Skip navigation
Vista previa
Ver
181,96 kB

Compartir:

Registro completo de metadatos
Campo DC Valor
dc.contributor.authorAlonso-Robisco, Andres
dc.contributor.authorCarbó, José Manuel
dc.date.accessioned2021-05-24T10:04:30Z
dc.date.available2021-05-24T10:04:30Z
dc.date.issued2021-05-24
dc.identifier.urihttps://repositorio.bde.es/handle/123456789/16694
dc.descriptionSummary of Banco de España Working Paper no. 2105
dc.format.extent3 p.
dc.language.isoen
dc.publisherBanco de España
dc.relation.ispartofResearch Update / Banco de España, Spring 2021, p. 11-13
dc.relation.hasversionDocumento relacionado 123456789/14691
dc.rightsReconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightsIn Copyright - Non Commercial Use Permitted
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES
dc.rights.urihttp://rightsstatements.org/vocab/InC-NC/1.0/
dc.subjectAprendizaje automático
dc.subjectRiesgo de crédito
dc.subjectPredicción
dc.subjectProbabilidad de impago
dc.subjectModelos IRB
dc.subjectMachine learning
dc.subjectCredit risk
dc.subjectPrediction
dc.subjectProbability of default
dc.subjectIRB system
dc.titleUnderstanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation
dc.typeArtículo
dc.identifier.bdepubREUP-202105-3
dc.subject.bdeBig data e inteligencia artificial
dc.subject.bdeSistemas bancarios y actividad crediticia
dc.subject.bdeMétodos Econométricos y Estadísticos
dc.subject.bdeModelización econométrica
dc.publisher.bdeMadrid : Banco de España, 2021
Aparece en las colecciones:


loading