli et al. (2018), have
also received some attention. We can adapt the environment to compare the steady state and
transitions. We use the "c” superscript to refer to the consols. For concreteness, we explain the
case with perfect-foresight consols, but noting substantial would change if we were to add risk.
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with lim 1
τ̃→0 v(τ̃, t) = 1. At a steady state with positive consumption, assuming that δ = r∗ss, we

obtain that prices and valuations should satisfy ψc
ss(τ̃) = 1 and vc

ss(τ̃) =
(

r∗ss +
1
τ̃

)
/
(

ρ + 1
τ̃

)
.

The steady-state debt profile of consol coefficients is:

f c
ss (τ̃) =

τ̃ (ρ− r∗ss)

λ̄
(

ρ + 1
τ̃

) ,

and the associated profile of future debt payments, i.e., the equivalent object to the debt profile
in the case of finite-life bonds, is

f c
ss (τ) =

ˆ T

0

(
1
τ̃
+ δ

)
e−τ/τ̃ f c

ss (τ̃) dτ̃,

which has a different shape than that under finite-life bonds. The conclusion is that, in the pres-
ence of liquidity costs, the choice between consols and standard debt has important empirical
implications.

6 Conclusions

The aim of this paper is to present a framework to study debt management problems with
debt instruments that closely resemble the ones that governments issue in reality. The main
challenge of these problems is that the state variable is a distribution. A central feature of the
framework is the presence of liquidity costs that limit the possibility of immediate rebalancing
across maturities. The paper showcases a general principle: optimal issuances are proportional
to the gap between the market price of debt and its domestic valuation. In the presence of risk
and default, prices and valuations are adapted, but the principle remains the same. All in all,
the paper highlights classic forces and uncovers new ones that shape the optimal debt-maturity
distribution.

As a first step in a less explored direction, the framework naturally faces limitations. We
are optimistic about the prospect for improvement. One limitation is that we can obtain exact
solutions when shocks occur only once. This captures, up to a first order, expected impulse
responses. An extension that admits recurrent shocks faces the same computational challenges
as heterogeneous agent models with aggregate shocks. Second, we consider a specific form of
liquidity costs. However, as we stress throughout the paper, the framework can be extended to
allow for more general liquidity costs that, for instance, vary with maturity and the amount of
outstanding debt. Finally, when we study default, we assume that the government can commit
to an issuance path. The challenge of a solution without commitment is that we will have
to compute terms that capture how current actions disciplines the future self. We leave these
interesting issues for future research.
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A Equivalence between PDE and integral formulations

Valuations and prices are a given by continuous-time net present value formulae. Their PDE representation is
the analogue of the recursive representation in discrete time and the integral formulation is the equivalent of the
sequence summations. The solutions to each PDE can be recovered easily via the method of characteristics or
as an immediate application of the Feynman-Kac formula. All of the PDEs in this paper have an exact solution
contained in table A.

Table 1: Equivalence between PDE and integral formulations.

Price (PF) PDE r∗ (t)ψ(τ, t) = δ + ∂ψ
∂t − ∂ψ

∂τ ; ψ(0, t) = 1

Integral e−
´ t+τ

t r∗(u)du + δ
´ t+τ

t e−
´ s

t r∗(u)duds
Valuation (PF) PDE r (t) v (τ, t) = δ + ∂v

∂t − ∂v
∂τ ; v(0, t) = 1

Integral e−
´ t+τ

t r(u)du + δ
´ t+τ

t e−
´ s

t r(u)duds

Price (risk) PDE r̂∗ (t) ψ̂(τ, t) = δ + ∂ψ̂
∂t − ∂ψ̂

∂τ + φEX
t
[
ψ (τ, t, Xt)− ψ̂ (τ, t)

]
; ψ̂(0, t) = 1

Integral e−
´ t+τ

t (r̂∗(u)+φ)du +
´ t+τ

t
(
δ + ψ̂ (τ − s, t + s)

)
e−
´ s

t (r̂
∗(u)+φ)duds

Valuation (risk) PDE r̂∗ (t) v̂(τ, t) = δ + ∂v̂
∂t − ∂v̂

∂τ + φEX
t [v (τ, t, Xt)− v̂ (τ, t)] ; v̂(0, t) = 1

Integral e−
´ t+τ

t (r̂(u)+φ)du +
´ t+τ

t

(
δ + v (τ − s, t + s) U′(c(t+s))

U′(ĉ(t+s))

)
e−
´ s

t (r̂(u)+φ)duds

Price (default) PDE r̂∗ (t) ψ̂(τ, t) = δ + ∂ψ̂
∂t − ∂ψ̂

∂τ + φEX
t

[
Φ
(

V
[

f̂ (·, t)
])

ψ (τ, t, Xt)− ψ̂ (τ, t)
]

; v(0, t) = 1

Integral e−
´ t+τ

t (r̂∗(u)+φ)du +
´ t+τ

t e−
´ s

t (r̂
∗(u)+φ)du

(
δ + φEX

s

[
Θ
(

V
[

f̂ (·, t)
])

ψ (τ − s, t + s)
])

ds

Valuation (default) PDE r̂∗ (t) v̂ (τ, t) = δ + ∂v̂
∂t − ∂v̂

∂τ + φ
(

EX
s

[
(Θ (V(t)) + Ω(t)) U′(c(t))

U′(ĉ(t))v (τ, t)
]
− v̂ (τ, t)

)
; v̂(0, t) = 1

Integral e−
´ t+τ

t (r̂∗(s)+φ)ds +
´ t+τ

t e−
´ s

t (r̂
∗(u)+φ)du

(
δ + φEX

s

[(
Ω(t + s) + Θ

(
V
[

f̂ (·, t + s)
]))

U′(c(t+s))
U′(ĉ(t+s))v (τ − s, t + s)

])
ds

Debt Profile PDE
∂ f
∂t = ι (τ, t) + ∂ f

∂τ

Integral f (τ, t) =
´ min{T,τ+t}

τ ι(s, t + τ − s)ds + I[T > t + τ] · f (0, τ + t)
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B Micro model of liquidity costs

B.1 Environment

Here we describe the microeconomic model of the liquidity costs in more detail. This is a wholesale retail model
of the secondary market of sovereign bonds. Without loss of generality, we focus on the issuance of ι(τ, t)-bonds
at time t with maturity τ. We define s as the amount of time passed since the auction. The outstanding amount of
bonds in the hands of an atomistic banker, after a period of time s has passed after the issuance of the bond is:

I (s; ι(τ, t)) = max(ι(τ, t)− μyss · s, 0).

This implies that the bond inventory is exhausted by time:

s̄ =
ι(τ, t)
μyss

.

We consider that individual orders arrive randomly according to a Poisson distribution. The intensity at which
bonds are sold per unit of time is given by:

γ(t,τ) (s) =
μyss

I (s; ι(τ, t))

=
1

s̄− s
for s ∈ [0, min{τ, s̄}) .

This intensity γ(t,τ) (s) is defined only between [0, min{τ, s̄}), because after the bond matures or after the stock is
exhausted, there is no further selling.

B.2 Valuations

Investor’s valuation. At time t + s, after a period of time s has passed since the auction, the time to maturity is
τ′ = τ − s . The valuation of the bond by investors is defined as:

ψ(t,τ)(τ′, s) ≡ ψ(τ − s, t + s).

They are risk neutral and discount future payoffs at the international market rate. Hence, the price equation
satisfies the PDE (2.4):

r∗(t + s)ψ(t,τ)(τ′, s) = δ− ∂ψ(t,τ)

∂τ′ +
∂ψ(t,τ)

∂t
,

with the terminal condition of ψ(t,τ)(0, s) = 1.
Banker’s valuation. Now consider the valuation of the cash flows of the bond from the perspective of the

banker q(t,τ)(τ′, s). Bankers are risk neutral but have a higher cost of capital. At each moment t + s bankers meet
investors and sell at a price ψ(t,τ)(τ′, s). The valuation of the bankers, q(t,τ)(τ′, s) satisfies:

(r∗(t + s) + η)q(t,τ)(τ′, s) = δ− ∂q(t,τ)

∂τ′ +
∂q(t,τ)

∂t
+ γ(t,τ) (s)

(
ψ(t,τ)(τ′, s)− q(t,τ)(τ′, s)

)
. (B.1)

This expression takes this form because the banker extracts surplus
(

ψ(t,τ)(τ′, s)− q(t,τ)(τ′, s)
)

when he is matched

to an investor. Before a match, bankers earn the flow utility, but upon a match, their value jumps to ψ(t,τ) − q(t,τ).
This jump arrives with endogenous intensity γ(t,τ) (s). The complication with this PDE is its terminal condition.

If s̄ ≤ τ, the PDE’s terminal condition is given by q(t,τ)(τ′, s̄) = ψ(t,τ)(τ′, s̄). If s̄ > τ, the corresponding terminal
condition is q(t,τ)(0, s) = 1, since by the expiration date, the investor is paid the principal equal to 1.
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26Notice that we have directly replaced the value ψ(t,τ)(τ′, s) = ψ(τ − s, t + s).

Competitive Auction Price. On the date of the auction, s = 0, τ′ = τ, the banker pays his expected bond
valuation, hence the bond price demand faced by the government is:

q(ι, τ, t) ≡ q(t,τ)(τ, 0).

This is because banks have free entry into the auction. In equation (2.3) we expressed q(ι, τ, t) as q(ι, τ, t) =

ψ(τ, t)− λ(ι, τ, t). Thus,
λ(ι, τ, t) = ψ(τ, t)− q(ι, τ, t),

is the object we are trying to find.

B.3 Solution

We now provide a first order linear approximation for the price at the auction, q(ι, τ, t), for small issuances. The
result is given by the following proposition:

Proposition 4. A first-order Taylor expansion around ι = 0 yields a linear auction price:

q(ι, τ, t) ≈ ψ(τ, t)− 1
2

η

μyss
ψ(τ, t)ι(τ, t). (B.2)

Thus, the approximate liquidity cost function is λ (τ, t, ι) ≈ 1
2 λ̄ψ(τ, t)ι(τ, t) where the price impact is given by λ̄= η

μyss
.

Proof. Step 1. Exact solutions. The solution to q(ι, τ, t) falls into one of two cases. Case 1. If s̄ ≤ τ, then:

q(ι, τ, t) =
´ s̄

0 e−
´ v

0 (r
∗(t+u)+η)du (δ(s̄− v) + ψ(τ − v, t + v)) dv

s̄
. (B.3)

Case 2. If s̄ > τ, then:

q(ι, τ, t) =

ˆ τ

0
e−
´ s

0 (r
∗(t+u)+η)du

(
δ(s̄− v) + ψ(τ − v, t + v)

s̄

)
dv

+e−
´ τ

0 (r∗(t+u)+η)du (s̄− τ)

s̄
. (B.4)

We solve the PDE for q depending on the corresponding terminal conditions, q(t,τ)(τ′, s̄) = ψ(t,τ)(τ′, s̄) and
q(t,τ)(0, s) = 1.

Case 1. Consider the first case. The general solution to the PDE equation for q(t,τ)(τ′, s) is,

ˆ s̄−s

0
e−
´ v

0 (r
∗(t+u)+η+γ(u))du (δ + γ(s + v)ψ(τ − v, t + v)) dv + (B.5)

e−
´ s̄−s

0 (r∗(t+u)+η+γ(u))duψ(τ′ − (s̄− s), t + (s̄− s)).

This can be checked by taking partial derivatives with respect to time and maturity and applying Leibniz’s
rule.26 Consider the exponentials that appear in both terms of equation (B.5). These can be decomposed into

e−
´ v

0 [r
∗(t+u)+η]due−

´ v
0 γ(u)du. Then, by definition of γ we have:

e−
´ v

0 γ(u)du = e−
´ v

0
1

s̄−u du

=
(s̄− v)

s̄
. (B.6)



BANCO DE ESPAÑA 57 DOCUMENTO DE TRABAJO N.º 1919

27For every τ < s̄, i.e. in Case 2, it will be analogous since we are taking the limit when s̄ converges to zero.

Thus, using (B.6) in (B.5) we can re-express it as:

q(t,τ)(τ′, s) =

ˆ s̄−s

0
e−
´ v

0 (r
∗(t+u)+η)du (s̄− v)

s̄
(δ + γ(s + v)ψ(τ − v, t + v)) dv

+e−
´ s̄−s

0 (r∗(t+u)+η)du s
s̄

ψ(τ′ − (s̄− s), t + s̄).

When we evaluate this expression at s = 0, τ′ = τ, and we replace γ(v) = 1
s̄−v , we arrive at:

q(ι, τ, t) ≡ q(t,τ)(τ, 0)

=

ˆ s̄

0
e−
´ v

0 (r
∗(t+u)+η)du

(
(s̄− v)

s̄
δ +

ψ(τ − v, t + v)
s̄

)
dv.

Case 2. The proof in the second case runs parallel to Case 1 above. The general solution to the PDE in this case is:

q(t,τ)(τ′, s) =

ˆ τ′

0
e−
´ v

0 (r
∗(t+u)+η+γ(u))du (δ + γ(s + v)ψ(τ − v, t + v)) dv

+e−
´ v

0 (r
∗(t+u)+η+γ(u))du.

When we evaluate this expression at s = 0, τ′ = τ :

q(ι, τ, t) =

ˆ τ

0
e−
´ s

0 (r
∗(t+u)+η)du (s̄− v)

s̄

(
δ +

ψ(τ − v, t + v)
(s̄− v)

)
dv

+e−
´ τ

0 (r∗(t+u)+η)du (s̄− τ)

s̄
.

Step 2. Limit Behavior of q(ι, τ, t). Price with zero issuances. Consider the limit ι(τ, t) −→ 0 for any τ > 0, which
implies that s̄ −→ 0. For both Case 1 and Case 2, equations (B.3) and (B.4),27 it holds that:

lim
ι(τ,t)−→0

q(ι, τ, t) = lim
s̄−→0

´ s̄
0 e−

´ s
0 (r

∗(t+u)+η)du (δ(s̄− s) + ψ(τ − s, t + s)) ds
s̄

.

Now, both the numerator and the denominator converge to zero as we take the limits. Hence, by L’Hôpital’s rule,
the limit of the price is the limit of the ratio of derivatives. The derivative of the numerator is obtained via Leibniz’s
rule and thus,

lim
ι(τ,t)−→0

q(ι, τ, t) = lim
s̄−→0

[
e−
´ s

0 (r
∗(t+u)+η)du(δ(s̄− s) + ψ(τ − s, t + s))

]
|s=s̄

1

= lim
s̄−→0

e−
´ s̄

0 (r
∗(t+u)+η)duψ(τ − s̄, t + s̄)

= ψ(τ, t).

Step 3. Linear approximation of q(ι, τ, t). The first order approximation of the function q(ι, τ, t), the price at the

auction, around ι = 0 is given by:

q(ι, τ, t) � q(ι, τ, t) |ι=0 +
∂q(ι, τ, t)

∂ι
|ι=0 ι(τ, t).
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We computed the first term in step 2. It is given by ψ(τ, t). Thus, our objective will be to obtain ∂q(ι,τ,t)
∂ι |ι=0.

Observe that by definition of s̄, it holds that:

∂q(ι, τ, t)
∂ι

=
∂s̄
∂ι

∂q(ι, τ, t)
∂s̄

=
1

μyss

∂q(ι, τ, t)
∂s̄

,

where we have applied the fact that s̄ = ι(τ,t)
μyss

. For further reference, note that

∂q(ι, τ, t)
∂ι

|ι=0= lim
s̄→0

∂q(ι, τ, t)
∂s̄

1
μyss

. (B.7)

Step 3.1. Derivative ∂q(ι,τ,t)
∂s̄ . Consider the price function corresponding to Case 1. The derivative of the price

function with respect to s̄ is given by:

∂q(ι, τ, t)
∂s̄

=
∂

∂s̄

(´ s̄
0 e−

´ s
0 (r

∗(t+u)+η)du (δ(s̄− s) + ψ(τ − s, t + s)) ds
s̄

)

=
e−
´ s̄

0 (r
∗(t+u)+η)duψ(τ − s̄, t + s̄) +

´ s̄
0 δe−

´ s
0 (r(t+u)+η)duds

s̄

−
´ s̄

0 e−
´ s

0 (r
∗(t+u)+η)du (δ(s̄− s) + ψ(τ − s, t + s)) ds

s̄2

=
e−
´ s̄

0 (r
∗(t+u)+η)duψ(τ − s̄, t + s̄) +

´ s̄
0 δe−

´ s
0 (r

∗(t+u)+η)duds− q(ι, τ, t)
s̄

. (B.8)

Note that in the last line we used the definition of q(ι, τ, t) as given for Case 1.
Step 3.2. Re-writing the limit of ∂q(ι,τ,t)

∂s̄ . To obtain ∂q(ι,τ,t)
∂ι |ι=0 we compute lims̄→0

∂q(ι,τ,t)
∂s̄ using equation (B.8).

In equation (B.8) both the numerator and denominator converge to zero as s̄ −→ 0.28 Thus, we employ L’Hôpital’s
rule to obtain the derivative of interest. The derivative of the denominator is 1. Thus, the limit of (B.8) is now
given by:

lim
s̄−→0

∂q(ι, τ, t)
∂s̄

= lim
s̄−→0

∂

∂s̄

[
e−
´ s̄

0 (r
∗(t+u)+η)duψ(τ − s̄, t + s̄) +

ˆ s̄

0
δe−

´ s
0 (r

∗(t+u)+η)duds− q(ι, τ, t)
]

. (B.9)

Step 3.3. Consider the first two terms of (B.9). Applying Leibniz’s rule:

lim
s̄−→0

{(
− ∂

∂τ
ψ(τ − s̄, t + s̄) +

∂

∂t
ψ(τ − s̄, t + s̄)− (r∗(t + s̄) + η)ψ(τ − s̄, t + s̄)

)
e−
´ s̄

0 (r
∗(t+u)+η)du

+δe−
´ s̄

0 (r
∗(t+u)+η)du

}
.

The previous limit is given by:

− ∂

∂τ
ψ(τ, t) +

∂

∂t
ψ(τ, t)− (r∗(t) + η)ψ(τ, t) + δ.

28The limits of the three terms in the numerator of equation (B.8) are respectively:

lim
s̄−→0

ˆ s̄

0
e−
´ s

0 (r(t+u)+η)duds = 0,

lim
s̄−→0

e−
´ s̄

0 (r(t+u)+η)duψ(τ − s̄, t + s̄)) = ψ(τ, t),

lim
s̄−→0

q(ι, τ, t) = ψ(τ, t).
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Using the valuation of the international investors, we can rewrite the previous equation as:

− ∂

∂τ
ψ(τ, t) +

∂

∂t
ψ(τ, t)− (r∗(t) + η)ψ(τ, t) + δ = r∗(t)ψ(τ, t)− (r∗(t) + η)ψ(τ, t)

= −ηψ(τ, t). (B.10)

This the first two terms of the limit of ∂q(ι,τ,t)
∂s̄ are equal to −ηψ(τ, t). Computing the limit of ∂q(ι,τ,t)

∂s̄ : last term. The
last term of (B.9) is given by

− lim
s̄−→0

∂q(ι, τ, t)
∂s̄

= − lim
s̄−→0

∂q(ι, τ, t)
∂ι

∂ι

∂s̄

= −∂q(ι, τ, t)
∂ι

|ι=0 μyss, (B.11)

where we used (B.7). Thus, from (B.10) and (B.11), the derivative (B.8) is given by:

lim
s̄−→0

∂q(ι, τ, t)
∂s̄

= −∂q(ι, τ, t)
∂ι

|ι=0 μyss − ηψ(τ, t). (B.12)

Plugging (B.12) in (B.7) we obtain that:

∂q(ι, τ, t)
∂ι

�ι=0 =

(
−μyss

∂q(ι, τ, t)
∂ῑ

�ι=0 − ηψ(τ, t)
)

1
μyss

.

Rearranging terms, we conclude that:
∂q(ι, τ, t)

∂ι
�ι=0 = −ηψ(τ, t)

2μyss
. (B.13)

Step 4. Taylor expansion. A first-order Taylor expansion around zero emissions yields:

q(ι, τ, t) � q(ι, τ, t) |ι=0 +
∂q(ι, τ, t)

∂ι
|ι=0 ι(τ, t),

= ψ(τ, t)− ηψ(τ, t)
2μyss

ι(τ, t).

where we used (B.13). We can define price impact as λ̄ = η
μyss

. This concludes the proof.

C Proofs

C.1 Proof of Proposition 1

Proof. First we construct a Lagrangian on the space of functions g such that are Lebesgue integrable,
∥∥∥e−ρt/2g (τ, t)

∥∥∥2
<

∞. The Lagrangian, after replacing c(t) from the budget constraint, is:

L [ι, f ] =

ˆ ∞

0
e−ρtU

(
y (t)− f (0, t) +

ˆ T

0
[q (τ, t, ι) ι (τ, t)− δ f (τ, t)] dτ

)
dt

+

ˆ ∞

0

ˆ T

0
e−ρt j (τ, t)

(
−∂ f

∂t
+ ι (τ, t) +

∂ f
∂τ

)
dτdt,

where j (τ, t) is the Lagrange multiplier associated to the law of motion of debt.
We consider a perturbation h (τ, t) , e−ρth ∈ L2 ([0, T]× [0, ∞)), around the optimal solution. Since the initial

distribution f0 is given, any feasible perturbation must satisfy h (τ, 0) = 0. In addition, we know that f (T, t) = 0
because f (T+, t) = 0 (by construction) and issuances are infinitesimal. Thus, any admissible variation must
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also feature h (T, t) = 0. At an optimal solution f , the Lagrangian must satisfyL [ι, f ] ≥ L [ι, f + αh] for any
perturbation h(τ, t).

Taking the derivative with respect to α —i.e., computing the Gâteaux derivative, for any suitable h (τ, t) we
obtain:

d
dα
L [ι, f + αh]

∣∣∣∣
α=0

=

ˆ ∞

0
e−ρtU′ (c(t))

[
−h (0, t)−

ˆ T

0
δh (τ, t) dτ

]
dt

−
ˆ ∞

0

ˆ T

0
e−ρt ∂h

∂t
j (τ, t) dτdt

+

ˆ ∞

0

ˆ T

0
e−ρt ∂h

∂τ
j (τ, t) dτdt.

We employ integration by parts to show that:

ˆ ∞

0

ˆ T

0
e−ρt ∂h

∂t
j (τ, t) dτdt =

ˆ T

0

ˆ ∞

0
e−ρt ∂h

∂t
j (τ, t) dtdτ

=

ˆ T

0

(
lim
s→∞

e−ρsh (τ, s) j (τ, s)]− h (τ, 0) j (τ, 0)
)

dτ

−
ˆ T

0

ˆ ∞

0
e−ρt

(
∂j (τ, t)

∂t
− ρj (τ, t)

)
h(τ, t)dtdτ,

and

ˆ ∞

0
e−ρt
ˆ T

0

∂h
∂τ

j (τ, t) dτdt =

ˆ ∞

0
e−ρt

[
h (T, t) j (T, t)− h (0, t) j (0, t)−

ˆ T

0
h(τ, t)

∂j
∂τ

dτ

]
dt.

Replacing these calculations in the Lagrangian, and equating it to zero, yields:

0 =

ˆ ∞

0
e−ρtU′ (c(t))

[
−h (0, t)−

ˆ T

0
δh (τ, t) dτ

]
dt

+

ˆ ∞

0

ˆ T

0
e−ρt

(
−ρj− ∂j

∂τ
+

∂j
∂t

)
h (τ, t) dτdt

+

ˆ ∞

0
e−ρt (h (T, t) j (T, t)− h (0, t) j (0, t)) dt

−
ˆ ∞

0
lim
s→∞

e−ρsh (τ, s) j (τ, s) dτ + h (τ, 0) j (τ, 0) .

We rearrange terms to obtain:

0 = −
ˆ ∞

0
e−ρt [U′ (c(t))− j (0, t)

]
h (0, t) dt

+

ˆ ∞

0

ˆ T

0
e−ρt

(
−ρj−U′ (c) δ− ∂j

∂τ
+

∂j
∂t

)
h (τ, t) dτdt (C.1)

−
ˆ ∞

0
e−ρt (h (T, t) j (T, t)) dt

−
ˆ ∞

0
lim
s→∞

e−ρsh (τ, s) j (τ, s) dτ + h (τ, 0) j (τ, 0) .

Since h (T, t) = h (τ, 0) = 0 is a condition for any admissible variation, then, both the third line in equation (C.1)
and the second term in the fourth line are equal to zero. Furthermore, because (C.1) needs to hold for any feasible
variation h(τ, t), all the terms that multiply h(τ, t) should equal zero. The latter, yields a system of necessary
conditions for the Lagrange multipliers:
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ρj (τ, t) = −δU′ (c (t)) +
∂j
∂t
− ∂j

∂τ
, if τ ∈ (0, T], (C.2)

j (0, t) = −U′ (c (t)) , if τ = 0,

lim
t→∞

e−ρt j (τ, t) = 0, if τ ∈ (0, T].

Next, we perturb the control. We proceed in a similar fashion:

d
dαL [ι + αh, , f ]

∣∣∣
α=0

=

ˆ ∞

0
e−ρtU′ (c(t))

[ˆ T

0

(
∂q
∂ι

ι (τ, t) + q (τ, t, ι)

)
h (τ, t) dτ

]
dt

+

ˆ ∞

0

ˆ T

0
e−ρth (τ, t) j (τ, t) dτdt.

Collecting terms and setting the Lagrangian to zero, we obtain:

ˆ ∞

0

ˆ T

0
e−ρt

[
j (τ, t) + U′ (c(t))

(
∂q
∂ι

ι (τ, t) + q (τ, t, ι)

)]
h (τ, t) dτdt = 0.

Thus, setting the term in parenthesis to zero, amounts to setting:

U′ (c(t))
(

∂q
∂ι

ι (τ, t) + q (τ, t, ι)

)
= −j (τ, t) . (C.3)

Next, we define the Lagrange multiplier in terms of goods:

v (τ, t) = −j (τ, t) /U′ (c (t)) . (C.4)

Taking the derivative of v (τ, t) with respect to t and τ we can express the necessary conditions, (C.2) in terms of
v. In particular, we transform the PDE in (C.2) into the summary equations in the Proposition. That is:

(
ρ− U′′ (c (t)) c (t)

U′ (c (t))
ċ(t)
c (t)

)
v (τ, t) = δ +

∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T],

v (0, t) = 1, if τ = 0,

lim
t→∞

e−ρtv (τ, t) = 0, if τ ∈ (0, T];

and the first-order condition, (C.3), is now given by:

∂q
∂ι

ι (τ, t) + q (τ, t, ι) = v (τ, t)

as we intended to show.

C.2 Duality

Given a path of resources y(t), the primal problem, the one solved in section 2, is given by:

V [ f (·, 0)] = max
{ι(τ,t),c(t)}t∈[0,∞),τ∈[0,T]

ˆ ∞

t
e−ρ(s−t)u(c(s))ds s.t.

c (t) = y (t)− f (0, t) +
ˆ T

0
[q (τ, t, ι) ι(τ, t)− δ f (τ, t)] dτ

∂ f
∂t

= ι(τ, t) +
∂ f
∂τ

; f (τ, 0) = f0(τ).

Here we show that this problem has a dual formulation. This dual formulation, minimizes the resources needed
to sustain a given path of consumption c(t):
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D [ f (·, 0)] = min
{ι(τ,t)}t∈[0,∞),τ∈[0,T]

ˆ ∞

0
e−
´ t

0 r(s)dsy(t)dt s.t.

c (t) = y (t)− f (0, t) +
ˆ T

0
[q(τ, t, ι)ι(τ, t)− δ f (τ, t)] dτ

∂ f
∂t

= ι(τ, t) +
∂ f
∂τ

; f (τ, 0) = f0(τ)

r(t) = ρ− U′′ (c (t)) c (t)
U′ (c (t))

ċ(t)
c (t)

.

Proposition 5. Consider the solution {c∗(t), ι∗(τ, t), f ∗(τ, t)}t≥0,τ∈(0,T] to the Primal Problem given f0. Then, given the
path of consumption c∗(t), {y∗(t), ι∗(τ, t), f ∗(τ, t)}t∈[0,∞),τ∈(0,T] solves the Dual Problem where:

y∗ (t) = c∗ (t) + f ∗ (0, t) +
ˆ T

0
[q(τ, t, ι∗)ι∗(τ, t)− δ f ∗ (τ, t)] dτ.

Proof. Step 1. We start following the steps of Proposition 1. We construct the Lagrangian for the Dual Problem in
the space

∥∥∥e−ρt/2g (τ, t)
∥∥∥2

< ∞. After replacing the resources y(t) needed to support a path of consumption c(t)
the budget constraint, is:

L [ι, f ] =

ˆ ∞

0
e−
´ t

0 r(t)ds

(
c (t) + f (0, t)−

ˆ T

0
[q (τ, t, ι) ι (τ, t)− δ f (τ, t)] dτ

)
dt

+

ˆ ∞

0

ˆ T

0
e−
´ t

0 r(t)dsv (τ, t)
(
−∂ f

∂t
+ ι (τ, t) +

∂ f
∂τ

)
dτdt,

where v (τ, t) is the Lagrange multiplier associated to the law of motion of debt. We again consider a perturbation
h (τ, t) , e−ρth ∈ L2 ([0, T]× [0, ∞)), around the optimal solution. Recall that because f0 is given, and f (T, t) = 0,
any feasible perturbation needs to meet: h (τ, 0) = 0 and h (T, t) = 0. At an optimal solution f , it must be the case
that L [ι, f ] ≥ L [ι, f + αh] for any feasible perturbation h(τ, t). This implies that

∂

∂α
L [ι, f + αh]

∣∣∣∣
α=0

=

ˆ ∞

0
e−
´ t

0 r(t)ds

[
h (0, t) +

ˆ T

0
δh (τ, t) dτ

]
dt

−
ˆ ∞

0

ˆ T

0
e−
´ t

0 r(t)ds ∂h
∂t

v (τ, t) dτdt

+

ˆ ∞

0

ˆ T

0
e−
´ t

0 r(t)ds ∂h
∂τ

v (τ, t) dτdt.

We again employ integration by parts to show that:

ˆ ∞

0

ˆ T

0
e−
´ t

0 r(t)ds ∂h
∂t

v (τ, t) dτdt =

ˆ T

0

ˆ ∞

0
e−
´ t

0 r(t)dsv (τ, t)
∂h
∂t

dtdτ

=

ˆ T

0

(
lim
s→∞

e−
´ t

0 r(t)dsh (τ, s) v (τ, s)]− h (τ, 0) v (τ, 0)
)

dτ

−
ˆ T

0

ˆ ∞

0
e−
´ t

0 r(t)ds
(

∂v (τ, t)
∂t

− r(t)v (τ, t)
)

h(τ, t)dtdτ

=

ˆ T

0

(
lim
s→∞

e−
´ t

0 r(t)dsh (τ, s) v (τ, s)− h (τ, 0) v (τ, 0)
)

dτ −
ˆ ∞

0
e−
´ s

0 r(u)du
ˆ T

0

(
∂v (τ, t)

∂t
− r(t)v (τ, t)

)
h(τ, t)dτdt,
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and

ˆ ∞

0
e−
´ t

0 r(t)ds
ˆ T

0

∂h
∂τ

v (τ, t) dτdt =

ˆ ∞

0
e−
´ t

0 r(t)ds

[
h (T, t) v (T, t)− h (0, t) v (0, t)−

ˆ T

0
h(τ, t)

∂v
∂τ

dτ

]
dt.

Replacing these calculations in the Lagrangian, and equating it to zero, yields:

0 =

ˆ ∞

0
e−
´ t

0 r(t)ds

[
h (0, t) +

ˆ T

0
δh (τ, t) dτ

]
dtt

+

ˆ ∞

0

ˆ T

0
e−
´ t

0 r(t)ds
(
−r(t)v− ∂v

∂τ
+

∂v
∂t

)
h (τ, t) dτdt

+

ˆ ∞

0
e−
´ t

0 r(t)ds (h (T, t) v (T, t)− h (0, t) v (0, t)) dt

−
ˆ ∞

0
lim
s→∞

e−
´ s

0 r(u)duh (τ, s) v (τ, s) dτ.

Again, the previous equation needs to hold for any feasible variation h(τ, t), all the terms that multiply h(τ, t)
should be equal to zero. The latter, yields a system of necessary conditions for the Lagrange multipliers, and
substituting for the value of r(t):

(
ρ− U′′ (c (t)) c (t)

U′ (c (t))
ċ(t)
c (t)

)
v (τ, t) = δ +

∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T], (C.5)

v (0, t) = 1, if τ = 0,

lim
t→∞

e−ρtv (τ, t) = 0, if τ ∈ (0, T].

By proceeding in a similar fashion with the control we arrive to:(
∂q
∂ι

ι (τ, t) + q (τ, t, ι)

)
= −v (τ, t) . (C.6)

Note that system of equation (C.5) to (C.6) plus the budget constraint, the law of motion of debt, and initial debt
f0, are precisely the conditions that characterize the solution of the primal problem.

C.3 Asymptotic behavior

Here we formally prove the limit conditions that we discussed after Proposition 1. In particular, we provide a
complete asymptotic characterization. The following Proposition provides a summary.

Proposition 6. Assume that ρ > r∗ss, there exists a steady state if and only if λ̄ > λ̄o for some λ̄o. If instead, λ̄ ≤ λ̄o, there
is no steady state but consumption converges asymptotically to zero. In particular, the asymptotic behavior is:

Case 1 (High Liquidity Costs). For liquidity costs above the threshold value λ̄ > λ̄o, variables converge to a steady
state characterized by the following system:

ċss

css
= 0

rss = 0 (C.7)

ιss(τ) =
ψss(τ)− vss(τ)

λ̄ψss (τ)
, (C.8)

vss(τ) =
δ

ρ
(1− e−ρτ) + e−ρτ (C.9)

fss(τ) =

ˆ T

τ
ιss(s)ds (C.10)
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css = yss − fss(0) +
ˆ T

0

[
ψss(τ)ιss(τ)− λ̄ψss (τ)

2
ιss(τ)

2 − δ fss(τ)

]
. (C.11)

Case 2 (Low Liquidity Costs). For liquidity costs below the threshold value 0 < λ̄ ≤ λ̄o, variables converge asymp-
totically to:

lim s→∞
c(s)
c(t)

= e−
(ρ−r∞(λ̄))(s−t)

σ

v∞(τ, r∞(λ̄)) =
δ

r∞(λ̄)
(1− e−r∞(λ̄)τ) + e−r∞(λ̄)τ

ι∞(τ, r∞(λ̄)) =
ψss(τ)− v∞(τ, r∞(λ̄))

λ̄ψss (τ)

f∞(τ, r∞(λ̄)) =

ˆ T

τ
ι∞(s, r∞(λ̄))ds

where r∞(λ̄) satisfies r∗ss ≤ r∞(λ̄) < ρ and solves:

c∞ = 0

= yss − f∞(0, r∞(λ̄)) +

ˆ T

0

[
ι∞(τ, r∞(λ̄))ψ(τ)− λ̄ψss (τ, t)

2
ι∞(τ, r∞(λ̄))2 − δ f∞(τ, r∞(λ̄))

]
dτ.

Threshold. The threshold λ̄o solves |css|λ̄=λ̄o
= 0 in (C.11) and limλ̄→λ̄o

r∞(λ̄) = ρ.

Proof. Step 1. First observe that as λ̄ → ∞, the optimal issuance policy (2.12) approaches ι(τ, t) = 0. Thus, for that
limit, css = y > 0 and fss(τ) = 0.

Step 2. Next, consider the system in Case 1 of Proposition 6 as a guess of a solution. Note that equations (C.8)
to (C.11) meet the necessary conditions of Proposition 1 as long as r(t) = ρ. This because: ιss(τ) meets the first
order condition with respect to the control; vss(τ) solves the PDE for valuations; given ιss(τ) and vss(τ) the stock
of debt solves the KFE, thus, is given by

´ T
τ ιss(s)ds; and consumption is pinned down by the budget constraint.

In addition, by construction, consumption determined in (C.11) does not depend on time; i.e. ċ(t) = 0 and this
implies that

rss ≡ r(t) = ρ.

Thus, the only thing we need to check is that there exists some λ̄ finite such that consumption is positive.

Step 3. The system in equations (C.8) to (C.11) is continuous in λ̄. Therefore, because css = y > 0 for λ̄ → ∞,
there exists a value of λ̄ such that the implied consumption by equations (C.8) to (C.11) is positive.

Step 4. We now prove that there is an interval where this solution holds. In particular, we will show that css

decreases as λ̄ increases. Observe that, steady state internal valuations vss(τ) in (C.9) and bond prices ψ(τ) are
independent of λ̄. Steady-state debt issuance’s ιss(τ) in (C.8) are a monotonously decreasing function of λ̄, because

∂ιss (τ)

∂λ̄
= − 1

λ̄
ιss (τ) < 0,

and therefore the total amount of debt at each maturity fss(τ) in (C.10) is also decreasing with λ̄, because

∂ fss (τ)

∂λ̄
= − 1

λ̄
fss (τ) < 0.
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If we take derivatives with respect to λ̄ in the budget constraint (C.11) we obtain:

∂css

∂λ̄
= − ∂ fss (0)

∂λ̄
+

ˆ T

0

[
ψss(τ)

∂ιss (τ)

∂λ̄
− ψss (τ)

2
ιss(τ)

2 − λ̄ψss (τ) ιss (τ)
∂ιss (τ)

∂λ̄
− δ

∂ fss (τ)

∂λ̄

]
dτ

=
1
λ̄

fss (0)− 1
λ̄

ˆ T

0

[
ψss(τ)ιss (τ) + λ̄

ψss (τ)

2
ιss(τ)

2 − λ̄ψss (τ) ιss (τ)
2 − δ fss (τ)

]
dτ

= − 1
λ̄

css < 0.

Observe that ιss (τ) can be made arbitrarily small by increasing λ̄. Thus, there exists a value of λ̄ ≥ 0 such that
css = 0 in the system above. We denote this value by λ̄o.

Step 5. For λ̄ ≤ λ̄o, if a steady state existed, it would imply css < 0, outside of the range of admissible
values. Therefore, there is no steady state in this case. Assume that the economy grows asymptotically at rate
g∞

(
λ̄
) ≡ limt→∞

1
c(t)

dc
dt . If g∞

(
λ̄
)
> 0 then consumption would grow to infinity, which violates the budget

constraint. Thus, if there exists an asymptotic the growth rate, it is negative: g∞
(
λ̄
)
< 0. If we define r∞

(
λ̄
)

as

r∞
(
λ̄
) ≡ (

ρ + σg
(
λ̄
))

< ρ,

the growth rate of the economy can be expressed as

g∞
(
λ̄
)
= −

(
ρ− r∞

(
λ̄
))

σ
.

When this is the case, the asymptotic valuation is

v∞
(
τ, r∞

(
λ̄
))

=
δ
(

1− e−r∞(λ̄)τ
)

r∞
(
λ̄
) + e−r∞(λ̄)τ .

To obtain the discount factor bounds, observe that if v∞
(
τ, r∞

(
λ̄
)) ≤ ψss (τ) the optimal issuance is non-negative.

Otherwise issuances would be negative at all maturities and the country would be an asymptotic net asset holder.
This cannot be an optimal solution as this implies that consumption can be increased just by reducing the amount
of foreign assets. Therefore, r∞

(
λ̄
) ≥ r∗. Finally, by definition r∞

(
λ̄
)
< ρ.

C.4 No liquidity costs: λ̄ = 0
Proposition 7. (Optimal Policy with Liquid Debt) Assume that λ (τ, t, ι) = 0. If a solution exists, then consumption
satisfies equation (2.11) with r∗(t) = r (t) and the initial condition B(0) =

´ ∞
0 exp

(− ´ s
0 r∗(u)du

)
(c(s)− y(s)) ds.

Given the optimal path of consumption, any solution ι(τ, t) consistent with (2.1), (2.17) and

Ḃ(t) = r∗(t)B(t) + c(t)− y(t), for t > 0, (C.12)

is an optimal solution.

Proof. Step 1. The first part of the proof is just a direct consequence of the first-order condition v (τ, t) = ψ (τ, t)
for bond issuance. Bond prices are given by (2.4) while the government valuations are given by (2.10). Since both
equations must be equal in a bounded solution, we conclude that

r∗ (t) = r(t) = ρ− U′′ (c (t))
U′ (c (t))

dc
dt

,

must describe the dynamics of consumption.
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Step 2. The second part of the proof derives the law of motion of B(t). First we take the derivative with respect
to time at both sides of definition (2.17), that we repeat for completion:

B (t) =
ˆ T

0
ψ(τ, t) f (τ, t) dτ.

Recall that, from the law of motion of debt, equation (2.1), it holds that:

ι (τ, t) = −∂ f
∂t

+
∂ f
∂τ

.

To express the budget constraint in terms of f , we substitute ι (τ, t) into the budget constraint:

c (t) = y (t)− f (0, t) +
ˆ T

0

[
ψ(τ, t)

(
∂ f
∂t
− ∂ f

∂τ

)
− δ f (τ, t)

]
dτ. (C.13)

We would like to rewrite equation (C.13). Therefore, first, we apply integration by parts to the following expres-
sion:

ˆ T

0
ψ(τ, t)

∂ f
∂τ

dτ = ψ(T, t) f (T, t)− ψ(0, t) f (0, t)−
ˆ T

0

∂ψ

∂τ
f (τ, t) dτ.

As long as the solution is smooth, it holds that f (T, t) = 0. Further, recall that by construction ψ(0, t) = 1. Hence:

ˆ T

0
ψ(τ, t)

∂ f
∂τ

dτ = − f (0, t)−
ˆ T

0

∂ψ

∂τ
f (τ, t) dτ. (C.14)

Second, from the pricing equation of international investors, we know that

∂ψ

∂τ
= −r∗ (t)ψ(τ, t) + δ +

∂ψ

∂t
.

Then, we obtain:

ˆ T

0
ψ(τ, t)

∂ f
∂τ

dτ = − f (0, t)−
ˆ T

0
[δ + ψt(τ, t)− r(t)ψ(τ, t)] f (τ, t) dτ. (C.15)

We substitute (C.14) and (C.15) into (C.13), and thus:

c(t) =y (t)− f (0, t) +
ˆ T

0

[
ψ(τ, t)

∂ f
∂t
− δ f (τ, t)

]
dτ...

−
{
− f (0, t)−

ˆ T

0
[δ + ψt(τ, t)− r(t)ψ(τ, t)] f (τ, t) dτ

}

=y (t) +
ˆ T

0
[ψ(τ, t) ft (τ, t) + ψt(τ, t) f (τ, t)] dτ −

ˆ T

0
r∗(t)ψ(τ, t) f (τ, t) dτ.

Rearranging terms and employing the definitions above, we obtain:

Ḃ (t) = c (t)− y(t) + r∗(t)B(t),

as desired.
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C.5 Limiting distribution: λ̄ → 0
Proposition 8. (Limiting distribution) In the limit as liquidity costs vanish, λ̄ → 0, the asymptotic optimal issuance is
given by

ιλ̄→0
∞ (τ) = lim

λ̄→0
ι∞(τ) =

1 + [−1 + (r∗/δ− 1) r∗ssτ] e−r∗ssτ

1 + [−1 + (r∗/δ− 1) r∗ssT] e−r∗ssT
ψss (T)
ψss (τ)

κ, (C.16)

where constant κ > 0 is such that yss− f λ̄→0
∞ (0)+

´ T
0

[
ιλ̄→0
∞ (τ)ψss(τ)− δ f λ̄→0

∞ (τ)
]

dτ = 0, and f λ̄→0
∞ (τ) =

´ T
τ ιλ̄→0

∞ (s) ds.

Proof. Consider the following limit:

ιλ̄→0
∞ (τ) ≡ lim

λ̄→0
ι∞(τ, r∞(λ̄))

= lim
λ̄→0

ψss(τ)− v∞(τ, r∞(λ̄))

λ̄ψss (τ)

= lim
λ̄→0

1
λ̄ψ (τ)

⎡
⎣ δ

(
1− e−r∗ssτ

)
r∗ss

−
δ
(

1− e−r∞(λ̄)τ
)

r∞(λ̄)
+ e−r∗ssτ − e−r∞(λ̄)τ

⎤
⎦ .

This is a limit of the form 0
0 as limλ̄→0 r∞(λ̄) = r∗.29 We do not have an expression for r∞(λ̄), so we cannot apply

L’Hôpital’s rule directly. Instead, we compute:

lim
λ̄→0

ι∞(τ, r∞(λ̄))

ι∞(T, r∞(λ̄))
= lim

r∞(λ̄)→r∗

δ
(

1−e−r∗τ
)

r∗ − δ
(

1−e−r∞(λ̄)τ
)

r + e−r∗τ − e−r∞(λ̄)τ

δ(1−e−r∗T)
r∗ − δ(1−e−r∞(λ̄)T)

r + e−r∗T − e−r∞(λ̄)T

ψ (T)
ψ (τ)

,

which also has a limit of the form 0
0 . Now we can apply L’Hôpital’s. We obtain:

lim
λ̄→0

ι∞(τ, r∞(λ̄))

ι∞(T, r∞(λ̄))
=

−δr∗τe−r∗τ+δ
(

1−e−r∗τ
)

r∗2 + τe−r∗τ

−δr∗Te−r∗T+δ(1−e−r∗T)
r∗2 + Te−rT

ψ (T)
ψ (τ)

=
1 + [−1 + (r∗/δ− 1) r∗τ] e−r∗τ

1 + [−1 + (r∗/δ− 1) r∗T] e−r∗T
ψ (T)
ψ (τ)

.

If we define
κ ≡ lim

λ̄→0
ι∞(T, r∞(λ̄))

then

lim
λ̄→0

ι∞(τ, r∞(λ̄)) =
1 + [−1 + (r∗/δ− 1) r∗τ] e−r∗τ

1 + [−1 + (r∗/δ− 1) r∗T] e−r∗T
ψ (T)
ψ (τ)

κ.

The value of κ then must be consistent with zero consumption:

yss − f λ̄→0
∞ (0) +

ˆ T

0

[
ιλ̄→0
∞ (τ)ψss(τ)− δ f λ̄→0

∞ (τ)
]

dτ = 0,

for f λ̄→0
∞ (τ) =

´ T
τ ιλ̄→0

∞ (s) ds.

29We drop the sub-index ss to ease the notation.
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C.6 Proof of Proposition 2

We need first the following lemma:

Lemma 1. Given a fixed t, the Gâteaux derivative of the post-shock value functional V [ f (·, t)], defined by equation (2.6),
with respect to the debt distribution f (·, t) is the valuation j(τ, t) = −U′ (c (t)) v(τ, t) satisfying equation (2.8):

d
dα

V [ f (τ, t) + αh (τ, t)]
∣∣∣∣
α=0

=

ˆ T

0
j (τ, t) h (τ, t) dτ.

Proof. To simplify notation assume, without loss of generality, that t = 0. To avoid confusions, we denote by
(ι∗, f ∗) the optimal issuance policy and debt distributions. First, note that

V [ f (·, 0)] = L [ι∗, f ∗] .

This follows from the fact that

V [ f (·, 0)] =
ˆ ∞

0
e−ρtU

(
y (t)− f ∗ (0, t) +

ˆ T

0
[q (τ, t, ι∗) ι∗ (τ, t)− δ f ∗ (τ, t)] dτ

)
dt

=

ˆ ∞

0
e−ρtU

(
y (t)− f ∗ (0, t) +

ˆ T

0
[q (τ, t, ι∗) ι∗ (τ, t)− δ f ∗ (τ, t)] dτ

)
dt

+

ˆ ∞

0

ˆ T

0
e−ρt j∗ (τ, t)

(
−∂ f ∗

∂t
+ ι∗ (τ, t) +

∂ f ∗

∂τ

)
dτdt,

= L [ι∗, f ∗] .

The first line is the definition of V [ f (·, 0)], the second line is the fact that

−∂ f ∗

∂t
+ ι∗ (τ, t) +

∂ f ∗

∂τ
= 0

for for every τ, t and the last line is the definition of the Lagrangian. Next we compute d
dαL [ι∗, f ∗ + αh(τ, 0)]

∣∣∣
α=0

.
The derivative with respect to a general variation h(τ, t) is given by:

d
dα
L [ι, f + αh]

∣∣∣∣
α=0

=

ˆ ∞

0
e−ρtU′ (c(t))

[
−h (0, t)−

ˆ T

0
δh (τ, t) dτ

]
dt (C.17)

−
ˆ ∞

0

ˆ T

0
e−ρt ∂h

∂t
j (τ, t) dτdt

+

ˆ ∞

0

ˆ T

0
e−ρt ∂h

∂τ
j (τ, t) dτdt.

We employ integration by parts to show that:

ˆ ∞

0

ˆ T

0
e−ρt ∂h

∂t
j (τ, t) dτdt =

ˆ T

0

(
lim
s→∞

e−ρs[h (τ, s) j (τ, s)]− h (τ, 0) j (τ, 0)
)

dτ

−
ˆ T

0

ˆ ∞

0
e−ρt

(
∂j (τ, t)

∂t
− ρj (τ, t)

)
h(τ, t)dtdτ

and

ˆ ∞

0
e−ρt
ˆ T

0

∂h
∂τ

j (τ, t) dτdt =

ˆ ∞

0
e−ρt

[
h (T, t) j (T, t)− h (0, t) j (0, t)−

ˆ T

0
h(τ, t)

∂j
∂τ

dτ

]
dt.
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Note that we have not yet used optimality. Using the particular case of interest, i.e.:

h(τ, 0) = h(τ, t)δ(t),

where δ(t) is the Dirac delta, and plugging it in equation (C.17):

d
dα
L [ι∗, f ∗ + αh(·, 0)]

∣∣∣∣
α=0

= U′ (c∗(0))

[
−h(0, 0)−

ˆ T

0
δh (τ, 0) dτ

]

+

ˆ T

0
h (τ, 0) j (τ, 0) dτ

+

ˆ T

0

(
∂j (τ, 0)

∂t
− ρj (τ, 0)

)
h(τ, 0)dτ,

− h (0, 0) j (0, 0)−
ˆ T

0
h(τ, 0)

∂j
∂τ

dτdt.

Because (ι∗, f ∗) is an optimum, we know that for all τ ∈ (0, T] the following holds:

∂j (τ, 0)
∂t

− ρj (τ, 0)− ∂j (τ, 0)
∂τ

− δ = 0,

and for τ = 0 it also holds that U′ (c∗(0)) = −j (0, 0) . This implies that

d
dα
L [ι∗, f ∗ + αu(·, 0)]

∣∣∣∣
α=0

=

ˆ T

0
h (τ, 0) j (τ, 0) dτ.

Thus,

d
dα
L [ι∗, f ∗ + αh(·, 0)]

∣∣∣∣
α=0

=

ˆ T

0
h (τ, 0) j (τ, 0) dτ

=
d

dα
V [ f (·, 0) + αh(·, 0)]

∣∣∣∣
α=0

.

Proof. Proposition 2. Then we can proceed with the proof of Proposition 2. The Lagrangian is:

L
[
ι̂, f̂
]
= Eto

[ˆ to

0
e−ρsU (ĉ(s)) ds + e−ρto

EX
to

{
V
[

f̂ (·, to) , X (to)
]}

+

ˆ to

0

ˆ T

0
e−ρs ĵ (τ, s)

(
−∂ f̂

∂s
+ ι̂ (τ, s) +

∂ f̂
∂τ

)
dτds

]

where Eto
denotes the expectation with respect to the random time to. In this case ĵ (τ, s) is the Lagrange multiplier

associated to the law of motion of debt, before the shock.
Step 1. Re-writing the Lagrangian. Proceeding as in the proof of the risk-less case, as an intermediate step we

integrate by parts the terms that involve time or maturity derivatives of f̂ . The Lagrangian L
[
ι̂, f̂
]

can thus be
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expressed as:

L
[
ι̂, f̂
]
= Eto

[ˆ to

0
e−ρsU (ĉ(s)) ds + e−ρto

V
[

f̂ (·, to) , X (to)
]

−
ˆ T

0
e−ρto

f̂ (τ, to) ĵ (τ, to) dτ +

ˆ T

0
f̂ (τ, 0) ĵ (τ, 0) dτ

+

ˆ to

0

ˆ T

0
e−ρs f̂ (τ, s)

(
∂ĵ

∂s
− ρĵ (τ, s)

)
dτds

+

ˆ to

0
e−ρs f̂ (T, s) ĵ (T, s) ds−

ˆ to

0
e−ρs f̂ (0, s) ĵ (0, s) ds

−
ˆ to

0

ˆ T

0
e−ρs f̂ (τ, s)

∂ĵ

∂τ
dτds

+

ˆ to

0

ˆ T

0
e−ρs ĵ (τ, s) ι̂ (τ, s) dτds.

If we group terms, substitute the terminal conditions f̂ (T, s) = 0 and compute the expected value with respect to
to, we can express the Lagrangian L

[
ι̂, f̂
]

as:

L
[
ι̂, f̂
]
=

ˆ ∞

0
e−(ρ+φ)sU (ĉ(s)) ds

+

ˆ ∞

0
e−(ρ+φ)sφV

[
f̂ (·, s)

]
ds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sφ f̂ (τ, s) ĵ (τ, s) dτds

+

ˆ T

0
f̂ (τ, 0) ĵ (τ, 0) dτ

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)s f̂ (τ, s)

(
∂ĵ

∂s
− ρĵ (τ, s)

)
dτds

−
ˆ ∞

0
e−(ρ+φ)s f̂ (0, s) ĵ (0, s) ds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)s f̂ (τ, s)

∂ĵ

∂τ
dτds

+

ˆ to

0

ˆ T

0
e−(ρ+φ)s ĵ (τ, s) ι̂ (τ, s) dτds.

Step 2: Gâteaux derivatives. Next, we compute the Gâteaux derivatives with respect to each of the two arguments
of the Lagrangian at a time. Step 2.1: Gateaux derivative with respect to issuances. We consider a perturbation around
optimal issuances. Equalizing the Gâteaux derivative with respect to issuances to zero, i.e. L

[
ι̂ + αh, f̂

]∣∣∣
α=0

= 0,
the result is identical to the riskless case:

U′ (ĉ (t))
(

∂q
∂ι̂

ι̂ (τ, t) + q (τ, t, ι̂)

)
= − ĵ (τ, t) .

Step 2.2: Gateaux derivative of V with respect to the debt density. The Gâteaux derivative of the continuation value
with respect to the debt density is

d
dα

V
[

f̂ (·, s) + αh (·, s) , X (s)
]∣∣∣

α=0
= EX

s

{ˆ T

0
j (τ, s) h (τ, s) dτ

}
.
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d
dα
L
[
ι̂, f̂ + αh

]∣∣∣
α=0

=

ˆ ∞

0
e−(ρ+φ)sU′ (ĉ (s))

[
−h (0, s) +

ˆ T

0
(−δ) h (τ, s) dτ

]
ds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sφEX

s [j (τ, s) h (τ, s)] dτds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sθh (τ, s) ĵ (τ, s) dτds

+

ˆ T

0
h (τ, 0) ĵ (τ, 0) dτ

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sh (τ, s)

(
∂ĵ

∂s
− ρĵ (τ, s)

)
dsdτ

−
ˆ ∞

0
e−(ρ+φ)sh (0, s) ĵ (0, s) ds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sh (τ, s)

∂ĵ

∂τ
dτds.

The value of the Gâteaux derivative of the Lagrangian for any perturbation must be zero. Thus, again a necessary
condition is to have all terms that multiply any entry of h (τ, s) add up to zero. We summarize the necessary
conditions into:

ρĵ (τ, s) = −δU′ (ĉ (s)) +
∂ĵ

∂s
− ∂ĵ

∂τ
+ φ

[
EX

s j (τ, s)− ĵ (τ, s)
]

, (C.18)

ĵ (0, s) = −U′ (ĉ (s)) . (C.19)

Step 3: From Lagrange multipliers to valuations. We now employ the definitions of v̂ (τ, s) = − ĵ (τ, s) /U′ (ĉ (s)) and
v (τ, s) = −j (τ, s) /U′ (c (s)). Thus, we can express equations (C.18)-(C.19) as:

r̂ (s) v̂ (τ, s) = δ +
∂v̂
∂s
− ∂v̂

∂τ
+ φ

[
EX

s
U′ (c (s))
U′ (ĉ (s))

v (τ, s)− v̂ (τ, s)
]

v̂ (0, s) = 1.

Therefore valuations can be expressed as:

v̂ (τ, t) = e−
´ t+τ

t (r̂(s)+φ)ds

+θ

ˆ t+τ

t
e−
´ s

t (r̂(u)+φ)du
(

δ + EX
s

[
U′ (c (t + s))
U′ (ĉ (t + s))

v (τ − s, t + s)
])

ds,

as we wanted to show.

C.7 Proof of Proposition 3

Proof. Step 1. Setting the Lagrangian. Let V
[

f̂ (·, to) , X (to)
]

denote the expected value of the government, at the
instant to where the option to default is available, but prior to the decision of default. This value equals:

EX
to

⎡
⎢⎢⎣Γ

(
V
[

f̂ (·, to)
]

, X (to)
)

︸ ︷︷ ︸
Default

+ Θ
(

V
[

f̂ (·, to) , X (to)
])

V
[

f̂ (·, to) , X (to)
]

︸ ︷︷ ︸
No default

⎤
⎥⎥⎦ ,

where we have applied Lemma 1. Step 2.3: Gateaux derivative of the Lagrangian with respect to the debt density.
Since the distribution at the beginning f̂ (τ, 0) is given, any feasible perturbation must feature h(τ, 0) = 0 for any
τ ∈ (0, T]. In addition, we know that h(T, t) = 0, because f̂ (T, t) = 0. The Gâteaux derivative of the Lagrangian
with respect to the debt density is:
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where the first term in the expectation is the expected utility conditional on default given by Γ (x) ≡ ´ ∞
x zdΘ(z).

The second term is the probability of no default time the perfect-foresight value. The Lagrangian is:

L
[
ι̂, f̂ , ψ̂

]
= Eto

[ˆ to

0
e−ρsU (ĉ(s)) ds + e−ρto

V
[

f̂ (·, to) , X (to)
]

+

ˆ to

0

ˆ T

0
e−ρs ĵ (τ, s)

(
−∂ f̂

∂s
+ ι̂ (τ, s) +

∂ f̂
∂τ

)
dτds

+

ˆ to

0

ˆ T

0
e−ρsμ̂ (τ, s)

(
−r̂∗ (s) ψ̂(τ, s) + δ +

∂ψ̂

∂s
− ∂ψ̂

∂τ

)
dτds

]
.

In the Lagrangian, Eto
denotes the conditional expectation with respect to the random time to. Here ĵ (τ, s) and

μ̂ (τ, s) are the Lagrange multipliers. The first set of multipliers, ĵ (τ, s), are associated with the law of motion
of debt and appears also in previous sections. The second set of multipliers, μ̂ (τ, s), are associated with the
law of motion of bond prices. These terms appear because the government understands how its influence on
the maturity profile affects the incentives to default, and hence impacts bond prices. This happens through the
terminal condition:

ψ̂(τ, to) = EX
to

{
Θ
(

V
[

f̂ (·, to) , X (to)
])

ψ(τ, to)
}

,

ψ̂(0, t) = 1.

The terminal condition reflects that, at date to, the bond price is zero if default occurs. Otherwise it equals the
perfect-foresight price, ψ(τ, to), if default does not occur.

Step 1.2. Re-writing the Lagrangian. Proceeding as in the proof of the riskless case, as an intermediate step we
integrate by parts the terms that involve time or maturity derivatives of f̂ and ψ̂. The Lagrangian L

[
ι̂, f̂ , ψ̂

]
can

thus be expressed as:

Eto

[ˆ to

0
e−ρsU (ĉ(s)) ds + e−ρto

V
[

f̂ (·, to) , X (to)
]
−
ˆ T

0
e−ρto

f̂ (τ, to) ĵ (τ, to) dτ

+

ˆ T

0
f̂ (τ, 0) ĵ (τ, 0) dτ +

ˆ to

0

ˆ T

0
e−ρs f̂ (τ, s)

(
∂ĵ

∂s
− ρĵ (τ, s)

)
dsdτ

+

ˆ to

0
e−ρs f̂ (T, s) ĵ (T, s) ds−

ˆ to

0
e−ρs f̂ (0, s) ĵ (0, s) ds

−
ˆ to

0

ˆ T

0
e−ρs f̂ (τ, s)

∂ĵ

∂τ
dτds +

ˆ to

0

ˆ T

0
e−ρs ĵ (τ, s) ι̂ (τ, s) dτds

+

ˆ to

0

ˆ T

0
e−ρsμ̂ (τ, s)

(−r̂∗ (s) ψ̂(τ, s) + δ
)

dτds,

+

ˆ T

0

[
e−ρto

μ̂ (τ, to) ψ̂ (τ, to)− μ̂ (τ, 0) ψ̂ (τ, 0)
]

dτ

−
ˆ to

0

ˆ T

0
e−ρsψ̂(τ, s)

(
∂μ̂

∂s
− ρμ̂(τ, s)

)
dτds

−
ˆ to

0
e−ρs [μ̂ (T, s) ψ̂ (T, s)− e−ρsμ̂ (0, s) ψ̂ (0, s)

]
ds

+

ˆ to

0

ˆ T

0
e−ρsψ̂ (τ, s)

∂μ̂

∂τ
dτds

]
.

Step 1.3. Computing expectations. If we group terms, substitute the terminal conditions f (T, s) = 0 and
ψ̂(τ, to) = Θ

(
V
[

f̂ (·, to) , X (to)
])

ψ(τ, to) and compute the expected value with respect to to, we can express
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d
dα

V
[

f̂ (·, s) + αh (·, s) , X (s)
]∣∣∣

α=0
= EX

s

{
Θ
(

V
[

f̂ (·, s) , X (s)
]) ˆ T

0
j (τ, s) h (τ, s) dτ

}
,

where we have taken into account the fact that d
dx (Γ (x) + Θ (x) x) = Θ (x) and −from the perfect foresight

problem− :
d

dα
V
[

f̂ (·, s) + αh (·, s)
]∣∣∣

α=0
=

ˆ T

0
j (τ, s) h (τ, s) dτ.

the Lagrangian L
[
ι̂, f̂ , ψ̂

]
as:

ˆ ∞

0
e−(ρ+φ)sU (ĉ(s)) ds

−
ˆ ∞

0
e−(ρ+φ)s f̂ (0, s) ĵ (0, s) ds

−
ˆ ∞

0
e−(ρ+φ)s [μ̂ (T, s) ψ̂ (T, s)− μ (0, s) ψ̂ (0, s)

]
ds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)s f̂ (τ, s)

(
∂ĵ

∂s
− ρĵ (τ, s)

)
dsdτ

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)s f̂ (τ, s)

∂ĵ

∂τ
dτds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)s ĵ (τ, s) ι̂ (τ, s) dτds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sμ̂ (τ, s)

(−r̂∗ (s) ψ̂(τ, s) + δ
)

dτds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sψ̂(τ, s)

(
∂μ̂

∂s
− ρμ̂(τ, s)

)
dτds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sψ̂ (τ, s)

∂μ̂

∂τ
dτds

+

ˆ T

0
f (τ, 0) ĵ (τ, 0) dτ −

ˆ T

0
μ̂ (τ, 0) ψ̂ (τ, 0) dτ

+

ˆ ∞

0
e−(ρ+φ)sφV

[
f̂ (·, s) , X(s)

]
ds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sφ f̂ (τ, s) ĵ (τ, s) dτds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sφμ̂ (τ, s)EX

s

{
θ
(

V
[

f̂ (·, s) , X(s)
])

ψ(τ, s)
}

dτds.

Next, we compute the Gâteaux derivatives with respect to each of the three arguments of the value function at a
time.

Step 2. Computing the derivatives. Step 2.1. Gâteaux derivative with respect to the issuances. If we consider a
perturbation around issuances and equalize it to zero, ∂

∂α L
[
ι̂ + αh, f̂ , ψ̂

]∣∣∣
α=0

= 0, the result is identical to the
risk-less case:

U′ (ĉ (t))
(

∂q
∂ι

ι̂ (τ, t) + q (t, τ, ι̂)

)
= − ĵ (τ, t) .

Step 2.2. Gâteaux derivative with respect to the debt density. Since the distribution at the beginning f (τ, 0) is
given, any feasible perturbation must feature h(τ, 0) = 0 for any τ ∈ (0, T]. In addition, we know that h(T, t) = 0,
because f (T, t) = 0. The Gâteaux derivative of the continuation value with respect to the debt density is:
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Step 2.3. Gâteaux derivative with respect to the bond price. In the case of the Gâteaux derivatives with respect to the
evolution of the price ψ̂, d

dα L
[
ι̂, f , ψ̂ + αh

]∣∣
α=0 , we need to work first with the Lagragian before expectations have

been computed. The reason is the following: only bonds that mature after default can be affected by the Governe-
ment’s policies and hence the variations have to be zero for those bonds that mature before default, h̃(τ, t) = 0, if
τ + t < to. To incorporate this, we assume that admissible perturbations are of the form h̃(τ, t) = h(τ, t)1{τ+t≥to},

Similarly, the Gâteaux derivative of the terminal bond price with respect to the debt density is

d
dα

EX
s

{
Θ
(

V
[

f̂ (·, s) + αh (·, s) , X (s)
])

ψ(τ, s)
}∣∣∣

α=0
= . . .

EX
s

{
θ
(

V
[

f̂ (·, s) , X (s)
])

ψ(τ, s)
ˆ T

0
j
(
τ′, s

)
h
(
τ′, s

)
dτ′

}
,

where θ(x) ≡ d
dx Θ (x) is the probability density. The Gâteaux derivative of the Lagrangian with respect to the debt

density, d
dα L

[
ι̂, f̂ + αh, ψ̂

]∣∣∣
α=0

, is thus:

ˆ ∞

0
e−(ρ+φ)sU′ (ĉ (s))

[
−h (0, s) +

ˆ T

0
(−δ) h (τ, s) dτ

]
ds

−
ˆ ∞

0
e−(ρ+φ)sh (0, s) ĵ (0, s) ds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sh (τ, s)

(
∂ĵ

∂s
− ρĵ (τ, s)

)
dsdτ

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sh (τ, s)

∂ĵ

∂τ
dτds

+

ˆ T

0
h (τ, 0) ĵ (τ, 0) dτ

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sθEX

s

{
Θ
(

V
[

f̂ (·, s) , X (s)
])

j (τ, s)
}

h (τ, s) dτds

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)sφh (τ, s) ĵ (τ, s) dτds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)sφμ (m, s)EX

s

{
θ
(

V
[

f̂ (·, s) , X (s)
])

ψ(m, s)
ˆ T

0
j (τ, s) h (τ, s) dτ

}
dmds.

The value of the Gâteaux derivative of the Lagrangian for any perturbation, must be zero, i.e. d
dα L

[
ι̂, f̂ + αh, ψ̂

]∣∣∣
α=0

=

0. Thus, a necessary condition is that all terms that multiply any entry of h (τ, s) add up to zero. We summarize
the necessary conditions into:

ρĵ (τ, s) = (−δ)U′ (ĉ (s)) +
∂ĵ

∂s
− ∂ĵ

∂τ
(C.20)

+ φEX
s

{[
Θ
(

V
[

f̂ (·, s) , X (s)
])

+ θ
(

V
[

f̂ (·, s) , X (s)
]) ˆ T

0
μ̂ (m, s)ψ(m, s)dm

]
j (τ, s)− ĵ (τ, s)

}
,(C.21)

ĵ (0, s) = −U′ (ĉ (s)) .
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where h(τ, t) is unrestricted. The Gâteaux derivative is then

Eto

[ˆ to

0
e−ρsU′ (ĉ (s))

(ˆ T

0
ι̂ (τ, s)

∂q
∂ψ̂

1{τ+s≥to}h (τ, s) dτ

)
ds

+

ˆ to

0

ˆ T

0
e−ρsμ̂ (τ, s)

(
−r̂∗ (s) 1{τ+s≥to}h(τ, s)

)
dτds

−
ˆ T

0
μ̂ (τ, 0) 1{τ≥to}h (τ, 0) dτ

−
ˆ to

0

ˆ T

0
e−ρs1{τ+s≥to}h(τ, s)

(
∂μ̂

∂s
− ρμ̂(τ, s)

)
dτds

−
ˆ to

0
e−ρs

[
1{T+s≥to}h (T, s) ψ̂ (T, s)− e−ρs1{s≥to}h (0, s) ψ̂ (0, s)

]
ds

+

ˆ to

0

ˆ T

0
e−ρs1{τ+s≥to}h (τ, s)

∂μ̂

∂τ
dτds

]
.

Note that the perturbation is only around ψ̂ (τ, s) and not ψ (τ, s), the terminal price after default, which is given.
Since at maturity, bonds have a value of 1, h (0, s) = 0, because no perturbation can affect that price. If we compute
the expectation with respect to the random arrival time, to, we get:

ˆ ∞

0
e−(ρ+φ)s (1− e−φτ

)
U′ (ĉ (s))

[ˆ T

0
ι̂ (τ, s)

∂q
∂ψ̂

h (τ, s) dτ

]
ds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)s (1− e−φτ

)
μ̂ (τ, s) (−r̂∗ (s) h(τ, s)) dτds

−
ˆ T

0

(
1− e−φτ

)
μ (τ, 0) h (τ, 0) dτ

−
ˆ ∞

0

ˆ T

0
e−(ρ+φ)s (1− e−φτ

)
h(τ, s)

(
∂μ̂

∂s
− ρμ(τ, s)

)
dτds

−
ˆ ∞

0
e−(ρ+φ)s

(
1− e−φT

)
μ (T, s) h (T, s) ds

+

ˆ ∞

0

ˆ T

0
e−(ρ+φ)s (1− e−φτ

)
ψ̂ (τ, s)

∂μ̂

∂τ
dτds,

where we use
Eto

[
1{τ+s>to>s}

]
= e−φs (1− e−φτ

)
.

Again, as the Gâteaux derivative should be zero for any suitable h(τ, s), the optimality condition is

(r̂∗ (s)− ρ) μ̂(τ, s) = U′ (ĉ (s)) ι̂ (τ, s)
∂q
∂ψ̂
− ∂μ̂

∂s
+

∂μ̂

∂τ
,

μ̂ (T, s) = 0,

μ̂ (τ, 0) = 0.

The solution to this PDE is

μ̂ (τ, s) =
ˆ s

max{s+τ−T,0}
e−
´ s

z (r̂
∗(u)−ρ)duU′ (ĉ (z)) ι̂ (τ + s− z, z)

∂q
∂ψ̂

(τ + s− z, z) dz.
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If we integrate the discount factor of the government with respect to time, we obtain the following identity:

ˆ s

z
r̂ (u) du =

ˆ s

z
ρdu−

ˆ s

z

U′′ (ĉ (u))
U′ (ĉ (u))

ĉ (u)
˙̂c (u)
ĉ (u)

du.

Therefore, we have that ˆ s

z
r̂ (u) du−

ˆ s

z
ρdu = − log

(
U′ (ĉ (u))

)∣∣s
z .

We obtain the following identity:

e
´ s

z ρdu = e
´ s

z r̂(u)du U′ (ĉ (s))
U′ (ĉ (z))

.

Thus, the PDE for μ̂ (τ, s) can be written as:

μ̂ (τ, s) = U′ (ĉ (s))
ˆ s

max{s+τ−T,0}
e−
´ s

z (r̂
∗(u)−r̂(u))du ι̂ (τ + s− z, z)

∂q
∂ψ̂

(τ + s− z, z) dz.

Notice that

ι̂
∂q
∂ψ̂

=

(
ι̂− λ̄

2
(ι̂)2

)

=
1

2λ̄

(
ψ̂2 − v̂2

ψ̂2

)

=
1

2λ̄

(
1− v̂2

ψ̂2

)
.

where the second line uses the optimal issuance rule. Hence, we can write the price multiplier as:

μ̂ (τ, s) = U′ (ĉ (s))
ˆ s

max{s+τ−T,0}
e−
´ s

z (r̂
∗(u)−r̂(u))du 1

2λ̄

(
1−

(
v̂ (τ + s− z, z)
ψ̂ (τ + s− z, z)

)2
)

dz.

We employ this solution in the main text.
Step 3: From Lagrange multipliers to valuations. We now employ the definitions of v̂ (τ, s) = − ĵ (τ, s) /U′ (ĉ (s))

and v (τ, s) = −j (τ, s) /U′ (c (s)) , we can express equations (C.20)-(C.21) as

r̂ (s) v̂ (τ, s) = δ +
∂v̂
∂s
− ∂v̂

∂τ

+φEX
s

{[
Θ (V (s)) + θ (V (s))

ˆ T

0
μ̂ (m, s)ψ(m, s)dm

]
U′ (c (s))
U′ (ĉ (s))

v (τ, s)− v̂ (τ, s)

}
,

v̂ (0, s) = 1,

where we use the notation Θ (V (s)) ≡ Θ (V [ f (·, s) , X (s)]) and θ (V (s)) ≡ θ (V [ f (·, s) , X (s)]) . Therefore valu-
ations can be expressed as

v̂ (τ, t) = e−
´ t+τ

t (r̂(s)+φ)ds

+φ

ˆ t+τ

t
e−
´ s

t (r̂(u)+φ)du
(

δ + EX
s

[
(Θ (V (t + s)) + Ω(t + s))

U′ (c (t + s))
U′ (ĉ (t + s))

v (τ − s, t + s)
])

ds,

where

Ω(t) = θ (V (t))
ˆ T

0
μ̂ (m, t)ψ(m, t)dm.
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C.8 The case of default without liquidity costs: λ̄ = 0
We show here that the maturity structure is indetermined in the case without liquidity costs and a finite support of
G. In proposition 9 below we show how, if distribution f̂ ∗ is a solutions of Problem (4.3), then another distribution
f̂ ′ is also a solution provided that

ˆ T

0

(
ψ (τ, t, X(t))− ψ̂ (τ, t)

) (
f̂ ∗(τ, t)− f̂ ′(τ, t)

)
dτ = 0, (C.22)

ˆ T

0

(
EXt

[
Θ
(

V
[

f̂ ∗ (·, t) , X(t)
])

ψ (τ, t, X(t))
]
− ψ̂ (τ, t)

) (
f̂ ∗(τ, t)− f̂ ′(τ, t)

)
dτ = 0. (C.23)

Consider first the case of an income shock. Here X(t) does not jump after the shock arrives. If the government
decides to default then the maturity profile at the moment of defaut is irrelevant. If the government decides
instead to repay, the post-shock yield curve will be ψ (τ, to), which differs from ψ̂ (τ, to) as the post-shock default
premium is zero. The maturity structure is indeterminate because conditions (C.22) and (C.23) are two integral
equation with a continuum of unknowns, f̂

′
(τ, to).

Consider next the case of an interest rate shock, in which X(t) jumps with the option to default. Condition
(C.22) is a system of integral equations, indexed by X(to), where f̂

′
(·, to) is the unknown. Provided that X(to) may

take N possible values, then we have at most N equations that need to be satisfied by the debt distribution. In
addition we have equation (C.23) and the condition that the market debt should coincide. Notice that the number
can be less than N + 2 as in some states the government may default and then condition C.22 is trivially satisfied
for any debt profile that replicates the total debt at market prices before the shock arrival. In any case, the maturity
structure is indeterminate.

The indeterminacy of the debt distribution in our model complements previous results in the literature. In
particular, Aguiar et al. (Forthcoming) study a model of sovereign default similar to the one presented with the
key difference that in their model the government cannot commit to future debt issuances whereas in our paper
it ca, conditional on repayment. Aguiar et al. (Forthcoming) find how in that case the government only operates
in the short end of the curve, making payments and retiring long-term bonds as they mature but never actively
issuing or buying back such bonds. This is because short term bonds cannot be diluted. The authors also conjecture
that the maturity structure would be indeterminate if the government had full commitment over its issuance path.
This is precisely the case we study here, confirming their conjecture.

Proposition 9. Let {ι̂∗(τ, t), f̂ ∗(τ, t), ĉ∗(t)}t∈[0,to ] and {ι∗(τ, t), f ∗(τ, t), c∗(t)}t∈(to ,∞) be the solution of Problem (4.3)
when λ (ι, τ, t) = 0. Let {ι̂′(τ, t), f̂ ′(τ, t), ĉ′(t)}t∈[0,to ] and {ι∗(τ, t), f ∗(τ, t), c∗(t)}t∈(to ,∞) be such that, for every t ≤ to

and every value of X(t),

B̂∗(t) = B̂′(t) (C.24)ˆ T

0

(
ψ (τ, t, X(t))− ψ̂ (τ, t)

) (
f̂ ∗(τ, t)− f̂ ′(τ, t)

)
dτ = 0, (C.25)

ˆ T

0

(
EXt

[
Θ
(

V
[

f̂ ∗ (·, t) , X(t)
])

ψ (τ, t, X(t))
]
− ψ̂ (τ, t)

) (
f̂ ∗(τ, t)− f̂ ′(τ, t)

)
dτ = 0, (C.26)

and B∗(t) = B′(t) for every t > to. Then, ĉ′(t) = ĉ∗(t) and c′(t) = c∗(t). Thus, {ι̂′(τ, t), f̂ ′(τ, t), ĉ′(t)}t∈[0,to ] and
{ι∗(τ, t), f ∗(τ, t), c∗(t)}t∈(to ,∞) is also optimal.

Proof. Step 0. Default values. The value functional of a policy given an initial debt f (·, 0) is given by:

V̂ [ f (·, 0)] = E0

[ˆ to

0
e−ρtU (ĉ (t)) dt + EVD ,X(to)

[
e−ρto

VO
[
VD(to), f (·, to)

]]]
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where the post-default value VO [VD(to), f (·, to) , X(to)
] ≡ max

{
VD(to), V [ f (·, to) , X(to)]

}
and V [ f (·, to) , X(to)]

is the value of the perfect-foresight solution. Note that, from the solution of the problem with perfect foresight, the
value function only depends on the market value of total debt, V [ f (·, to) , X(to)] = V (B(to, X(to)), X(to)), where
B(to, X(to)) is defined as the market value of debt

B(to, X(to)) ≡
ˆ T

0
ψ (τ, to, X(to)) f (τ, to)dτ.

Therefore, the post-default value

VO
[
VD(to), f (·, to) , X(to)

]
= VO

(
VD(to), B(to, X(to)), X(to)

)
,

also only depends on the aggregate market value of total debt, B(to, X(to)). Because B′(to, X(to)) = B∗(to, X(to))

for every realization of X(to) the default decision depends only on the market value of debt when the country
receives the opportunity to default and not on the debt-maturity profile. Thus, continuation values are equal and
it is enough to show that ĉ∗ (t) = ĉ′ (t) for t ≤ to to prove that the two policies yield the same utility.

Step 1. Pre-shock prices are equal. Pre-shock prices solve

r̂∗ (t) ψ̂(τ, t) = δ +
∂ψ̂

∂t
− ∂ψ̂

∂τ
+ φEX

t
[
Θ (V [ f (·, t) , X(t)])ψ (τ, t, X(t))− ψ̂ (τ, t)

]
, if t < to

ψ̂(τ, to) = EX
to

{
Θ
(

V
[

f̂ (·, to) , X(to)
])

ψ(τ, to)
}

ψ̂(0, t) = 1.

It holds that

Θ (V [ f ∗ (·, to) , X(to)]) = Θ (V (B∗ (to, X(to)) , X(to))) = Θ
(
V
(

B′ (to, X(to)) , X(to)
))

= Θ
(
V
[

f ′ (·, to) , X(to)
])

.

This is a consequence of the fact that V (B∗ (to, X(to)) , X(to)) = V (B′ (to, X(to)) , X(to)). Thus, pre-shock prices
are equal for both policies.

Step 2. Law of of motion of debt before the shock arrival. By definition B̂(t) =
´ T

0 ψ̂(τ, t) f̂ (τ, t)dτ. The dynamics of
B̂(t) for t < to are:

dB̂(t) =

(ˆ T

0

(
ψ̂t(τ, t) f̂ (τ, t) + ψ̂(τ, t) f̂t(τ, t)

)
dτ

)
dt,

which, with similar derivations as in 7, yields to

dB̂(t) =

(
ĉ(t)− y(t) + r̂∗(t)B̂(t) + φ

ˆ T

0

(
EXt [Θ (V (B(t, X(t)), X(t)))ψ (τ, t, X(t))]− ψ̂(τ, t)

)
f̂ (τ, t)dτ

)
dt.

Step 3. The expected jump. Note that (C.26) for all Xt implies that:

φ

ˆ T

0

(
EXt [Θ (V (B∗(t, X(t)), X(t)))ψ (τ, t, X(t))]− ψ̂ (τ, t)

) (
f̂ (τ, t)− f̂ ′(τ, t)

)
dτ = 0, (C.27)

Combining this equation with the law of motion of debt we get that before the shock arrival, t < to,

dB̂∗(t) = dB̂′(t). (C.28)

Step 4. The actual jump. Condition (C.25) guarantees that the jump is the same for any X(t) if the country does
not default. If it defaults, condition (C.25) is trivially satisfied as B̂∗(t) = B̂′(t) and the jump is also the same
as market debt is then zero. Hence B̂∗(to) = B̂′(to) . Finally, taking all these results together we conclude that:

ˆ
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ĉ∗(t) = ĉ′(t) for all t ≤ to. As the policy {ι̂′(τ, t), f̂ ′(τ, t), ĉ′(t)}t∈[0,to ] and {ι∗(τ, t), f ∗(τ, t), c∗(t)}t∈(to ,∞) achieves
the same consumption path as the optimal, it is thus optimal.

D Calibration notes

In this Appendix, we describe the sources of the data and the calibration procedure for the parameter values and
shocks used in the numerical exercises in subsection 2.6, subsection 3.3, and subsection 4.3.

Income Process: ρy

We obtain the series for the Spanish Gross Domestic Product for the period Q1:1995 to Q2:2018 from FRED eco-
nomic data https://fred.stlouisfed.org/series/CLVMNACSCAB1GQES. We estimate an AR(1) process for the
detrended seasonally adjusted output. The detrending uses a Hodrick-Prescott filter with a parameter of 1600.
The estimated model is log yt = ρy log yt−1 + σyε

y
t−1. The estimated persistence of quarterly income (ρy) is 0.95

with a standard deviation (σy) of 0.375. This corresponds to a value of αy = (1− ρy)/ (3× Δt) = 0.2, where we fix
Δt = 1/12 for all our numerical exercises. The details of the numerical procedure to solve the model are described
in Appendix F.

Interest Rates Process: ρr

We obtain from the Bundesbank monthly data for the 1 month Euribor nominal rate. The period is Q1 1999
to Q2 2018. The source of the data is: https://www.bundesbank.de/action/en/744770/bbkstatisticsearch?

query=euribor. We then obtain the annualized average (geometric mean) quarterly rate, iq
t , as

[
Π3

m=1(1 + im
t )
] 1

3 =

(1 + iq
t ). Using the quarterly inflation rate for the Eurozone (overall index not seasonally adjusted), obtained

from the ECB Statistical Data Warehouse, the source of the data is http://sdw.ecb.europa.eu/, we compute the

annualized real rate at a quarterly frequency as 1+iqt
1+π

q
t
= 1 + rq

t . We then fit an AR(1) process for the level of the

real interest rate rt = μr + ρrrt−1 + σrεr
t−1. The estimated persistence of the quarterly real rate (ρr) is 0.95, which

translates into αr = (1− ρr)/ (3× Δt) = 0.2, where Δt = 1/12. The standard deviation (σr) is equal to 0.410.

Dealers Cost of Capital: η

We approximate the cost of capital of dealers, η, as follows. For each one of the five largest US banks by As-
sets, we obtain the current (as of August 2018) credit rating from Fitch, Standard and Poor’s and Moody’s.
At the same time we obtain AA, A, BBB daily option-adjusted spreads (OAS) for US corporate bonds from
FRED Economic Data for the period January 1st of 1997 to August 27th of 2018. The source of the data is:
https://fred.stlouisfed.org/search?st=ICE+BofAML+US+Corporate+AA+Option-Adjusted+Spread. Options
adjusted spreads measure the spread of a family of US Corporate issuers of the same credit rating adjusting for

any embedded option.30 We denote OASt(Rating) as a function that maps a rating and a moment in time to
the option-adjusted spread. For each bank i we fix the current credit rating, Ratingi,t, for the entire sample of
daily observations at the final value, Ratingi,T . Then, we obtain a time series for the spread of each bank as
ηi,t = OASt(Ratingi,T) for t = 1....T. We weight the spreads of each bank by their relative assets (as of 2018).

Finally, we obtain an estimated value of the spread of intermediaries in our model as η̂ = ∑T
t=1 ∑5

i=1 ωi,Tηi,t
T , equal to

149 basis points.

30Bank of America Merrill Lynch computes the index. More precisely, the option-adjusted spread for bonds is “the number of basis points
that the fair value government spot curve is shifted to match the present value of discounted cash flows to the bond price. For securities
with embedded options, such as call, sink or put features, a log-normal short interest rate model is used to evaluate the present value of the
securities potential cash flows.” Thus, the index fits a term structure model for different securities, to separate the value of the security from
any embedded option by subtracting or adding the value of the option.
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Spanish Debt Profile: Figure 2.1

For the maturity debt profile of Spain featured in figure 2.1, we use data from the Spanish Treasury. The data can
be accessed at www.tesoro.es/en/deuda-publica/estadísticas-mensuales and corresponds to the debt profile
as of July the 31st of 2018. We use the total debt.

Large Shock Intensity: φ

We calibrate the intensity of the shock based on the data from Barro and Ursua (2010). This data-set is ob-
tained from https://scholar.harvard.edu/barro/publications/barro-ursua-macroeconomic-data. Out of
1600 year-country observations for OECD countries, 34 of them correspond to an output drop of more than 5 per-
cent. This amounts to an estimated frequency equal to 2.13 percent per year; one large shock every 50 years. We
calibrate the arrival of shocks in the risky steady state, φ, to a value equal to 2.00 percent per year.

Large Shock Size: Δy(0), Δr(0)

We fix 5 percent as the size of the shock to output, and we denote it as Δy(0). For interest rates, the shock to the
short rate is the one that implies the same drop in consumption than with the shock to output, given the persistence
of rates (as well as the other parameters). This is an increase in rates from 4 to 5 percent, and we denote it as Δr(0).

Parameter Description Value
γ Sovereign’s risk aversion 2
δ Coupon rate 0.04
αy Persistence of output 0.2
αr Persistence of short rate 0.2
μ Arrival rate 0.0011
η Cost of Capital for Intermediaries (pct/py) 1.49
λ̄ Implied liquidity cost 7.08
ρ Discount Factor 0.0416
φ Poisson Int. of a Large Shock (pct/py) 2.00
Δy Drop in output (pct) 5.00
Δr Increase in rates (pct) 1.00
ς Logistic p.d.f. scale parameter 100

Table 2: Summary Baseline Calibration

Scale Logistic Distribution: ς

To calibrate ς we match the unconditional default probability of Spain during the period 1877-1982. We proceed
as follows. According to Barro and Ursua (2010), for the period 1945 to 2009 the most significant year-to-year
drop in income for Spain was 4.8 percent. Thus, we will fix the size of the shock output to 5.0 percent and the
intensity to φ = 0.02, as in section 3. The preference shocks are distributed according to a logistic distribution with
a probability density function given by:

f (ε) =
ςe−ςε

(1 + e−ςε)2 .

We set the scale parameter, ς, equal to 100. As we mentioned in the main text, for our calibration, this value of the
parameter produces a default in 32 percent of the events when an extreme shock hits Spanish output. Given the
intensity of the extreme shock, φ = 0.02, this implies an unconditional default probability equal to 0.6 percent per
year, roughly a default every 157 years. This is in line with the findings of Reinhart and Rogoff (2009) in which
Spain experienced one default during the period 1877-1982.
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E Some stylized facts bond issuances in Spain

We report data on the monthly gross issuances of bonds by the Spanish Government. The period covers from
January 2000 to December 2018. The source of the data is the Spanish Treasury. The data can be accessed at www.
tesoro.es/en/deuda-publica/historico-de-estadísticas/subastas-2001-2014. In this period the Treasury
issued debt in bills (zero-coupon bonds) and regular bonds of different maturities. Bills are issued at 3, 6, 12 and
18-month maturities, and bonds are issued at 3, 5, 10, 15 and 30-year maturities.31 Not all maturities are active
every month. For example, in the period 2014-2018 the 18-month bill and the 30-year bond were not issued. We
construct a panel of annual issuances over GDP by accumulating individual gross issuances, and dividing them by
the Spanish GDP in current euros. The source for GDP data is FRED economic data https://fred.stlouisfed.
org/series/CLVMNACSCAB1GQES.

Figure E.1 reports the yearly average of issuances at each maturity over GDP. A pattern can be observed from
the data. (i) Maturity is increasing for all bonds up to one year. (ii) For bonds from 3 years up to 10 years, maturity
is also increasing, even if the absolute levels are below the amount of 1-year bonds. (iii) The issuance of 15 and
30-year bonds is roughly similar and relatively small. The figure also displays issuances weighted by the total
issuance over GDP of the corresponding year. The pattern is similar independently of the weighting.

Another remarkable feature is that this pattern has been relatively stable over time. Figure E.2 presents the
yearly averages for each vintage. Notwithstanding the changes in the total level of issuances, there is a remarkable
stability in the issuance pattern that we highlight in the figure E.1. For instance, the bottom right panel displays
the issuances in the period 2014-2018 of low interest rates and quantitative easing. Notice how, even if issuances
have shifted towards long maturities, the issuance pattern remains roughly similar to the average.

With a liquidity coefficient λ̄ constant across maturities our model cannot replicate this pattern of maturity
increasing within groups of bonds and discrete issuances. However, a natural way to fit the data, without over-
parameterizing the model, would be to allow for discrete issuances, as outlined in section 5, and to consider
heterogeneity in the liquidity coefficient among different groups of bonds. For example, we could let order flows
(captured by μ) to differ for bonds with maturities below 1 year, between 1 and 10 years, and above 10 years. This
variation of the model can be rationalized if bonds trade in markets that differ in their liquidity or ability to be

31The Treasury has occasionally issued at other maturities, including recent issuances of 50-year bonds, but we
do not consider them in the analysis.

pledged as collateral (see Krishnamurthy and Vissing-Jorgensen, 2012), or if they are catered to customers with
different investment horizons (see, for example, Vayanos and Vila, 2009).
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Figure E.1: Issuance by maturity as a percentage GDP. Sample average for Spain 2000 - 2018

Figure E.1: Issuance by maturity as a percentage GDP. Sample average for Spain 2000 - 2018
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Figure E.2: Issuance by maturity as a percentage of GDP. Vintages 2000 - 2018
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F Computational method

We describe the numerical algorithm used to jointly solve for the equilibrium domestic valuation, v (τ, t), bond
price, q (t, τ, ι) , consumption c(t), issuance ι (τ, t) and density f (τ, t) . The initial distribution is f (τ, 0) = f0 (τ) .
The algorithm proceeds in 3 steps. We describe each step in turn.

Step 1: Solution to the domestic value The steady state equation (2.10) is solved using an upwind finite
difference scheme similar to Achdou et al. (2017). We approximate the valuation vss (τ) on a finite grid with step
Δτ : τ ∈ {τ1, ..., τI}, where τi = τi−1 +Δτ = τ1 +(i− 1)Δτ for 2 ≤ i ≤ I. The bounds are τ1 = Δτ and τI = T, such
that Δτ = T/I. We use the notation vi := vss(τi), and similarly for the issuance ιi,. Notice first that the domestic
valuation equation involves first derivatives of the valuations. At each point of the grid, the first derivative can
be approximated with a forward or a backward approximation. In an upwind scheme, the choice of forward or
backward derivative depends on the sign of the drift function for the state variable. As in our case, the drift is
always negative, we employ a backward approximation in state:

∂v(τi)

∂τ
≈ vi − vi−1

Δτ
. (F.1)

The equation is approximated by the following upwind scheme,

ρvi = δ +
vi−1

Δτ
− vi

Δτ
,

with terminal condition v0 = v(0) = 1. This can be written in matrix notation as

ρv = u + Av,

where

A =
1

Δτ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 · · · 0
1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . . . . . . . . . . . . . .

0 0 · · · 1 −1 0
0 0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3
...

vI−1

vI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ− 1/Δτ

δ

δ
...
δ

δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (F.2)

The solution is given by
v = (ρI−A)−1 u. (F.3)

Most computer software packages, such as Matlab, include efficient routines to handle sparse matrices such as A.
To analyze the transitional dynamics, define tmax as the time interval considered, which should be large

enough to ensure a converge to the stationary distribution and time is discretized as tn = tn−1 + Δt, in intervals of
length

Δt =
tmax

N − 1
,

where N is a constant. We use now the notation vn
i := v(τi, tn). The valuation at tmax is the stationary solution

computed in (F.3) that we denote as vN . We choose a forward approximation in time. The dynamic value equation
(2.10) can thus be expressed

rnvn = u + Avn +

(
vn+1 − vn)

Δt
,
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where rn := r (tn). By defining Bn =
(

1
Δt + rn

)
I−A and dn+1 = u + vn+1

Δt , we have

vn = (Bn)−1 dn+1, (F.4)

which can be solved backwards from n = N − 1 until n = 1.
The optimal issuance is given by

ιni =
1
λ̄

(
ψn

i − vn
i
)

ψn
i

,

where ψn
i is computed in an analogous form to vn

i .

Step 2: Solution to the Kolmogorov Forward equation Analogously, the KFE equation (2.1) can be
approximated as

f n
i − f n−1

i
Δt

= ιni +
f n
i+1 − f n

i
Δτ

,

where we have employed the notation f n
i := f (τi, tn). This can be written in matrix notation as:

fn − fn−1

Δt
= in + ATfn, (F.5)

where AT is the transpose of A and

fn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f n
1

f n
2
...

f n
I−1
f n
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, in =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ιn1
ιn2
...

ιnI−1
ιnI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Given f0, the discretized approximation to the initial distribution f0(τ), we can solve the KF equation forward as

fn =
(

I−ΔtAT
)−1

(inΔt + fn−1) , n = 1, .., N. (F.6)

Step 3: Computation of consumption The discretized budget constraint (2.2) can be expressed as

cn = ȳn − f n−1
1 +

I

∑
i=1

[(
1n − 1

2
λ̄ιni

)
ιni ψn

i − δ f n
i

]
Δτ, n = 1, .., N.

Compute

rn = ρ +
σ

cn
cn+1 − cn

Δt
, n = 1, .., N − 1.

Complete algorithm The algorithm proceeds as follows. First guess an initial path for consumption, for
example cn = ȳn, for n = 1, .., N. Set k = 1;

Step 1: Issuances. Given ck−1 solve step 1 and obtain ι.

Step 2: KF. Given ι solve the KF equation with initial distribution f0 and obtain the distribution f .

Step 3: Consumption. Given ι and f compute consumption c. If ‖c− ck−1‖ = ∑N
n=1

∣∣∣cn − cn
k−1

∣∣∣ < ε then stop.
Otherwise compute

ck = ωc + (1−ω) ck−1, λ ∈ (0, 1) ,

set k := k + 1 and return to step 1.
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G Solutions without liquidity costs: risk and default

G.1 Risk without liquidity costs

We now consider the case without liquidity costs, λ̄ = 0. With positive liquidity costs, adjustments in portfolios
are costly. By studying the problem at the limit where liquidity costs are zero, we can understand the extent to
which the government can obtain insurance given the set of bonds it has available. Thus, it clarifies the extent to
which liquidity costs limit insurance.

Toward that goal, we note that the necessary conditions of the problem are the same with and without liquidity
costs, including the issuance rule. If the issuance rule holds, issuances are bounded if and only if valuations and
prices are equal, v = ψ and v̂ = ψ̂. If we substitute v = ψ and v̂ = ψ̂ in the PDE for valuations, equation (3.3),
and subtract the bond PDE from both sides, equation (3.1), we obtain a premium condition that must hold for all
bonds:32

r̂ (t)− φEX
t

[
U′ (c (t))
U′ (ĉ (t))

· ψ (τ, t)
ψ̂ (τ, t)

]
= r̂∗ (t)− φEX

t

[
ψ (τ, t)
ψ̂ (τ, t)

]
. (G.1)

The analysis of the different solutions of equation (G.1) provides useful information about the role of hedging and
self-insurance. We analyze each case in turn.

Perfect hedging: replicating the complete-markets allocation. Equation (G.1) replicates the complete-markets
allocation when consumption follows a continuous path, i.e., when ĉ (to) = c (to; X (to)) for any realization of the
shock. This is because international investors are risk-neutral and the government is risk averse. If consumption
does not jump, condition (G.1) implies r̂ = r̂∗. In a complete markets economy consumption growth satisfies
ċ(t)
c(t) = r∗(t)−ρ

σ , the same rule that it follows in a deterministic problem. Naturally, there is no RSS with positive
consumption if r∗ (t) < ρ, but consumption converges asymptotically toward zero.

Consumption does not jump when it is possible to form a perfect hedge, a debt profile that generates a capital
gain that exactly offsets the shock. Any shock changes the net-present value of income. Given the path of rates, the
optimal consumption rule and the initial post-shock consumption produce a net-present value of consumption. A
perfect hedge thus produces the capital gains such the net present value of consumption minus income at the time
of the shock (denoted by ΔB (to, X (to))) is covered to the point where pre- and post-shock consumption are equal:
c (to) = ĉ (to; X (to)). This must be true for any shock, X (to). In the context of the model, a perfect hedge exists if
the debt distribution satisfies at all times t

ΔB (t, X (t)) = −
ˆ T

0

(
ψ (τ, t; X (t))− ψ̂ (τ, t)

)
f̂ (τ, t) dτ, (G.2)

for any possible realization of X (t). This family of equations is a generalization of the discrete-shock and discrete-
bonds matrix conditions that guarantee market completion in Duffie and Huang (1985), Angeletos (2002) or Buera
and Nicolini (2004).33

In our model, perfect hedging is available in the case of an interest rate shock taking N possible values. Then,
there is continuum of solutions that satisfy equation (G.2). In this case we can use a range of maturities [0, T]
that is as short as we want to hedge. The shorter the range, the more extreme the positions we obtain. A second
observation has to do with the direction of hedges. Consider the case of a single jump in interest rates (N = 1). To

32This equation is recovered also by solving the problem with λ = 0 directly. The proof is available upon request.
33In the case of discrete shocks and discrete bonds, the existence of complete-markets solution requires the

presence of at least N + 1 bonds for N shocks. In the case of a continuum of shocks, the condition requires the
invertibility of a linear operator. Proving conditions on G that guarantee that family of solutions exceeds the
scope of the paper.In this case, equation (G.2) is just a system of N linear integral equations, for every t, known as
Fredholm equations of the first kind.

offset the reduction in the net-present value of income, the debt profile must generate an increase in wealth. This
requires an increase in short-term assets and long-term liabilities.
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No hedging: only self insurance. The opposite to the complete-markets outcome is the case of income shocks.
In this case bond prices do not change, ψ = ψ̂ = 1. Therefore, it is not possible to generate capital gains with a
debt profile. Instead, the only solution to (G.1) is:

˙̂c (t)
ĉ (t)

=
r̂∗ (t) + φ

(
EX

t

[
U′(c(t))
U′(ĉ(t))

]
− 1

)
− ρ

σ
.

This is a situation in which no hedging is available, because the asset space does not allow any form of external
insurance. Instead, the government must self-insure. Self insurance is captured by the ratio of marginal utilities
which effectively lowers r̂ (t). To solve for consumption, this extreme case coincides with a single-bond economy
without interest-rate risk. The jump in consumption is given by the jump in the net present value of income. The
solution to c (t) in this case is known and can be found, for example in Wang et al. (2016). The ratio of marginal util-
ities in the solution increases as the level of assets falls. This means that, provided there is a sufficiently low level of
debt, the economy reaches a RSS with positive consumption. The convergence in consumption is a manifestation
of self-insurance.

General case. The general case with both income and interest rates shocks described by equation (G.1) features
an intermediate point between the two extreme cases described above as both a partial hedging and self-insurance
emerge.34 Furthermore, as long as the support of the shocks has cardinality N the debt profile is indeterminate, as
only N points of the debt distribution are pinned down.35

G.2 Default without liquidity costs

We return to the case without liquidity costs, λ̄ = 0, but allow for default. Without liquidity costs, we have again
that a solution neccesarily features equality between valuations and prices, v = ψ and v̂ = ψ̂. As a result, the
condition that characterizes the solution without default, (G.1), is modified to:

r̂ (t)− φEX
t

[
(Θ (V (t)) + Ω (t))

ψ (τ, t)
ψ̂ (τ, t)

· U′ (c (t))
U′ (ĉ (t))

]
= r̂∗ (t)− φEX

t

[
Θ (V (t))

ψ (τ, t)
ψ̂ (τ, t)

]
. (G.3)

As in the case without default, we can explain how condition (G.3) characterizes the solution depending on the set
of bonds and shocks.

On the impossibility of perfect hedging. The presence of default interrupts the ability to share risk. Efficient
risk sharing requires a continuous consumption path along non-default states. To see how default interrupts risk-
sharing, consider the case where interest-rate shocks allow complete asset spanning. Assume that ĉ (t) = c (t)
holds in non-default states, as in the version without default. In this case, condition (G.3) becomes

r̂ (t)− φEX
t

[
Ω (t)

ψ (τ, t)
ψ̂ (τ, t)

]
= r̂∗ (t) .

This equation is not satisfied if two maturities feature a different price jump. However, full asset spanning requires
a different price jump at two maturities. This contradiction implies that even when the set of securities can provide

34This case can be solved via dynamic programming using aggregate debt at market values B̂ as a state variable.
B̂ is defined as in (2.17) with pre-shock prices and debt profile. Equation (G.1) holds for every maturity, so given
B̂, it represents a family of first-order conditions for f (τ, t). The debt profile then is associated with an insurance
cost of ˙̂B.

35The proof is a particular case of the one presented in Appendix C.8 for the case with default.

insurance in non-default states, the government’s solution with commitment does not adopt a perfectly insuring
scheme. The distortion follows because the echo-effect acts differently than the risk premium, it distorts valuations
but not prices—we can see that even under risk-neutrality.
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Default allows some hedging. Consider the case of only income shocks. Without default, we noted that there
was no hedging role for maturity but now we show that with default, there is a role. Default opens the possibility
of a partial hedging because prior to the shock, different maturities are priced differently. Post-shock prices are
always ψ (τ, to) = 1. This means that once a shock hits, the government can exploit the change in the yield curve to
obtain capital gains in its portfolio. The change in the risk premium is akin to the spanning effect of an interest-rate
jump.

General case. The option to default interrupts insurance across non-default states, but allows price variation
even without interest-rate risk. As long as the cardinality of shocks is discrete, the maturity profile is indetermi-
nate—a formal proof is found in Appendix C.8. One extreme case of indeterminacy is that of a shock which does
not produce a jump in income nor interests, but only grants a default option. Aguiar et al. (Forthcoming) studies
that shock in a discrete-time model similar to ours but without commitment.

H Additional figures

In this section we introduce the figures corresponding to the different exercises performed in the case of a T → ∞,
risk-neutral governments or turning off the revenue-echo effect (Ω = 0).

Figure H.1: Asymptotic equilibrium objects as a function of the maximum maturity (T).
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Figure H.2: Response to an unexpected shock to interest rates with σ = 0.
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Figure H.3: Response to a shock to interest rates with σ = 0. ’Baseline’ stands for the model
starting at the baseline RSS and ’σ = 0′ for the case with a risk-neutral government.
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Figure H.4: Response to a shock to income with σ = 0 when the option to default is available.
Panels (e) and (f) refer to the case with σ = 0.
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