Registro completo de metadatos
Campo DC | Valor |
---|---|
dc.contributor.author | Alonso-Robisco, Andres |
dc.contributor.author | Carbó, José Manuel |
dc.date.accessioned | 2021-05-24T10:04:30Z |
dc.date.available | 2021-05-24T10:04:30Z |
dc.date.issued | 2021-05-24 |
dc.identifier.uri | https://repositorio.bde.es/handle/123456789/16694 |
dc.description | Summary of Banco de España Working Paper no. 2105 |
dc.format.extent | 3 p. |
dc.language.iso | en |
dc.publisher | Banco de España |
dc.relation.ispartof | Research Update / Banco de España, Spring 2021, p. 11-13 |
dc.relation.hasversion | Documento relacionado 123456789/14691 |
dc.rights | Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights | In Copyright - Non Commercial Use Permitted |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES |
dc.rights.uri | http://rightsstatements.org/vocab/InC-NC/1.0/ |
dc.subject | Aprendizaje automático |
dc.subject | Riesgo de crédito |
dc.subject | Predicción |
dc.subject | Probabilidad de impago |
dc.subject | Modelos IRB |
dc.subject | Machine learning |
dc.subject | Credit risk |
dc.subject | Prediction |
dc.subject | Probability of default |
dc.subject | IRB system |
dc.title | Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation |
dc.type | Artículo |
dc.identifier.bdepub | REUP-202105-3 |
dc.subject.bde | Big data e inteligencia artificial |
dc.subject.bde | Sistemas bancarios y actividad crediticia |
dc.subject.bde | Métodos Econométricos y Estadísticos |
dc.subject.bde | Modelización econométrica |
dc.publisher.bde | Madrid : Banco de España, 2021 |